Lecture 1: Linear Equations

Shengkui Ye

September 13, 2022

1 System of linear equations

Example 1.1 Solve

$$
x_1 - 2x_2 = -1, \n-x_1 + 3x_2 = 3.
$$

Add the second equation to the first one, to get $x_2 = 2$. Get back to the first to get $x_1 = 3$. In this course, we will study the general case.

Definition 1.2 Let x_1, x_2, \dots, x_n be variables. A linear equation is

 $a_1x_1 + a_2x_2 + \cdots a_nx_n = b.$

A system of linear equations is of the form

 $\sqrt{ }$ $a_{11}x_1 + a_{12}x_2 + \cdots a_{1m}x_m = b_1,$ $a_{21}x_1 + a_{22}x_2 + \cdots a_{2m}x_m = b_2,$. . . $a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nm}x_m = b_n.$ $(*)$

Fundamental questions of linear algebra are

Problem 1.3 For the system of equations $(*)$, how to solve it? Is there a solution? If yes, how many solutions?

Obviously the system (*) is determined by the coefficients a_{ij} and b_i (1 \leq $i \leq n, 1 \leq j \leq m$. The answer to the above question is determined completely by these a_{ij} and b_i . For convenience, we introduce the concepts of vectors and matrices.

Definition 1.4 A vector is an ordered tuple of real numbers:

$$
u = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix},
$$

also denoted as $(u_1, u_2, \dots, u_n)^T$. The n is called the dimension of the vector u. We denote the set of all n-dimensional vectors by \mathbb{R}^n . For two n-dimensional vectors u, v , we define the sum and dot product as

$$
u + v = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ \vdots \\ u_n + v_n \end{bmatrix},
$$

$$
u \cdot v = u_1v_1 + u_2v_2 + \dots + u_nv_n.
$$

Using the dot product, we write the linear equation $a_1x_1+a_2x_2+\cdots+a_nx_n=b$ as $(a_1, a_2, \dots, a_n)^T \cdot (x_1, x_2, \dots, x_n)^T = b.$

The system $(*)$ can be denoted as $AX = b$, where

$$
A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}
$$

is called the coefficient matrix and $X = (x_1, x_2, \dots, x_n)^T$, $b = (b_1, b_2, \dots, b_n)^T$. The matrix $[A, b]$ is called the augmented matrix.

Example 1.5 (Elementary row operations) In the process of solving $AX = b$ (or the system $(*)$), we can operate the following three elementary operations (to $[A, b]$):

1. (Replacement) Replace one row by the sum of itself and a multiple of another row.

2 (Interchange) Interchange two rows.

3. (Scaling) Multiply all entries in a row by a nonzero constant.

Eventually, the matrix $[A, b]$ is reduced to the form (called reduced Echelon form) satisfying:

1. The first nonzero entry (called the leading entry) in each nonzero row is 1 (after scalings).

2. Each leading 1 is the only nonzero entry in its column (after repalcements).

3. All nonzero rows are above any rows of all zeros (after interchanges)

5. Each leading entry of a row is in a column to the right of the leading entry of the row above it (starting from the first column to the last column).

Example 1.6 There is a standard way to reduce the matrix $[A, b]$ into the reduced Echelon form. The process is called Gaussian elimination (see the Textbook for an explicit explaination). The existence and uniqueness of solutions to $AX = b$ depend entirely on the reduced echelon form. For example,

$$
\begin{bmatrix} 1&&\\&1&\\&&0\end{bmatrix}\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}=\begin{bmatrix} b_1\\b_2\\b_3\end{bmatrix}
$$

has solutions only when $b_3 = 0$. When $b_3 = 0$, the system has infinitely many solutions, with x_3 can be any real number. In such a case, we call x_3 the free variable.

Definition 1.7 (linear combinations) Given vectors $v_1, v_2, \dots, v_m \in \mathbb{R}^n$, a linear combination of these vectors is a sum

$$
a_1v_1+\cdots+a_mv_m
$$

for some $a_1, a_2, \dots, a_m \in \mathbb{R}$. The set of all linear combinations is denoted by $\text{Span}\{v_1, v_2, \cdots, v_m\}.$

Example 1.8 $\text{Span}\{(1,1), (1,-1)\} = \mathbb{R}^2$.

Example 1.9 The system $AX = b$ has a solution if and only if b is a linear combination of the columns of A:

Lemma 1.10 For any two vectors $u, v \in \mathbb{R}^n$, $a \in \mathbb{R}$ and an $m \times n$ matrix A, we have

$$
A(u + v) = Au + Av,
$$

$$
A(au) = aAu.
$$

2 Solution sets of linear systems

The system $AX = 0$ is called homogeneous. Since $A0 = 0$, there is always a solution to the homogeneous system. A non-zero solution of $AX = 0$ is called a non-trivial solution.

Lemma 2.1 For any two solutions X_1, X_2 to $AX = b$, the difference $X_1 - X_2$ is a solution of $AX = 0$. Fix a solution X_0 to $AX = b$. The set of all solutions to $AX = b$ is $\{X \in \mathbb{R}^n \mid AX = 0\} + X_0.$

The following is the process of solving $AX = b$:

1. Row reduce the augmented matrix $[A, b]$ to the reduced echelon form.

2. Express each basic variable in terms of any free variables appearing in the system given by the reduced echelon form.

3. Write a typical solution X as a vector whose entries depending on the free variables, if any.

4. Decompose X into a linear combination of vectors (with numeric entries) using the free variables as parameters.

Example 2.2 Describe all solutions of $AX = b$, where

$$
A = \begin{bmatrix} 3 & 5 & -4 \\ -3 & -2 & 4 \\ 6 & 1 & -8 \end{bmatrix}, b = \begin{bmatrix} 7 \\ -1 \\ -4 \end{bmatrix}.
$$

3 Linear dependence and linear transformations

Two vectors u, v are co-line if $u = rv$ for some real number $r \in \mathbb{R}$. Three vectors u, v, w are co-plane if they lie in the same plane. The following is a general concept.

Definition 3.1 Vectors $v_1, v_2, \dots, v_m \in \mathbb{R}^n$ are linearly dependent if

 $a_1v_1 + a_2v_2 + \cdots + a_mv_m = 0$

for some non-zero vector (a_1, a_2, \dots, a_m) . Similarly, $v_1, v_2, \dots, v_m \in \mathbb{R}^n$ are linearly independent if $a_1v_1 + a_2v_2 + \cdots + a_mv_m = 0$ can only hold for $a_1 =$ $a_2 = \cdots = 0.$

Example 3.2 The set $\{(1,0),(0,1)\}$ is linearly independent in \mathbb{R}^2 .

Lemma 3.3 Two vectors $\{u, v\}$ are linearly dependent if and only they are co-line. Three vectors $\{u, v, w\}$ are linearly dependent if and only if they are co-plane.

Lemma 3.4 $v_1, v_2, \dots, v_m \in \mathbb{R}^n$ are linearly dependent if and only if one vector is a linear combination of the other vectors.

Proof. If $a_1v_1 + a_2v_2 + \cdots + a_mv_m = 0$ holds for some nonzero a_i , then $v_i = -\frac{1}{a_i} (\sum_{j\neq i} a_j v_j)$, a linear combination. Conversely, if $v_i = \sum_{k\neq i} a_k v_k$, then $\sum_{k\neq i}^{a_i} a_k v_k - v_i = 0$. Thus $\{v_1, v_2, \cdots, v_m\}$ are linearly independent.

Lemma 3.5 Let $A = [v_1, v_2, \dots, v_m]$ be a matrix with v_i as its *i*-th column. $v_1, v_2, \dots, v_m \in \mathbb{R}^n$ are linearly dependent if and only if $AX = 0$ has a nontrivial solution.

Proof. It is obvious. ■

Corollary 3.6 Any set $\{v_1, v_2, \dots, v_p\} \in \mathbb{R}^n$ is linearly dependent if $p > n$.

Recall that \mathbb{R}^n is the set of all *n*-dimensional vectors. For two vectors $x, y \in$ \mathbb{R}^n , and a real number $a \in \mathbb{R}$, we can define $x + y$ and ax .

Definition 3.7 A linear transformation $f : \mathbb{R}^m \to \mathbb{R}^n$ is a function assigning each element $x \in \mathbb{R}^m$ an element $f(x) \in R^n$ such that

$$
f(ax + by) = af(x) + bf(y),
$$

for any $a, b \in \mathbb{R}$. In other words, f assign linear combinations to linear combinations.

Example 3.8 For an $n \times m$ matrix $A_{n \times m}$, the function $f(x) = Ax : \mathbb{R}^m \to \mathbb{R}^n$ is linear.

Theorem 3.9 For any linear transformation $f : \mathbb{R}^m \to \mathbb{R}^n$, there is a unique matrix A (called the standard matrix of f) such that $f(x) = Ax$. Actually, $A = [f(e_1), f(e_2), \cdots, f(e_n)]$ where e_i is the j-th column of the identity matrix in \mathbb{R}^m .

Proof. Any vector $x = (x_1, x_2, \dots, x_m)^T \in \mathbb{R}^m$ is a linear combination $x =$ $x_1e_1+x_2e_2+\cdots+x_me_m.$ Therefore, $f(x) = x_1f(e_1)+x_2f(e_2)+\cdots+x_mf(e_m) =$ $[f(e_1), f(e_2), \cdots, f(e_n)]x.$

Example 3.10 Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation that rotates each point in \mathbb{R}^2 about the origin anti-clockwise through an angle $\varphi \in [0, 2\pi)$. Show that the standard matrix of f is

$$
\begin{bmatrix}\n\cos\varphi & -\sin\varphi \\
\sin\varphi & \cos\varphi\n\end{bmatrix}.
$$

Lecture 2: Matrix

Shengkui Ye

September 23, 2022

1 Matrices: sum, product and transpose

Recall that an $n \times m$ matrix $M = (a_{ij})_{1 \leq i \leq n, 1 \leq j \leq m}$ has a real number a_{ij} in the (i, j) -th position. For two $n \times m$ matrices $A = (a_{ij})_{n \times m}$, $B = (b_{ij})_{n \times m}$, we can add them together $A + B = (a_{ij} + b_{ij})_{n \times m}$. For any real number $a \in \mathbb{R}$, the scalar multiplication $aA = (aa_{ij})_{n \times m}$. We use the notation: $x_1 + x_2 + \cdots + x_m =$ $\sum_{i=1}^m x_i$.

Definition 1 For matrices $A_{n \times m}$, $B_{m \times k}$, the product $AB = (c_{ij})$ is an $n \times k$ matrix with (i, j) -th entry

$$
c_{ij} = \sum_{s=1}^{m} a_{is} b_{sj}.
$$

Example 2 For a matrix $A = (a_{ij})_{n \times m}$ and a vector $X = (x_1, x_2, \dots, x_m)^T$, the product $AX = (\sum_{j=1}^m a_{ij}x_j)_{1 \leq i \leq n}$ is an n-dimensional vector.

Lemma 3 For matrices $A_{n \times m}$, $B_{m \times k}$, $C_{k \times l}$, we have 1) $(AB)C = A(BC);$ 2) $A(B_1 + B_2) = AB_1 + AB_2$, if B_1, B_2 have m rows; 3) $(A_1 + A_2)B = A_1B + A_2B$ if A_1, A_2 have m columns; 4) $a(AB) = A(aB) = (aA)B$ for any real number $a \in R$; $5) I_n A = A I_m = A$ for identity matrice I_n, I_m (of size $n \times n, m \times m$ respectively).

Example 4 Let $A =$ $\begin{bmatrix} 10 & 0 \\ 0 & 1 \end{bmatrix}$, B = $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Note that $AB \neq BA$.

Definition 5 The transpose of an $n \times m$ matrix $A = (a_{ij})$ is the $m \times n$ matrix (b_{ij}) with $b_{ij} = a_{ji}$. Denote the transpose by A^T . In other words,

$$
AT = \begin{bmatrix} a_{11} & a_{21} & a_{n1} \\ a_{12} & a_{22} & a_{n2} \\ \vdots & \ddots & \vdots \\ a_{1m} & a_{2m} & \cdots & a_{nm} \end{bmatrix}.
$$

Example 6 The transpose of a row vector (a_1, a_2, \dots, a_m) is the column vector

Lemma 7 We have $(A^T)^T = A$, $(AB)^T = B^T A^T$, and $(A + B)^T = A^T + B^T$.

2 Invertible matrices

Definition 8 A square matrix $A_{n\times n}$ is invertible if there exists a matrix B such that $AB = BA = I_n$. When A is invertible, we denote the inverse by A^{-1} .

Remark 9 The inverse is unique if it exists. Suppose B_1, B_2 are both inverses of A. Then $B_1 = B_1I_n = B_1(AB_2) = (B_1A)B_2 = I_nB_2 = B_2$.

Example 10 A matrix $A =$ $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is invertible if and only if $ad-bc \neq 0$. The inverse is $\frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$:

Lemma 11 When A is invertible, the system $AX = b$ has a unique solution $X = A^{-1}b.$

Proof. Left mutiply both sides of $AX = b$ by A^{-1} to get that $X = A^{-1}b$. Since the inverse A^{-1} is unique, the solution $A^{-1}b$ is unique.

Lemma 12 Let A, B be two invertible matrices of the same sizes. Then

 $1) (A^{-1})^{-1} = A;$ 2) $(AB)^{-1} = B^{-1}A^{-1};$ 3) $(A^T)^{-1} = (A^{-1})^T$.

An elementary matrix is one that is obtained by performing a single elementary row operation on an identity matrix. The next example illustrates the three kinds of elementary matrices.

Can you replace 10 by any nonzero real number a?

Theorem 14 An $n \times n$ matrix A is invertible if and only if A is reduced by elementary row operations to the identity I_n . Moreover, if $A = E_k E_{k-1} \cdots E_1$ then $A^{-1} = E_1^{-1} E_2^{-1} \cdots E_k^{-1}$.

Proof. Recall that a matrix A is reduced by elementary row operations to the reduced echelon matrix. If A is invertible, the system $AX = b$ has a unique solution. Therefore, the echelon matrix is the identity I_n . Conversely, when A is reduced to the identity matrix, the A is invertible signe each elementary matrix is invertible. The last claim is a simply application of 2) in the previous lemma. \blacksquare

The previous theorem provides an algorithm for finding A^{-1} : reduce the matrix A in the augmented matrix $[A, I_n]$ into the identity by elementary row operations, to get $[I_n, A^{-1}].$

Theorem 15 For a square matrix $A_{n \times n}$, the following are equivalent:

- 1) A is invertible.
- 2) A is reduced by elementary row operations to the identity matrix.
- 3) The reduced echelon form of A is the identity I_n .
- 4) The equation $Ax = 0$ has only the trivial solution.
- 5) The columns of A form a linearly independent set.
- 6) The linear transformation $x \mapsto Ax$ is one-to-one (injective).

(i) The equation $Ax = b$ has at least one solution for each b
- 7) The equation $Ax = b$ has at least one solution for each $b \in \mathbb{R}^n$.
- 8) The columns of A span \mathbb{R}^n .
- 9) The linear transformation $x \mapsto Ax$ maps \mathbb{R}^n onto \mathbb{R}^n (surjective).
- 10) There is an $n \times n$ matrix D such that $AD = I_n$.
- 11) There is an $n \times n$ matrix C such that $CA = I_n$.
- 12) A^T is an invertible matrix.

Proof. The previous theorem implies the equivalences 1) \iff 2) \iff 3). It is obvious that 3) \iff 4). The equivalence 4) \iff 5) is from the definition of linear independence. It is obvious that $4) \iff 6$ by the definition of "one-toone". 1) \implies 7) since $x = A^{-1}b$ is a solution. It is obvious that $7) \iff 8) \iff$ 9) by the definitions of "span" and "onto". When 9) holds, the standard basis ${e_1, e_2, ..., e_n}$ of \mathbb{R}^n has preimages. This means that there exists $x_i \in \mathbb{R}^n$ such that $Ax_i = e_i$. Therefore, $A[x_1, ..., x_n] = I_n$. This proves $9 \implies 10$). From the definition of inverse, we have 1) \implies 10), 1) \implies 11). If 11) holds, then $Ax = 0$ has $0 = C A x = x$ and thus 4) holds. Similarly, 10) implies A^T is invertible. Since $(A^T)^{-1} = (A^{-1})^T$, we have 1) \iff 12).

Corollary 16 Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation. There exists a linear transformation $g : \mathbb{R}^n \to \mathbb{R}^n$ such that such that $f \circ g = g \circ f = id_{\mathbb{R}^n}$ (the identica map) if and only if the standard matrix of f is invertible.

Proof. It follows the uniqueness of standard matrices for $g, f \circ g$ and $g \circ f$.

3 Subspaces, dimensions and ranks

Definition 17 A subspace of \mathbb{R}^n is a subset H of \mathbb{R}^n such that $ax + by \in H$ for any $x, y \in H$ and $a, b \in \mathbb{R}$.

Example 18 A line, or a plane passing 0 is a subspace of \mathbb{R}^n . The span of any subset $\{v_1, v_2, \dots, v_k\} \subset \mathbb{R}^n$ is defined as the set of all vectors

$$
a_1v_1 + a_2v_2 + \cdots + a_kv_k,
$$

for each $a_i \in \mathbb{R}$. The span is a subspace.

Example 19 For a matrix $A_{n \times m}$, the span of columns of A is a vector space. The set $\{x \in \mathbb{R}^m \mid Ax = 0\}$ is a subspace.

Definition 20 A basis for a subspace H of \mathbb{R}^n is a set S such 1) S is linearly independent; and 2) S spans \mathbb{R}^n .

Example 21 Let $A_{n\times n}$ be a square invertibe matrix. The column vectors of A form a basis for \mathbb{R}^n .

Lemma 22 Let $S = \{s_1, s_2, \dots, s_n\}$ be a basis of \mathbb{R}^n . Every vector $x \in \mathbb{R}^n$ is a unique linear combination

$$
x_1s_1+x_2s_2+\cdots+x_ns_n
$$

of S. The vector (x_1, x_2, \dots, x_n) is called the coordinate of x relative to S.

Proof. Since S spans \mathbb{R}^n , any vector x is a linear combination of S. Since S is linear independent, the linear combination is unique (i.e. suppose there are two different linear combination. take the difference to get a contradiction). \blacksquare

Definition 23 Let $H < \mathbb{R}^n$ be subspace and S a basis of H. The number of elements in S is called the dimension $\dim(H)$ of H.

Definition 24 For a matrix A, the rank rank(A) is the dimension of the subspace spanned by column vectors of A:

Example 25 Let

 $A =$ $\sqrt{2}$ 4 -3 6 -1 1 -7 $1 \quad -2 \quad 2 \quad 3 \quad -1$ $2 \t-4 \t5 \t8 \t-4$ 3 $\vert \cdot$

Find a basis for the null space $\{x : Ax = 0\}$ and the rank(A).

Lemma 26 The rank of a matrix A equals to the number of leading 1s in its reduced echelon form.

3.1 Rank theorem

Example 27 Let

$$
A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}.
$$

Compute its rank rank (A) .

Lemma 28 For invertible matrice $B_{m \times m}$, $C_{n \times n}$ and matrix $A_{m \times n}$ we have rank $(BAC) = \text{rank}(A)$.

Proof. Let $A = [A_1, A_2, ..., A_n]$, where A_i is the *i*-th column. Then $BA =$ $[BA_1, BA_2, ..., BA_m]$. View B as a linear transformation $f : \mathbb{R}^n \to \mathbb{R}^n$ given by $x \rightarrow Bx$. Since B is invertible, f is bijective. This implies that

 $B\text{Span}\{A_1, A_2, ..., A_n\} = \text{Span}\{BA_1, BA_2, ..., BA_n\}.$

If $\{x_1, x_2, \dots, x_k\}$ is a basis of $\text{Span}\{A_1, A_2, ..., A_n\}$, then $\{Bx_1, Bx_2, \dots, Bx_k\}$ is a basis of $\text{Span}\{BA_1, BA_2, ..., BA_n\}$. This proves that $\text{rank}(BA) = \text{rank}(A)$ for any $A_{m \times n}$.

For the other part, we prove that $Col(A) = Col(BC)$. For any $x \in Col(A)$, we have $x = \sum_{i=1}^{n} a_i A_i$ for numbers $a_1, a_2, ..., a_n$. Actually, $x = A$ $\sqrt{2}$ $\overline{}$ a_1 . . . a_n 3 $\Big| \cdot$ But $x =$ $\sqrt{2}$ a_1 3

 $AC(C^{-1})$ $\overline{}$. . . a_n), which implies that $x \in \text{Col}(BC)$. Similarly, any $y \in \text{Col}(BC)$

has $y = ACz$ for a vector $z \in \mathbb{R}^n$. Then $y = A(Cz) \in Col(A)$. This proves that rank (AC) = rank (A) , as the dimensions are the same.

Corollary 29 For matrix $A_{n \times m}$, we have rank $(A) = \text{rank}(A^T)$.

Proof. Apply elementary row operations to reduce A into the reduced echelon form $C =$ $\begin{bmatrix} I_k & * \\ 0 & 0 \end{bmatrix}$. There is an invertible matrix B (product of elementary matrices) such that $BA = C$. Lemma 28 implies that $rank(A) = rank(C) = k$. Since $A^T B^T = C^T$, the same lemma implies $\text{rank}(A^T) = \text{rank}(C^T) = \text{rank}(C) =$ rank (A) .

Theorem 30 Let $A_{n\times m}$ be a matrix. Denote by Col(A) the vector space spanned by columns of A, Nul(A) the subspace $\{x \in \mathbb{R}^m \mid Ax = 0\}$. Then

$$
\dim \mathrm{Col}(A) + \dim \mathrm{Nul}(A) = m.
$$

Proof. Reduce A by elementary row and column operations to the reduced echelon matrix $\begin{bmatrix} I_k & * \\ 0 & 0 \end{bmatrix}$. Lemma 28 implies that dim Col(A) is k, and the dimension of $\text{Nul}(\bar{A})$ is the number of free variables for the solutions of $Ax = 0$. Therefore, we have dim $\text{Nul}(A) = m - k$.

Theorem 31 Let $A_{n\times n}$ be a square matrix. The following statements are equivalent:

- $0)$ A is invertible.
- 1) The column vectors of A form a basis for \mathbb{R}^n .
- 2) Col $(A) = \mathbb{R}^n$.

3) dim $Col(A) = n$. $4)$ rank $(A) = n$. 5) $Nul(A) = 0.$

Proof. By the definitions and the previous theorem, we have $1) \implies 2) \implies$ $(3) \Longrightarrow 4 \Longrightarrow 5 \Longrightarrow 1$). The equivalence $(0) \iff 5$) is already proved.

Lecture 3 : Vector spaces

Shengkui Ye

October 16, 2022

1 Vector spaces and subspaces

Let $F = \mathbb{R}$ (the set of all real numbers), \mathbb{C} (the set of all complex numbers), or Q (the set of all rational numbers).

Definition 1 A vector space over F is a set V, together with two operations $+$ and multiplication by F , satisfying the obvious commutativity, associativity and distribution law. Explicitly, it satisfies the 8 conditions in the textbook.

Example 2 The set \mathbb{R}^n is a vector space; For fixed positive integers m, n , the set $M_{m \times n}(\mathbb{R})$ of all $m \times n$ matrices is a vector space. The set $V = \{f \mid f$ is a continuous function on the interval $[0,1]$ is a vector space.

Definition 3 A subspace of a vector space V is a subset H such that $ax+by \in H$ for any $x, y \in H$ and $a, b \in \mathbb{R}$.

Example 4 A line, or a plane passing 0 is a subspace of \mathbb{R}^n . The span of any subset $\{v_1, v_2, \cdots, v_k\} \subset \mathbb{R}^n$ is a subspace.

Example 5 Let n be a positive integer. The set H of all diagonal $n \times n$ matrices is a subspace of $M_{n\times n}(\mathbb{R})$. The set of polynomials of degree at most n is a subspace of $\{f \mid f \text{ is a continuous function on the interval } [0,1]\}.$

Example 6 For a matrix $A_{n \times m}$, the span of columns of A is a vector space. The set $\{x \in \mathbb{R}^m \mid Ax = 0\}$ is a subspace of \mathbb{R}^m .

2 Basis and dimensions

Let V be a vector space. Simimilar to the \mathbb{R}^n , we can define linear combinations, linear independence, basis and dimensions for general vector spaces V , as these concepts involve only additions and scalar multiplications.

For a subset S of V, a linear combination is $a_1v_1 + a_2v_2 + \cdots + a_kv_k$ for some finitely many elements $v_1, v_2, ..., v_k \in S$ and $a_1, a_2, ..., a_k \in F$. A subset $S \subset V$ is linearly independent if any linear combination $a_1v_1 + a_2v_2 + \cdots + a_kv_k = 0$ with $v_1, v_2, \dots, v_k \in S$ will imply that each $a_i = 0, i = 1, 2, ..., k$.

Definition 7 A basis for a subspace H of V is a set S such 1) S is linearly independent; and $2)$ S spans H, i.e. any vector in H is a linear combination of S:

Example 8 Let $A_{n\times n}$ be a square invertible matrix. The column vectors of A form a basis for \mathbb{R}^n .

Lemma 9 Let S be a subset of a vector space V and

 $H = \{a_1v_1 + a_2v_2 + \cdots + a_kv_k \mid v_1, v_2, ..., v_k \in S, a_1, a_2, ..., a_k \in F\}$

the subspace spanned by S .

1) Suppose that one of the vector in S, say v_k , is a linear combination of other vectors in S. Then H is the span of $S \setminus \{v_k\}$, the set of S without v_k .

2) Suppose that S is a finite set. If $H \neq 0$, then some subset of S is a basis $of H.$

Proof. 1) It is enough to prove that any $x \in H$ is a linear combination of elements in $S \setminus \{v_k\}$. Since $x \in H$, $x = a_1v_1 + a_2v_2 + \cdots + a_lv_l$. Suppose that $v_k = \sum_{i=1, i \neq k}^{l} b_i v_i$. Then $x = a_1 v_1 + a_2 v_2 + \cdots + \sum_{i=1, i \neq k}^{l} a_k b_i v_i = \sum_{i=1, i \neq k}^{l} (a_i + b_i v_i)$ $(a_k b_i)v_i$, a linear combination of $S \setminus \{v_k\}$.

2) If S is linearly independent, then S is a basis by the definition. Otherwise, S is linearly dependent and one element v_k is a linear combination of $S\backslash \{v_k\}$. By (1), H is the span of $S \setminus \{v_k\}$. Continue such a process until a subset S' of S is linearly independent and H is spanned by S' . Then S' is a basis.

Lemma 10 Let $S = \{s_1, s_2, \dots, s_n\}$ be a basis of V. Every vector $x \in V$ is a unique linear combination

$$
x_1s_1+x_2s_2+\cdots+x_ns_n
$$

of S. The vector $(x_1, x_2, \dots, x_n)^T \in \mathbb{R}^n$ is called the coordinate of x relative to S, denoted by $[x]_S$.

Proof. Since S spans V, any vector x is a linear combination of S. Since S is linear independent, the linear combination is unique (i.e. suppose there are two different linear combinations. Take the difference to get a contradiction). \blacksquare

Definition 11 Let V be a vector space and S a basis of V. The number of elements in S is called the dimension dim(V) of V. It's possible that $\dim(V) = \infty$ when S is infinite.

Lemma 12 Let V be a vector space having a basis $S = \{b_1, b_2, \dots, b_n\}$. Then any subset S' in V containing more than n vectors must be linearly dependent.

Proof. Suppose that $S' = \{c_1, c_2, \dots, c_p\}$ with $p > n$. Then each c_i is a linear combination of S, where the coefficients form the coordinate $[c_i]_B \in \mathbb{R}^n$. Since $p > n$, the set $\{ [c_1]_B, [c_2]_B, \cdots, [c_p]_B \}$ is linearly dependent. Thus there exists a vector $(a_1, a_2, \dots, a_p) \neq 0$ such that $\sum_{i=1}^p a_i [c_i]_B = 0$. Note that

$$
c_i = [b_1, b_2, \cdots, b_n][c_i]_B
$$

\n
$$
[c_1, c_2, \cdots, c_p](a_1, a_2, \cdots, a_p)^T = [b_1, b_2, \cdots, b_n][[c_1]_B, \cdots, [c_p]_B](a_1, a_2, \cdots, a_p)^T
$$

\n
$$
= 0
$$

and thus $\sum_{i=1}^{p} a_i c_i = 0$. This proves S' is linearly independent.

Corollary 13 If a vector space V has a basis of n vectors, then any basis must consist of exactly n vectors.

Theorem 14 (basis extension theorem) Let V be a finite-dimensional vector space. Any linearly independent set S can be extended to be a basis of V .

Proof. If $\text{Span}(S) = V$, then S is a basis. Otherwise, $V \supsetneq \text{Span}(S)$ and choose $0 \neq v \in V$ but $v \notin \text{Span}(S)$. Then $S \cup \{v\}$ is linearly independent (otherwise, one element is a linear combination of the previous vectors and such an element must be v). Continue such a process to get a maximal linearly independent set, which is a basis. Note that a linearly independent set has at most $\dim V$ elements by the previous lemma, and such a process must stop after at most $\dim V$ steps. \blacksquare

Corollary 15 (basis theorem) Let $V = \mathbb{R}^n$. Any linearly independent set consisting of n vectors is a basis of V .

2.1 Linear Transformations

A function f from a set X to a set Y is a rule that for each (input) $x \in X$ assigns a value (output) $y = f(x) \in Y$. Here X is called the domain and Y is called the codomain of f.

Definition 16 A linear transformation (map) $f : V_1 \rightarrow V_2$ between vector spaces V_1, V_2 is a function such that

$$
f(ax + by) = af(x) + bf(y)
$$

for any $a, b \in \mathbb{R}$ and $x, y \in V_1$.

Example 17 1) For a matrix $A_{n \times m}$, the matrix multiplication function f : $\mathbb{R}^m \to \mathbb{R}^n$,

 $x \mapsto Ax,$

is linear;

2) Rotations and reflections of \mathbb{R}^2 that fixing the origin are linear maps.

Example 18 The kernel ker $f = \{x \in V_1 | f(x) = 0\}$ and the image Im $f =$ ${f(x) | x \in V_1}$ are both vector spaces. A linear map $f: V_1 \to V_2$ is determined by its image on a spanning (or generating) set of V_1 .

Theorem 19 (general rank theorem) Let $f: V_1 \rightarrow V_2$ be a linear map. We have

$$
\dim \ker f + \dim \operatorname{Im} f = \dim V_1.
$$

Proof. Let $\{e_1, e_2, ..., e_k\}$ be a basis of ker f. Extend this set to be a basis ${e_1, e_2, ..., e_k, w_1, w_2, ..., w_l}$ of V_1 by the basis extension theorem. It can directly checkted that $\{f(w_1), f(w_2), ..., f(w_l)\}\$ is a basis of Im f.

2.2 Linear maps and matrix multiplications

Let V, W be finite-dimensional vector spaces and $f : V \to W$ be a linear transformation. Fix a basis $B = \{b_1, b_2, \dots, b_n\}$ of V and a basis $C = \{c_1, c_2, \dots, b_m\}$ of W. Any vector $x \in V$ is a unique linear combination

$$
x = x_1b_1 + x_2b_2 + \dots + x_nb_n
$$

of B, i.e. $x = [b_1, b_2, \dots, b_n][x]_B$. Here

$$
[x]_B = (x_1, x_2, ..., x_n)^T
$$

is called the coordinate of x with respect to B. Similarly, $f(x)$ is also a linear combination

$$
f(x) = y_1c_1 + y_2c_2 + \dots + y_mc_m
$$

of W: In other words, we have

$$
f(x) = [c_1, c_2, \cdots, c_m][f(x)]_C.
$$

A matrix $A = A_{f,B,C}$ is called the *representation matrix* of f with respect to bases B, C , if

$$
[f(x)]_C = A[x]_B
$$

for any $x \in V$.

Example 20 When $V = W = \mathbb{R}^n$ and B is the standard basis

$$
\{(1,0,\cdots,0)^T,(0,1,\cdots,0)^T,\cdots,(0,0,\cdots,1)^T\},\
$$

the representation matrix $A_{f,B,B}$ is the standard matrix defined before. When $V = W$ and $B = C$, we simply call the representation matrix A the B-matrix of f:

Example 21 When $V = W$ and $f = Id$, the identical map, the representation matrix $A_{Id,B,C}$ is called the transition matrix (or Change of coordinate matrix) from the basis B to the basis C. Show that $A_{Id,B,C} = A_{Id,C,B}^{-1}$.

Lemma 22 Let $f : V \to W$ be a linear transformation and $B = \{b_1, b_2, \dots, b_n\}$ a basis of V, C a basis of W . The representation matrix of f with respect to B, C is

$$
A = [[f(b_1)]_C, [f(b_2)]_C, \cdots, [f(b_n)]_C].
$$

Proof. It's obvious that $[[b_1]_B, [b_2]_B, \cdots, [b_n]_B]$ is the identity matrix. The claim is proved by $[f(x)]_C = A[x]_B$ for any x.

Example 23 Let $M_2 = \{$ $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ | $a, b, c, d \in \mathbb{R}$ } be the set of all 2×2 matrices. Let $f: M_2 \to M_2$ be given by $f(x) = x^T$, the transpose function. Prove that f is linear and find the representation matrix of f with respect to the basis ${e_1} =$ $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $e_2 =$ $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $e_3 =$ $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $e_4 =$ $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ }.

Lemma 24 Let $f: V \to V$ be a linear transformation and B_1, B_2 be two bases of V. The representation matrices A_1, A_2 of f with respect to B_1, B_2 are similar.

Proof. Suppose that $B_1 = \{b_1, b_2, \dots, b_n\}, B_2 = \{b'_1, b'_2, \dots, b'_n\}.$ According to the definition, we have

$$
f(x) = [b_1, b_2, \cdots, b_n][f(x)]_{B_1} = [b'_1, b'_2, \cdots, b'_n][f(x)]_{B_2}
$$

$$
[f(x)]_{B_1} = A_1[x]_{B_1}, [f(x)]_{B_2} = A_2[x]_{B_2}.
$$

Therefore,

 $[b_1, b_2, \cdots, b_n]A_1[x]_{B_1} = [b'_1, b'_2, \cdots, b'_n]A_2[x]_{B_2}.$

Let P be the transition matrix from B_1 to B_2 , i.e. $P[x]_{B_1} = [x]_{B_2}$. Choose $x = b'_1, b'_2, \cdots, b'_n$ to get that

$$
P[[b'_1]_{B_1}, [b'_2]_{B_1}, \cdots, [b'_n]_{B_1}] = I_n,
$$

$$
[b_1, b_2, \cdots, b_n]A_1[[b'_1]_{B_1}, [b'_2]_{B_1}, \cdots, [b'_n]_{B_1}] = [b'_1, b'_2, \cdots, b'_n]A_2.
$$

Note that $[b_1, b_2, \cdots, b_n][[b'_1]_{B_1}, [b'_2]_{B_1}, \cdots, [b'_n]_{B_1}] = [b'_1, b'_2, \cdots, b'_n]$. Therefore, we have

$$
PA_1P^{-1} = A_2.
$$

Example 25 Let $f, g: V_1 \to V_2$ be two linear maps. For any $a, b \in R$, we have a new function $af + bg : V_1 \rightarrow V_2$ defined by $(af + bg)(x) = af(x) + bg(x)$ for any $x \in V_1$. It can be directly checked that $af + bg$ is linear as well. Therefore, the set $Hom(V_1, V_2)$ of all linear maps is a vector space.

Definition 26 Two vector spaces V_1, V_2 are called isomorphic if there exists a bijective linear map f between them.

Example 27 $M_2(\mathbb{R})$ is isomorphic to \mathbb{R}^4 .

Theorem 28 Two vector spaces V_1, V_2 are isomorphic if and only if dim $V_1 =$ $\dim V_2$.

Proof. Choose base B_1, B_2 for V_1, V_2 respectively. If dim $V_1 = \dim V_2$, there is a bijective $\phi : B_1 \to B_2$. Define a map $f : V_1 \to V_2$ as follows. For any $x = \sum_{b \in B_1} x_b b$, let $f(x) = \sum_{b \in B_1} x_b \phi(b)$. It's direct that f is isomorphic. The other direct is obvious. \blacksquare

Lecture 4: Determinants

Shengkui Ye

November 7, 2022

1 Determinant: definitions

For a 2×2 matrix $A =$ $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$, the determinant is defined as det $A = ad - bc$. Inductively, we define:

Definition 1 For an $n \times n$ matrix A, let A_{1i} be the submatrix obtained from A by deleting the 1-th row and i-th column. The determinant

$$
\det A = a_{11} \det A_{11} - a_{12} \det A_{12} + \cdots + (-1)^{n+1} a_{1n} \det A_{1n}.
$$

Example 2 Compute the determinant of $A =$ $\sqrt{2}$ 4 1 5 0 $2 \quad 4 \quad -1$ $0 \t -2 \t 0$ 3 $\vert \cdot$

Similarly, we let A_{ij} be the submatrix obtained from A by deleting the *i*-th row and j-th column. Let $C_{ij} = (-1)^{i+j} \det A_{ij}$, called the (i, j) -cofactor.

Theorem 3 For any $i = 1, 2, \dots, n$, we have

$$
\det A = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in},
$$

$$
\det A = a_{1i}C_{1i} + a_{2i}C_{2i} + \dots + a_{ni}C_{ni}.
$$

Example 4 Compute the determinant of $A =$ $\sqrt{2}$ 4 1 5 0 $0 \t 4 \t -1$ $0 \t -2 \t 0$ 3 $\vert \cdot$

Example 5 Let $A =$ $\sqrt{2}$ 6 6 6 4 d_1 $\ast \quad d_2$ $*$. . . * * d_n 3 $\overline{}$ be an upper triangular matrix. Show that det $A = d_1 d_2 \cdots d_n$

2 Properties

Theorem 6 Let A be a square matrix.

1) If two rows are exchanged to produce B, then $\det B = -\det A$.

2) If one row is multiplied by k to produce B, then $\det B = k \det A$.

3) If a multiple of one row is added to another row to produce a matrix B , then det $A = \det B$.

Proof. Suppose that $A = (a_{ij})$.

For 1), it is obvious when the size is 2. When the size of A is larger than 2, we will prove the statement by induction. Suppose that the i, j -th $(i < j)$ rows are exchanged.

Case 2.1. When i, j are both larger than 1, expand A, B along the first row to get

$$
\det A = a_{11}C_{11} + a_{12}C_{12} + \dots + a_{1n}C_{1n},
$$

$$
\det B = a_{11}C'_{11} + a_{12}C'_{12} + \dots + a_{1n}C'_{1n}.
$$

Here C'_{1l} is the cofactor of B. By induction, we have $C'_{1l} = -C_{1l}$ for each $l = 1, 2, \dots, n$. Therefore, det $A = -\det B$.

Case 2.2. When $i = 1, j = 2$. Let \tilde{A}_{st} be the submatrix of A by deleting the first two rows and the s -th, t -th columns. Direct calculation shows that

$$
\det A = a_{11} \det A_{11} - a_{12} \det A_{12} + \dots + (-1)^{n+1} a_{1n} \det A_{1n}
$$

\n
$$
= \sum_{s=1}^{n} (-1)^{1+s} a_{1s} \det A_{1s}
$$

\n
$$
= \sum_{s=1}^{n} (-1)^{1+s} a_{1s} (\sum_{ts} (-1)^{t} a_{2t} \det \tilde{A}_{st})
$$

\n
$$
= \sum_{ts} (-1)^{1+s+t} a_{1s} a_{2t} \det \tilde{A}_{st}
$$

\n
$$
= -(\sum_{t>s} (-1)^{s+t} a_{2t} a_{1s} \det \tilde{A}_{st} + \sum_{t
\n
$$
= -\det B.
$$
$$

Case 2.3. When $i = 1, j > 2$, we exchange the j-th and 2nd rows of B to get a matrix C . Continue to exchange the 1st, 2nd rows of C to get a matrix D . Exchange the j-th and 2nd rows of D to get C . By Case 2.1 and Case 2.2, we have det $B = -\det C = \det D = -\det A$.

After exchanging rows, the 2) is obvious from the definition by expanding along the first row.

For 3), suppose that $B = (b_{ij})$ with $b_{ij} = a_{ij} + aa_{kj}$ for some i and k and any $j = 1, 2, ..., n$. Expand B along the *i*-th row to get

$$
\det B = \sum_{j=1}^{n} b_{ij} C_{ij} = \sum_{j=1}^{n} (a_{ij} + aa_{kj}) C_{ij} = \det A + a \sum_{j=1}^{n} a_{kj} C_{ij}.
$$

Note that $\sum_{j=1}^{n} a_{kj} C_{ij}$ is the derminant of the matrix C obtained from A by replacing the *i*-th row by the k-th row. By 1), det $C = 0$ since exchanging i, k rows does not change C. Thus we have det $B = \det A$.

Corollary 7 1) det $A = a_{i1}C_{i1} + a_{i2}C_{i2} + \cdots + a_{in}C_{in}$ for any $i = 1, 2, ..., n$. 2) If two rows of a matrix A are the same, then $\det A = 0$.

Example 8 Let $A =$ $\sqrt{2}$ 4 $1 \t -4 \t 2$ -2 8 -9 -1 7 0 3 $\big|$. Show that det $A = 15$.

Theorem 9 A square matrix A is invertible if and only if $\det A \neq 0$.

Proof. When A is invertible, A can be reduced by elementary row operations to the identity matrix and thus has non-zero $\det A$. On the other hand, when $\det A \neq 0$, the reduced echelon form of A is invertible and thus A is invertible.

Theorem 10 For two square matrices A, B , we have $\det AB = \det A \det B$.

Proof. Since A, B are invertible, we reduce them by elementary row operations to the identity matices. Suppose that $A = E_1E_2 \cdots E_k$, $B = F_1F_2 \cdots F_l$ for elementary matrices $E_i, F_j, 1 \le i \le k, 1 \le j \le l$. By Theorem 6, det A equals to $(-1)^{k_1}$ det D_1 , where k_1 is the number of type 1) permutation matrices and D_1 is the product of type 2) diagonal matrices. Similarly, $\det B = (-1)^{k_2} \det D_2$ using the same notation. Since $AB = E_1 E_2 \cdots E_k F_1 F_2 \cdots F_l$, we have det $AB =$ $(-1)^{k_1+k_2} \det(D_1D_2) = \det A \det B.$

Corollary 11 For a square matrix $A_{n \times n}$, we have det $A = \det A^T$. Furthermore,

det $A = a_{1i}C_{1i} + a_{2i}C_{2i} + \cdots + a_{ni}C_{ni}$

for any $i = 1, 2, ..., n$ (Expansion along Columns).

Proof. If A is not invertible, then $\det A = 0$. In this case, A^T is not invertible as well and thus det $A^T = 0$. Suppose that A is invertible and $A = E_1 E_2 \cdots E_k$ for elementary matrices $E_i, 1 \leq i \leq k$. Note that $A^T = E_k^T \cdots E_2^T E_1^T$. By Theorem 6, det A and det A^T both equal to $(-1)^{k_1}$ det D_1 , where k_1 is the number of type 1) permutation matrices and D_1 is the product of type 2) diagonal matrices.

Let $\sigma : \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$ be a bijection of the set consisting of n natural numbers. Usually, the bijection σ is called a permutation of the *n*-letters. The set S_n be the set of all bijections σ .

Corollary 12 det $A = \sum_{\sigma \in S_n} \text{sgn}(\sigma) a_{\sigma(1),1} a_{\sigma(2),2} \cdots a_{\sigma(n),n}$, sgn(σ) $\in \{1, -1\}.$ In particular, det A is a polynomial of its entries.

 $\sum_{i=1}^{n}(-1)^{i+i_1}a_{i_1,1}$ det $A_{i_1,1}$. Continue to expand det $A_{i_1,1}$ along its first column **Proof.** Expand the determinant det A along the first column to get that $\det A =$ to get that $\det A_{i_1,1} = \sum_{i_2 \neq i_1} (-1)^{2+i_2} a_{i_2,2} \det(A_{i_1,1})_{i_2,1}$. Continue this process to get that

$$
\det A = \sum_{\sigma \in S_n} \text{sgn}(\sigma) a_{\sigma(1),1} a_{\sigma(2),2} \cdots a_{\sigma(n),n},
$$

where $(\sigma(1), \sigma(2), ..., \sigma(n)) = (i_1, i_2, ..., i_n)$ is a permutation of $(1, 2, ..., n)$ (and thus σ can be viewed as a bijection from the *n*-letter set $\{1, 2, ..., n\}$.

Remark 13 Although $\text{sgn}(\sigma) \in \{1, -1\}$, it's usually complicated to determine it explicitly. Prove that when σ is an interchange (i.e. there exist integers $i \neq j \leq n$ such that $\sigma(i) = j, \sigma(j) = i$ and $\sigma(k) = k$ for any $k \neq i, j.$), the sign sgn(σ) = -1. The proof of the previous corollary gives a practical way to calculate $sgn(\sigma)$.

3 Cramer's Rule

Theorem 14 Let A be an invertible $n \times n$ matrix. For any $b \in \mathbb{R}^n$, the system $Ax = b$ has the solution

$$
x_i = \frac{\det A_i(b)}{\det A}, i = 1, 2, \cdots, n,
$$

where $A_i(b)$ is the matrix obtained from A by replacing the *i*-th column by b.

Proof. Suppose that $I = [e_1, e_2, ..., e_n]$, where the columns are the standard basis. Note that $A \times I_i(x) = [Ae_1, \cdots Ax, \cdots Ae_n] = A_i(b)$ and thus det $AI_i(x) =$ det $A \cdot x_i = \det A_i(b)$, since $\det I_i(x) = x_i$.

Example 15 Use cramer's rule to solve $\begin{bmatrix} 3 & -2 \\ -5 & 4 \end{bmatrix}$ $x =$ 6 8 1 :

By Cramer's rule, $A^{-1} = \left(\frac{\det A_i(e_j)}{\det A}\right)_{1 \leq i,j \leq n}$ since $AA^{-1} = I_n$.

Corollary 16 Let $A^* = (C_{ji})_{1 \le i,j \le n}$, called the adjoint matrix A, where C_{ji} is the ji-th cofactor. Then

$$
A^{-1} = \frac{1}{\det A} A^*.
$$

Proof. It is enough to note that $\det A_i(e_j) = C_{ji}$, by expanding $A_i(e_j)$ along the *j*-th column. \blacksquare

Example 17 Let A be an integer matrix (i.e. entries are integers) and $\det A =$ 1. The previous corollary implies that the inverse A^{-1} is an integer matrix as well. Similarly, when A is a polynomial matrix *(i.e. entries are polynomials)* and det $A = 1$, the inverse A^{-1} is a polynomial matrix.

Corollary 18 Let $A_{n \times n}$ be a square matrix, $n \geq 2$. If $rank(A) = n$, then $rank(A^*) = n$; if $rank(A) = n - 1$, the $rank(A^*) = 1$; if $rank(A) \leq n - 2$, the $rank(A^*)=0.$

Proof. If $rank(A) = n$, then A is invertible and thus $A^* = det(A)A^{-1}$ is of full rank.

If $rank(A) = n - 1$, then A has $n - 1$ linearly independent rows. These rows form a matrix of rank $n-1$ and the submatrix thus has $n-1$ linearly independent columns. These columns form a submatrix of A with non-zero cofactor. Therefore, $A^* \neq 0$. Note that $AA^* = 0$ and the columns of A^* are the solutions of $Ax = 0$. The rank theorem implies that $Nul(A)$ has dimension 1. Therefore, dim $rank(A^*) = 1$.

If $rank(A) \leq n - 2$, then any $n - 1$ rows of A are linearly dependent. Therefore, any cofactor $C_{ij} = 0$ and $A^* = 0$.

The following is a result relating the rank of A to the determinant of its submatrices.

Lemma 19 Let A be a matrix. The rank of A equals to the maximal integer k such that there exists a non-zero $k \times k$ submatrix B of A with nonzero det $B \neq 0$.

Proof. Note that $rank(A) = \dim Col(A)$. When $k > rank(A)$, any k columns of A are linearly dependent. This means any $k \times k$ submatrix of A has linear dependent columns.

When $k = rank(A)$, choose k linearly independent columns $\{A_1, A_2, ..., A_k\}$ of A. Then $rank[A_1, ..., A_k] = k = rank[A_1, ..., A_k]^T$. There are k rows of $[A_1, ..., A_k]$, which are linearly independent. These k rows give a $k \times k$ submatrix with nonzero determinant. \blacksquare

4 Geometric meaning of determinants

Lemma 20 If A is a 2×2 matrix, the area of the parallelogram determined by the columns of A is $|\det A|$.

Proof. If the two rows of A are parrell, then A is not invertible and thus $\det A = 0$. We simply assume that $\det A \neq 0$ and the two rows are linearly independent. If $c = 0$, then the parallelogram has bottom |a|, and hight |d|. Thus the area is $|ad| = \det A$. Generally, when $c \neq 0$, rotate the plane anticlockwise by degree ϕ . The corresponding linear transformation is

$$
\begin{bmatrix}\n\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi\n\end{bmatrix} : \mathbb{R}^2 \to \mathbb{R}^2.
$$

Choose an appropriate angle ϕ such that $\begin{bmatrix} \cos \phi & \sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}$ $-\sin \phi \cos \phi$ $\lceil a \rceil$ c ¹ has its second component 0: Therefore,

$$
\det A = \det \begin{bmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{bmatrix}^{-1} \det \begin{bmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{bmatrix} A
$$

whose absolute value is the area of the parrellogram formed by the two rows of $\int \cos \phi = \sin \phi$ $-\sin \phi \cos \phi$ 1 A. The proof is finished.

Lemma 21 If A is a 3×3 matrix, the volume of the parallelepiped determined by the columns of A is $|\det A|$.

Proof. The proof is similar to that of the previous lemma. Suppose that \mathbb{R}^3 has the ordinary coordinates x, y, z . If the third row vector of A lies on the z-coordinate, then the first two column vectors of A lie in the xoy-plane. By the previous lemma, the area of the bottom parallelogram is the absolute value

of det $A_{33} = \det \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$. Expand A along the third row to get

$$
\det A = a_{33} \det \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix},
$$

whose absolute value is the volume of the parallelepiped, whose hight is $|a_{33}|$. area of the bottom is $|\det A_{33}|$. For the general case, we rotate \mathbb{R}^3 , such that the last column of A^T (i.e. the last row of A) lies in the z-coordinate. Since the rotation does not change volums, the proof is finished. \blacksquare

Lemma 22 Let $S \subset \mathbb{R}^3$ be region with its volume defined. If $f : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear map with standard matrix A, then the volume of $f(S)$ is $|\det A|$ vol (S) . Similar result holds for $f : \mathbb{R}^2 \to \mathbb{R}^2$ on areas.

Proof. By the definition of volumes in Calculus, the volume of S is the infimum of the sum of volums of small cubes covering S . Since f is linear, it is additive on the small cubes. Therefore, it's enough to prove the case when S is a cube. Without loss of generality, we assume that one vertex of S is the origin. Suppose that S has its three edges $(a, 0, 0)^T$, $(0, b, 0)^T$, $(0, 0, c)^T$. Then $f(S)$ is a $\sqrt{2}$ 3

parallelepiped, formed by the rows of A 4 a b c 5. By the geometric meaning

of determinant, $f(S)$ has the volume $\det A|abc = \det A|vol(S)$.

Example 23 Let $a, b > 0$. Find the area of $\{(x, y) | \frac{x^2}{a^2} + \frac{y^2}{b^2}\}$ $\frac{y}{b^2} \leq 1$.

Proof. Let $S = \{(x, y) | x^2 + y^2 \le 1\}$. Define $f : \mathbb{R}^2 \to \mathbb{R}^2$ as

$$
f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} x/a \\ y/b \end{bmatrix} = \begin{bmatrix} \frac{1}{a} & \frac{1}{b} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.
$$

Therefore, $f(\{(x,y) | \frac{x^2}{a^2} + \frac{y^2}{b^2})$ $\frac{y^2}{b^2} \le 1$ }) = S, and thus $Area(S) = \frac{\pi}{\det A} = \pi ab$.

Lecture 5: Eigenvalues and eigenvectors

Shengkui Ye

November 22, 2022

1 Eigenvalues and eigenvectors: definitions

Definition 1 Let A be an $n \times n$ matrix. Suppose that there exists scalar λ and nonzero vector x such that

 $Ax = \lambda x.$

The λ is called an eigenvalue of A and x an eigenvector of A corresponding to λ .

Example 2 Let $A =$ $\begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$ and $x =$ $\lceil 6$ -5 Ĭ. : Check that x is an eigenvector.

Remark 3 Let $\mathbb{R}x$ be the line spanned by x. If x is an eigenvector, then A (viewed as a linear transformation $\mathbb{R}^n \to \mathbb{R}^n$) maps $\mathbb{R}x$ to $\mathbb{R}x$, i.e. the line $\mathbb{R}x$ is preserved by A:

Lemma 4 λ is an eigenvalue of A if and only if $\det(A - \lambda I_n) = 0$.

Proof. By the definition, $Ax = \lambda x$ if and only if $(A - \lambda I_n)x = 0$. In other words, λ is an eigenvalue of A if and only if $(A - \lambda I_n)x = 0$ has a non-zero solution, which is equivalent to $\det(A - \lambda I_n) = 0$.

Corollary 5 0 is an eigenvalue of A if and only if A is not invertible.

Example 6 Let $A =$ $\sqrt{2}$ 6 6 6 4 a_{11} * * a_{22} * . . . a_{nn} 3 $\begin{matrix} \hline \end{matrix}$ be an upper triangular matrix.

The eigenvalues of A are diagonal entri

Example 7 For a fixed eigenvalue λ , the set $V_{\lambda} = \{x \mid Ax = \lambda x\}$ of eigenvectors is a vector subspace, called the eigenspace of A corresponding to λ .

Lemma 8 If x_1, x_2, \dots, x_k are eigenvectors corresponding to distinct eigenvalues $\lambda_1, \lambda_2, \cdots, \lambda_k$, then $\{x_1, x_2, \cdots, x_k\}$ are linearly independent.

Proof. After reordering the index, we assume that $\lambda_1, \lambda_2, \dots, \lambda_k$ are all distinct. Suppose that $\{x_1, x_2, \dots, x_{l-1}\}$ are linearly independent, but $\{x_1, x_2, \dots, x_l\}$ are linear dependent. For some a_i we have $a_1x_1 + a_2x_2 + \cdots + a_{l-1}x_{l-1} = x_l$. Multiplying A at both sides, we have

$$
a_1Ax_1 + a_2Ax_2 + \dots + a_{l-1}Ax_{l-1} = Ax_l
$$

$$
a_1\lambda_1x_1 + a_2\lambda_2x_2 + \dots + a_{l-1}\lambda_{l-1}x_{l-1} = \lambda_lx_l.
$$

Therefore, $a_1(\lambda_l - \lambda_1)x_1 + \cdots + a_{l-1}(\lambda_l - \lambda_{l-1})x_{l-1} = 0$, which is a contradiction. This means that the linear independence of $\{x_1, x_2, \dots, x_{l-1}\}$ implies the linear dependence of $\{x_1, x_2, \dots, x_{l-1}, x_l\}$ for any l. Eventually, we have that ${x_1, x_2, \dots, x_k}$ are linearly independent.

2 Characteristic polynomial and diagonalization

Definition 9 For a matrix $A_{n\times n}$, the det $(A - \lambda I_n)$ is called the characteristic polynomial of A. The roots of this polynomial are eigenvalues.

Example 10 Find the eigenvalues of $\begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix}$ $3 -6$ l. :

Two matrices A, B are called similar if there exists an invertible matrix P such that $PAP^{-1} = B$. Changing A into PAP^{-1} is called a similarity transformation.

Lemma 11 Two similar matrices A, B have the same characteristic polynomials and thus the same eigenvalues.

Proof. $\det(PAP^{-1} - \lambda I_n) = \det P(A - \lambda I_n)P^{-1} = \det P \det(A - \lambda I_n) \det P^{-1} =$ $\det(A - \lambda I_n)$.

Definition 12 Let A be an $n \times n$ matrix. If $\det(A - \lambda I_n) = (-1)^n (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_1)^{n_2}$ $(\lambda_2)^{n_2} \cdots (\lambda - \lambda_k)^{n_k}$, then the integer n_i is called the algebraic multiplicity of the eigenvalue λ_i .

For an eigenvalue λ , the space $V_{\lambda} = \{v \mid Av = \lambda v\}$ is called an eigensapce of A corresponding to λ . The dimension dim V_{λ} is called the geometric multiplicity of λ .

Example 13 Let $A =$ $\sqrt{2}$ 4 3 1 1 0 3 2 0 0 1 3 5 : Find its eigenvalues and their algebraic and

geometric multiplicities.

A matrix A is diagonalizable if there exists invertible matrix P such that PAP^{-1} is diagonal.

Theorem 14 An $n \times n$ matrix A is diagonalizable if and only if A has n linear independent eigenvectors.

Proof. Suppose that there exist invertible matrix P and diagonal matrix D such that $PAP^{-1} = D$. Then $AP^{-1} = P^{-1}D$. Then the columns of P^{-1} are eigenvectors and thus linear independent.

If ${x_1, x_2, ..., x_n}$ are eigenvectors of A, then

$$
A[x_1, x_2, ..., x_n] = [Ax_1, Ax_2, ..., Ax_n]
$$

= $[x_1, x_2, ..., x_n]$ diag $(\lambda_1, \lambda_2, ..., \lambda_n)$.

Here diag($\lambda_1, \lambda_2, ..., \lambda_n$) is the diagonal matrix with diagonal entries λ_i . When ${x_1, x_2, ..., x_n}$ are linear independent, the matrix $[x_1, x_2, ..., x_n]$ are invertible and thus $[x_1, x_2, ..., x_n]^{-1} A [x_1, x_2, ..., x_n] = \text{diag}(\lambda_1, \lambda_2, ..., \lambda_n)$.

The proof of the previous theorem shows that $A = [x_1, x_2, ..., x_n] \text{diag}(\lambda_1, \lambda_2, ..., \lambda_n)[x_1, x_2, ..., x_n]^{-1}$ for the eigenvalues λ_i and eigenvectors v_i , when A is diagonalizable.

Corollary 15 If $A_{n \times n}$ has n distinct eigenvalues, then A is diagonalizable.

Proof. If A has n distinct eigenvalues, then it has n linearly independent eigenvectors. \blacksquare

Example 16 Diagonalize the following matrix, if possible

$$
A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}.
$$

Theorem 17 Let A be an $n \times n$ matrix whose distinct eigenvalues are $\lambda_1, ..., \lambda_p$.

- 1. For $1 \leq k \leq p$, the dimension of the eigenspace for λ_k is less than or equal to the multiplicity of the eigenvalue λ_k . of the eigenvalue λ_k .
- 2. The matrix A is diagonalizable if and only if the sum of the dimensions of the eigenspaces equals n, and this happens if and only if
	- (i) the characteristic polynomial factors completely into linear factors and

(ii) the geometric mutiplicity equals to the algebraic mutiplicity for each eigenvalue, i.e. the dimension of the eigenspace for each λ_k equals the algebraic multiplicity of k.

3. If A is diagonalizable and B_k is a basis for the eigenspace corresponding to λ_k for each k, then the total collection of vectors in the sets B_1, B_2, \cdots, B_p forms an eigenvector basis for \mathbb{R}^n .

Proof. (2) If A is diagonalizable, assume there exist invertible matrix P and diagonal matrix D such that $PAP^{-1} = D$. Then the characteristic polynomial of A is the same as that of D , which is a product of linear factors. The dimension of the eigenspace of D for each λ_k clearly equals the multiplicity of k. View P as an invertible linear transformation. Note that $P\{v \in \mathbb{R}^n \mid Av = \lambda_k v\}$ is the corresponding eigenspace of D:

Conversely, when the dimension of the eigenspace for each λ_k equals the multiplicity of k , we can choose k linearly independent vectors in the eigenspace V_{λ_k} . Since $\sum k = n$, we have n linearly independent eigenvectors. Therefore, A is diagonalizable.

(3) follows (2), since the dimension of the eigenspace for each λ_k equals the multiplicity of k. (1) will be proved in the next section. \blacksquare

Example 18 Calculate all the eigenvalues and eigenvectors of $A =$ $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Prove that A is not diagonalizable.

The characteristic polynomial $p(A)$ of a matrix A with real entries has real coefficients. It does not always factor into linear factors. Sometimes, $p(A)$ = $(\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_k)^{n_k}$ has (non-real) complex roots. But the complex roots occur in conjugate pairs.

Example 19 Let $A =$ $\int \cos \phi = \sin \phi$ $-\sin \phi \quad \cos \phi$ Ĭ. . The characteristic polynomial is λ^2 – $2(\cos \phi)\lambda + 1$. The two roots are the conjugate pair $\lambda_1 = \cos \phi + \sqrt{1 - \cos^2 \phi}$, $\lambda_2 = \cos \phi - \sqrt{1 - \cos^2 \phi}$. When $\cos \phi \neq 0$, these are complex eigenvalues.

3 Eigenvectors and linear transformations

Lemma 20 Let $f: V \to V$ be a linear transformation and B_1, B_2 be two bases of V. The representation matrices A_1, A_2 of f with respect to B_1, B_2 are similar.

Proof. Suppose that $B_1 = \{b_1, b_2, \dots, b_n\}, B_2 = \{b'_1, b'_2, \dots, b'_n\}.$ According to the definition, we have

$$
f(x) = [b_1, b_2, \cdots, b_n][f(x)]_{B_1} = [b'_1, b'_2, \cdots, b'_n][f(x)]_{B_2}
$$

$$
[f(x)]_{B_1} = A_1[x]_{B_1}, [f(x)]_{B_2} = A_2[x]_{B_2}.
$$

Therefore,

$$
[b_1, b_2, \cdots, b_n]A_1[x]_{B_1} = [b'_1, b'_2, \cdots, b'_n]A_2[x]_{B_2}.
$$

Let P be the transition matrix from B_1 to B_2 , i.e. $P[x]_{B_1} = [x]_{B_2}$. Choose $x = b'_1, b'_2, \cdots, b'_n$ to get that

$$
P[[b'_1]_{B_1}, [b'_2]_{B_1}, \cdots, [b'_n]_{B_1}] = I_n,
$$

$$
[b_1, b_2, \cdots, b_n]A_1[[b'_1]_{B_1}, [b'_2]_{B_1}, \cdots, [b'_n]_{B_1}] = [b'_1, b'_2, \cdots, b'_n]A_2.
$$

Note that $[b_1, b_2, \cdots, b_n][[b'_1]_{B_1}, [b'_2]_{B_1}, \cdots, [b'_n]_{B_1}] = [b'_1, b'_2, \cdots, b'_n]$. Therefore, we have

$$
PA_1P^{-1} = A_2.
$$

Corollary 21 Let $f: V \to V$ be a linear transformation. The eigenvalue of (a representation matrix of) f does not dependent on the choice of bases.

The following is part (1) of Theorem 17.

Corollary 22 Let λ be an eigenvalue of a matrix $A_{n \times n}$ and V_{λ} the eigenspace corresponding to λ . Then the geometric multiplicity dim $V_{\lambda} \leq$ the algebraic multiplicity of λ .

Proof. Suppose that dim $V_{\lambda} = p$ and choose a basis $\{v_1, v_2, \dots, v_p\}$ of V_{λ} . Extend the basis to be a basis $S = \{v_1, v_2, \cdots, v_p, \cdots, v_n\}$ of \mathbb{R}^n . Let A' be the representation matrix of the linear transformation $A: \mathbb{R}^n \to \mathbb{R}^n$, $x \mapsto Ax$, with respect to the basis S. In other words, $A'[x]_S = [Ax]_S$ for any vector $x \in \mathbb{R}^n$. Since $Av_i = \lambda v_i$ for $i \leq p$, the matrix

$$
A' = \begin{bmatrix} \lambda I_p & C_1 \\ 0 & C_2 \end{bmatrix},
$$

where C_1, C_2 are submatrices of appropriate sizes. Note that A and A' are similar by the previous lemma and the characteristic polynomial of A' and A are same, which is

$$
\det(A' - xI_n) = (x - \lambda)^p p_1(x).
$$

Here $p_1(x)$ is the characteristic polynomial of C_2 . Therefore, dim $V_\lambda = p \leq$ the algebraic multiplicity of λ .

Lecture 6: Canonical forms and decompositions

Shengkui Ye

November 29, 2022

1 Jordan canonical forms for complex matrices

A matrix A is called nilpotent if $A^k = 0$ for some positive integer k. The Jordan block is an upper triangular matrix of the form

$$
J_{d,n} = \begin{bmatrix} d & 1 & 0 \\ & d & \ddots & 0 \\ & & \ddots & 1 \\ & & & d \end{bmatrix}_{n \times n}
$$

:

The direct sum (or block sum) of two matrix A, B is a block diagonal matrix $[A \ 0]$ $\begin{bmatrix} 1 & 0 \\ 0 & B \end{bmatrix}$.

Lemma 1 Let V be a finite-dimensional vector space and $f : V \to V$ be a linear map. There exist subspaces $V_1, V_2 < V$ such that

1) $V = V_1 \bigoplus V_2$ (i.e. $V = V_1 + V_2$ and $V_1 \cap V_2 = 0$);

2) $f(V_1) = V_1$ and $f|_{V_1}$ is invertible.

3) $f(V_2) < V_2$, and there is an integer k such that $f^k(x) = 0$ for any $x \in V_2$ (*i.e.* $f|_{V_2}$ *is nilpotent*).

Proof. For each integer i, note that the kernels satisfy ker $f^i \leq \ker f^{i+1}$. Since V is finite-dimensional, there is a smallest integer k such that ker $f^k = \ker f^{k+1}$. Actually, $\ker f^k = \ker f^{k+l}$ for any integer $l \geq 0$ as the following. For any $z \in$ ker f^{k+l} , we have $0 = f^{k+l}(z) = f^{k+l+l-1}(z)$, implying $f^{l-1}(z) \in \text{ker } f^{k+1} =$ ker f^k and $f^{k+l-1}(z) = 0$. Repeat the argument to get $0 = f^{k+l-1}(z) = \cdots$ $f^k(z)$.

Note that any $x \in \ker f^k \cap \operatorname{Im} f^k$ has $x = f^k(y)$, $f^k(x) = 0$ for some $y \in V$. This means that $f^k(f^k(y)) = 0$ and $y \in \text{ker } f^{k+k} = \text{ker } f^k$. Therefore, $0 =$ $f^k(y) = x$. By the generalized rank theorem dim $V = \dim \ker f^k + \dim \operatorname{Im} f^k$, we know that $V = \ker f + \operatorname{Im} f^k$. This finishes the proof of 1) with $V_2 = \ker f^k$ and $V_1 = \text{Im } f^k$.

It's obvious that $f(V_1) \leq V_1, f(V_2) \leq V_2$. For any $x \in V_2$, we have $f^k(x) = 0$. In order to prove $f|_{V_2}$ is invertible, it is enough to prove $f|_{V_2}$ is injective since V_2

is of finite dimension. For any $z \in \text{Im } f^k$ satisfying $f(z) = 0$, we have $z = f^k(y)$ for some y and $f^{k+1}(y) = 0$. This means $y \in \ker f^{k+1} = \ker f^k$ and thus $z = 0$. The injectivity of $f|_{V_2}$ is proved.

Lemma 2 For a nilpotent matrix $A_{n \times n}$, the sum $I + A$ is conjugate to a direct sum of Jordan blocks with 1s along the diagonal.

Proof. We prove that $V = Fⁿ$ has a basis

$$
\{a_1, Aa_1, \ldots, A^{k_1-1}a_1, a_2, Aa_2, \ldots, A^{k_2-1}a_2, \ldots, a_s, \ldots, A^{a_s}, \ldots, A^{k_s-1}a_s\}
$$

satisfying $A^{k_i} a_i = 0$ for each i, which implies that the representation matrix of $I + A$ with respect to this basis is a direct sum of Jordan blocks with 1 along the diagonal. The proof is based on the induction of dim V. When dim $V = 1$, choose $0 \neq v \in V$. Suppose that $Av = \lambda v$. Then $A^k v = \lambda^k v = 0$ and thus $\lambda = 0$. Suppose that the case is proved for vector spaces of dimension $k < n$. Note that the subspace $AV \neq V$ (otherwise, $AV = V$ implies $A^kV = A^{k-1}V = V = 0$). By induction, the subspace AV (noting that $A(AV) \subset AV$) has a basis

$$
S = \{a_1, Aa_1, \dots, A^{k_1 - 1}a_1, a_2, Aa_2, \dots, A^{k_2 - 1}a_2, \dots, a_s, \dots, Aa_s, \dots, A^{k_s - 1}a_s\}.
$$

Choose $b_i \in V$ satisfying $A(b_i) = a_i$. Then A maps the set

$$
S' = \{b_1, Ab_1 = a_1, \dots, A^{k_1}b_1 = A^{k_1-1}a_1, b_2, Ab_2, \dots, A^{k_2}b_2, b_s, \dots, Ab_s, \dots, A^{k_s}b_s\}
$$

to the basis S . This implies that the set S' is linearly independent (Otherwise, $\sum_{j=1}^{s}(x_j b_j + \sum_{i=0}^{k_j-1} x_{ji} A^i a_j) = 0$ for some nonzero x_j , which implies $A(\sum_{j=1}^{s}(x_j b_j + \sum_{i=0}^{k_j-1} x_{ji} A^i a_j)) = \sum_{j=1}^{s}(x_j a_j + \sum_{i=0}^{k_j-1} x_{ji} A^{i+1} a_j) = 0$, a contradiction to the fact that S is a basis). Extend this set S' to be a $V's$ basis

$$
S'' = \{b_1, Ab_1, \ldots, A^{k_1}b_1, b_2, Ab_2, \ldots, A^{k_2}b_2, b_s, \ldots, Ab_s, \ldots, A^{k_s}b_s, b_{s+1}, \ldots, b_{s'}\}.
$$

Note that $Ab_i = 0$ for $i \geq s + 1$ and $A^{k_i+1}b_i = A^{k_i}a_i = 0$ for each $i \leq s$.

Theorem 3 (Jordan canonical form) Any complex matrix $A_{n\times n}$ is conjugate to a direct sum of Jordan blocks, where the diagonal entries are eigenvalues.

Proof. Consider the linear map $A: \mathbb{C}^n \to \mathbb{C}^n$. Over the field \mathbb{C} of complex numbers, we have $\det(A - \lambda I_n) = (-1)^n (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_k)^{n_k}$, a product of distinct eigenvalues $\lambda_1, ..., \lambda_k$. View $f = A - \lambda_1 I_n$ as a linear map $\mathbb{C}^n \to \mathbb{C}^n$. Lemma 1 implies that $\mathbb{C}^n = V_1 \bigoplus V_2$, where $f|_{V_2}$ is nilpotent and $f|_{V_1}$ is invertible. Since the eigenspace $V_{\lambda_1} = \ker(A - \lambda_1 I_n) < V_2$, we see that $\dim V_2 > 0$. Lemma 2 implies that $(A - \lambda_1 I_n + I_n)|_{V_2}$ is conjugate to a direct sum of Jordan blocks with 1s along the diagonal. This means that $A|_{V_2}$ is conjugate to a direct sum of Jordan blocks $J_{\lambda_1,n_{1_j}}$. Consider $A|_{V_1}: V_1 \to V_1$ instead of $A: \mathbb{C}^n \to \mathbb{C}^n$ and repeat the argument. Note that there are only k eigenvalues. The proof will be finished in k steps. \blacksquare

Remark 4 The Jordan canonical form does not hold true for real matrices. For example $A =$ $\begin{bmatrix} \cos \phi & -\sin \phi \end{bmatrix}$ $\sin \phi = \cos \phi$ l. $, \phi \neq 0, \pi,$ has no real eigenvalues. The very first V_2 in the proof of the previous theorem would be trivial.

Corollary 5 (Jordan-Chevalley decomposition) Any square matrix $A_{n \times n}$ can be written as

1) a sum $A = S + N$, with S a diagonalizable matrix and N a nilpotent matrix, satisfying $SN = NS$; and

2) a product $A = SU$, with S a diagonalizable matrix and $N - I_n$ a nilpotent matrix, satisfying $SU = US$. Here U is called unipotent.

Proof. For a Jordan block $J_{d,k}$, let $S = dI_k$, $N = J_{d,k} - S$ and $U = I_k + N$.

For a polynomial $p(x) = \sum_{i=0}^{n} a_i x^i$, its matrix value is $p(A) = a_n A^n + ...$ $a_1A + a_0I_n = \sum_{i=0}^n a_iA^i \in \widetilde{M}_{k \times k}^{\text{new}}(F)$ for a matrix $A_{k \times k}$ with entries in a field F:

Corollary 6 (Cayley-Hamilton Theorem) Let $A_{n\times n}$ be a square matrix and $p(x) = \det(A - \lambda I_n)$ its characteristic polynomial. We have $p(A) = 0$.

Proof. For any invertible matrix $B_{n \times n}$, note that $(BAB^{-1})^i = BA^iB^{-1}$ and thus $p(BAB^{-1}) = Bp(A)B^{-1}$. The Jordan canonical form implies that $BAB^{-1}=D$ for some upper triangular matrix D (a direct sum of Jordan blocks) and some invertible matrix B. It is enough to prove that $p(D) = Bp(A)B^{-1} = 0$. Suppose that $p(x) = \det(A - \lambda I_n) = (-1)^n \Pi_{i=1}^l (\lambda - \lambda_i)^{n_i}$ for distinct roots $\lambda_1, ..., \lambda_l$. For each Jordan block J_{n_i, λ_i} , we have $J - \lambda_i I_{n_i}$ a nilpotent matrix. A direct calculation shows that $(J - \lambda_i I_{n_i})^{n_i} = 0$. In the product $p(B) =$ $(-1)^n \Pi_{i=1}^l (A - \lambda_i I_n)^{n_i}$, each factor $(B - \lambda_i I_n)^{n_i}$ has the corresponding $n_i \times n_i$ block matrix zero. Therefore, $p(B) = 0$.

2 Real matrices

Example 7 Any 2 \times 2 matrix $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ is a product r $\begin{bmatrix} \cos \phi & -\sin \phi \end{bmatrix}$ $\sin \phi = \cos \phi$ 1 ; for $r = \sqrt{a^2 + b^2}$ and a suitable angle ϕ .

Lemma 8 Let A be any 2×2 matrix with a complex eigenvalue $\lambda = a + b$ **i** $(b \neq 0)$. Then A is conjugate to r $\begin{bmatrix} \cos \phi & -\sin \phi \end{bmatrix}$ $\sin \phi = \cos \phi$ Ì with $r = \sqrt{\det A}$ and a suitable angle ϕ .

Proof. Let $v = \text{Re} +i \text{Im}$ (viewed as a complex vector) be an eigenvector of λ , where Re is the real part and Im is the imaginary part. Denote by $\bar{v} = \text{Re} -i \text{Im}$ the complex conjugate of v. Then $Av = \lambda v$ implies that

$$
A\bar{v}=\bar{\lambda}\bar{v}.
$$

Since eigenvectors corresponding to different eigenvalues are linearly independent, we know that v and \bar{v} are linearly independent. Since

$$
[\mathrm{Re},\mathrm{Im}]\begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix} = [v,\bar{v}],
$$

we know that [Re, Im] are linearly independent. Note that $A \text{Re} = a \text{Re} - b \text{Im}$, $A Im = a Im + b Re$. Therefore,

$$
A[\text{Re}, \text{Im}] = [\text{Re}, \text{Im}] \begin{bmatrix} a & b \\ -b & a \end{bmatrix},
$$

$$
[\text{Re}, \text{Im}]^{-1} A[\text{Re}, \text{Im}] = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}
$$

$$
= \begin{bmatrix} \sqrt{a^2 + b^2} & 0 \\ 0 & \sqrt{a^2 + b^2} \end{bmatrix} \begin{bmatrix} \frac{a}{\sqrt{a^2 + b^2}} & \frac{b}{\sqrt{a^2 + b^2}} \\ -\frac{b}{\sqrt{a^2 + b^2}} & \frac{a}{\sqrt{a^2 + b^2}} \end{bmatrix}
$$

:

The proof is finished by taking $r = \sqrt{a^2 + b^2}$ and $\phi = \arccos \frac{a}{\sqrt{a^2 + b^2}}$.

Theorem 9 Let $A =$ $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ be a 2 × 2 real matrix. Then A is conjugate to 1) a diagonal matrix; or 2) an upper triangular matrix $\begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}$ 0λ l. or 3) a multiple of an rotation matrix r $\begin{bmatrix} \cos \phi & -\sin \phi \end{bmatrix}$ $\sin \phi \quad \cos \phi$ Ĭ. with $r = \sqrt{\det A}$ and

a suitable angle ϕ .

Proof. Consider the characteristic polynomial $\det(A - \lambda I_2) = \lambda^2 - tr(A)\lambda +$ $\det(A)$. When $\Delta = tr(A)^2 - 4 \det(A) > 0$, there are two distinct eigenvalues and A is diagonalizable. When $\Delta = tr(A)^2 - 4 \det(A) = 0$, there is only one eigenvalue λ . If dim $V_{\lambda} = 2$, we know that A is diagonalizable. Otherwise, $\dim V_\lambda = 1.$ Suppose that $Av = \lambda v$ for some $v \neq 0$ and $\{v, w\}$ is a basis of R^2 . The representation matrix of A with respect to $\{v, w\}$ is $D =$ $\begin{bmatrix} \lambda & x \end{bmatrix}$ 0λ Ĭ. for some $x \neq 0$. But $D - \lambda I_2$ is nilpotent. Lemma 2 implies that D is conjugate $\frac{\lambda}{\lambda}$ $\frac{1}{\lambda}$ 0λ 1 . When $\Delta = tr(A)^2 - 4 \det(A) < 0$, there are two distinct complex eigenvalues. The previous lemma proves 3).

Corollary 10 Let $A_{2\times 2}$ be a real matrix of $\det(A) = 1$. Then A is conjugate to $either \begin{bmatrix} \lambda & 0 \\ 0 & 1 \end{bmatrix}$ $0 \frac{1}{\lambda}$ Ĭ. $, or \pm$ $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ or a rotation matrix $\begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}$ $\sin \phi \quad \cos \phi$ Ĭ. :