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1 System of linear equations

Example 1.1 Solve

x1 − 2x2 = −1,
−x1 + 3x2 = 3.

Add the second equation to the first one, to get x2 = 2. Get back to the first
to get x1 = 3. In this course, we will study the general case.

Definition 1.2 Let x1, x2, · · · , xn be variables. A linear equation is

a1x1 + a2x2 + · · · anxn = b.

A system of linear equations is of the form

{ a11x1 + a12x2 + · · · a1mxm = b1,
a21x1 + a22x2 + · · · a2mxm = b2,

...
an1x1 + an2x2 + · · · anmxm = bn.

(∗)

Fundamental questions of linear algebra are

Problem 1.3 For the system of equations (*), how to solve it? Is there a
solution? If yes, how many solutions?

Obviously the system (∗) is determined by the coeffi cients aij and bi (1 ≤
i ≤ n, 1 ≤ j ≤ m). The answer to the above question is determined completely
by these aij and bi. For convenience, we introduce the concepts of vectors and
matrices.

Definition 1.4 A vector is an ordered tuple of real numbers:

u =


u1
u2
...
un

 ,
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also denoted as (u1, u2, · · · , un)T . The n is called the dimension of the vector u.
We denote the set of all n-dimensional vectors by Rn. For two n-dimensional
vectors u, v, we define the sum and dot product as

u+ v =


u1 + v1
u2 + v2
...

un + vn

 ,
u · v = u1v1 + u2v2 + · · ·+ unvn.

Using the dot product, we write the linear equation a1x1+a2x2+· · · anxn = b
as (a1, a2, · · · , an)T · (x1, x2, · · · , xn)T = b.
The system (∗) can be denoted as AX = b, where

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

. . .
...

an1 an2 · · · ann


is called the coeffi cient matrix and X = (x1, x2, · · · , xn)T , b = (b1, b2, · · · , bn)T .
The matrix [A, b] is called the augmented matrix.

Example 1.5 (Elementary row operations) In the process of solving AX = b
(or the system (∗)), we can operate the following three elementary operations
(to [A, b]):
1. (Replacement) Replace one row by the sum of itself and a multiple of

another row.
2 (Interchange) Interchange two rows.
3. (Scaling) Multiply all entries in a row by a nonzero constant.
Eventually, the matrix [A, b] is reduced to the form (called reduced Echelon

form) satisfying:
1. The first nonzero entry (called the leading entry) in each nonzero row is

1 (after scalings).
2. Each leading 1 is the only nonzero entry in its column (after repal-

cements).
3. All nonzero rows are above any rows of all zeros (after interchanges)
5. Each leading entry of a row is in a column to the right of the leading

entry of the row above it (starting from the first column to the last column).

Example 1.6 There is a standard way to reduce the matrix [A, b] into the re-
duced Echelon form. The process is called Gaussian elimination (see the Text-
book for an explicit explaination). The existence and uniqueness of solutions to
AX = b depend entirely on the reduced echelon form. For example,1 1

0

x1x2
x3

 =
b1b2
b3


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has solutions only when b3 = 0. When b3 = 0, the system has infinitely many
solutions, with x3 can be any real number. In such a case, we call x3 the free
variable.

Definition 1.7 (linear combinations) Given vectors v1, v2, · · · , vm ∈ Rn, a lin-
ear combination of these vectors is a sum

a1v1 + · · ·+ amvm

for some a1, a2, · · · , am ∈ R. The set of all linear combinations is denoted by
Span{v1, v2, · · · , vm}.

Example 1.8 Span{(1, 1), (1,−1)} = R2.

Example 1.9 The system AX = b has a solution if and only if b is a linear
combination of the columns of A.

Lemma 1.10 For any two vectors u, v ∈ Rn, a ∈ R and an m × n matrix A,
we have

A(u+ v) = Au+Av,

A(au) = aAu.

2 Solution sets of linear systems

The system AX = 0 is called homogeneous. Since A0 = 0, there is always a
solution to the homogeneous system. A non-zero solution of AX = 0 is called a
non-trivial solution.

Lemma 2.1 For any two solutions X1, X2 to AX = b, the difference X1 −X2

is a solution of AX = 0. Fix a solution X0 to AX = b. The set of all solutions
to AX = b is {X ∈ Rn | AX = 0}+X0.

The following is the process of solving AX = b :
1. Row reduce the augmented matrix [A, b] to the reduced echelon form.
2. Express each basic variable in terms of any free variables appearing in

the system given by the reduced echelon form.
3. Write a typical solution X as a vector whose entries depending on the

free variables, if any.
4. Decompose X into a linear combination of vectors (with numeric entries)

using the free variables as parameters.

Example 2.2 Describe all solutions of AX = b, where

A =

 3 5 −4
−3 −2 4
6 1 −8

 , b =
 7−1
−4

 .
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3 Linear dependence and linear transformations

Two vectors u, v are co-line if u = rv for some real number r ∈ R. Three vectors
u, v, w are co-plane if they lie in the same plane. The following is a general
concept.

Definition 3.1 Vectors v1, v2, · · · , vm ∈ Rn are linearly dependent if

a1v1 + a2v2 + · · ·+ amvm = 0

for some non-zero vector (a1, a2, · · · , am). Similarly, v1, v2, · · · , vm ∈ Rn are
linearly independent if a1v1 + a2v2 + · · · + amvm = 0 can only hold for a1 =
a2 = · · · = 0.

Example 3.2 The set {(1, 0), (0, 1)} is linearly independent in R2.

Lemma 3.3 Two vectors {u, v} are linearly dependent if and only they are
co-line. Three vectors {u, v, w} are linearly dependent if and only if they are
co-plane.

Lemma 3.4 v1, v2, · · · , vm ∈ Rn are linearly dependent if and only if one vector
is a linear combination of the other vectors.

Proof. If a1v1 + a2v2 + · · · + amvm = 0 holds for some nonzero ai, then
vi = − 1

ai
(
∑

j 6=i ajvj), a linear combination. Conversely, if vi =
∑

k 6=i akvk,
then

∑
k 6=i akvk − vi = 0. Thus {v1, v2, · · · , vm} are linearly independent.

Lemma 3.5 Let A = [v1, v2, · · · , vm] be a matrix with vi as its i-th column.
v1, v2, · · · , vm ∈ Rn are linearly dependent if and only if AX = 0 has a non-
trivial solution.

Proof. It is obvious.

Corollary 3.6 Any set {v1, v2, · · · , vp} ∈ Rn is linearly dependent if p > n.

Recall that Rn is the set of all n-dimensional vectors. For two vectors x, y ∈
Rn, and a real number a ∈ R, we can define x+ y and ax.

Definition 3.7 A linear transformation f : Rm → Rn is a function assigning
each element x ∈ Rm an element f(x) ∈ Rn such that

f(ax+ by) = af(x) + bf(y),

for any a, b ∈ R. In other words, f assign linear combinations to linear combi-
nations.

Example 3.8 For an n×m matrix An×m, the function f(x) = Ax : Rm → Rn
is linear.
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Theorem 3.9 For any linear transformation f : Rm → Rn, there is a unique
matrix A (called the standard matrix of f) such that f(x) = Ax. Actually,
A = [f(e1), f(e2), · · · , f(en)] where ei is the j-th column of the identity matrix
in Rm.

Proof. Any vector x = (x1, x2, · · · , xm)T ∈ Rm is a linear combination x =
x1e1+x2e2+· · ·+xmem. Therefore, f(x) = x1f(e1)+x2f(e2)+· · ·+xmf(em) =
[f(e1), f(e2), · · · , f(en)]x.

Example 3.10 Let f : R2 → R2 be the transformation that rotates each point
in R2 about the origin anti-clockwise through an angle ϕ ∈ [0, 2π). Show that
the standard matrix of f is [

cosϕ − sinϕ
sinϕ cosϕ

]
.
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Lecture 2: Matrix

Shengkui Ye

September 23, 2022

1 Matrices: sum, product and transpose

Recall that an n ×m matrix M = (aij)1≤i≤n,1≤j≤m has a real number aij in
the (i, j)-th position. For two n×m matrices A = (aij)n×m, B = (bij)n×m, we
can add them together A+B = (aij + bij)n×m. For any real number a ∈ R, the
scalar multiplication aA = (aaij)n×m.We use the notation: x1+x2+ · · ·+xm =∑m

i=1 xi.

Definition 1 For matrices An×m, Bm×k, the product AB = (cij) is an n × k
matrix with (i, j)-th entry

cij =

m∑
s=1

aisbsj .

Example 2 For a matrix A = (aij)n×m and a vector X = (x1, x2, · · · , xm)T ,
the product AX = (

∑m
j=1 aijxj)1≤i≤n is an n-dimensional vector.

Lemma 3 For matrices An×m, Bm×k, Ck×l, we have
1) (AB)C = A(BC);
2) A(B1 +B2) = AB1 +AB2, if B1, B2 have m rows;
3) (A1 +A2)B = A1B +A2B if A1, A2 have m columns;
4) a(AB) = A(aB) = (aA)B for any real number a ∈ R;
5) InA = AIm = A for identity matrice In, Im (of size n× n,m×m respec-

tively).

Example 4 Let A =
[
10 0
0 1

]
, B =

[
1 1
0 1

]
. Note that AB 6= BA.

Definition 5 The transpose of an n×m matrix A = (aij) is the m× n matrix
(bij) with bij = aji. Denote the transpose by AT . In other words,

AT =


a11 a21 an1
a12 a22 an2
...

. . .
...

a1m a2m · · · anm

 .
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Example 6 The transpose of a row vector (a1, a2, · · · , am) is the column vector
a1
a2
...
am

 .
Lemma 7 We have (AT )T = A, (AB)T = BTAT , and (A+B)T = AT +BT .

2 Invertible matrices

Definition 8 A square matrix An×n is invertible if there exists a matrix B
such that AB = BA = In. When A is invertible, we denote the inverse by A−1.

Remark 9 The inverse is unique if it exists. Suppose B1, B2 are both inverses
of A. Then B1 = B1In = B1(AB2) = (B1A)B2 = InB2 = B2.

Example 10 A matrix A =
[
a b
c d

]
is invertible if and only if ad− bc 6= 0. The

inverse is 1
ad−bc

[
d −b
−c a

]
.

Lemma 11 When A is invertible, the system AX = b has a unique solution
X = A−1b.

Proof. Left mutiply both sides of AX = b by A−1 to get that X = A−1b. Since
the inverse A−1 is unique, the solution A−1b is unique.

Lemma 12 Let A,B be two invertible matrices of the same sizes. Then
1) (A−1)−1 = A;
2) (AB)−1 = B−1A−1;
3) (AT )−1 = (A−1)T .

An elementary matrix is one that is obtained by performing a single ele-
mentary row operation on an identity matrix. The next example illustrates the
three kinds of elementary matrices.

Example 13 Find the inverses of the following matrices:

 1 1
10 1

 ,
 1
1

1

 ,
1 1

10

 .
Can you replace 10 by any nonzero real number a?

Theorem 14 An n × n matrix A is invertible if and only if A is reduced by
elementary row operations to the identity In. Moreover, if A = EkEk−1 · · ·E1
then A−1 = E−11 E−12 · · ·E−1k .
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Proof. Recall that a matrix A is reduced by elementary row operations to the
reduced echelon matrix. If A is invertible, the system AX = b has a unique
solution. Therefore, the echelon matrix is the identity In. Conversely, when
A is reduced to the identity matrix, the A is invertible sicne each elementary
matrix is invertible. The last claim is a simply application of 2) in the previous
lemma.

The previous theorem provides an algorithm for finding A−1: reduce the
matrix A in the augmented matrix [A, In] into the identity by elementary row
operations, to get [In, A−1].

Theorem 15 For a square matrix An×n, the following are equivalent:
1) A is invertible.
2) A is reduced by elementary row operations to the identity matrix.
3) The reduced echelon form of A is the identity In.
4) The equation Ax = 0 has only the trivial solution.
5) The columns of A form a linearly independent set.
6) The linear transformation x 7→ Ax is one-to-one (injective).
7) The equation Ax = b has at least one solution for each b ∈ Rn.
8) The columns of A span Rn.
9) The linear transformation x 7→ Ax maps Rn onto Rn (surjective).
10) There is an n× n matrix D such that AD = In.
11) There is an n× n matrix C such that CA = In.
12) AT is an invertible matrix.

Proof. The previous theorem implies the equivalences 1) ⇐⇒ 2) ⇐⇒ 3). It
is obvious that 3) ⇐⇒ 4). The equivalence 4) ⇐⇒ 5) is from the definition of
linear independence. It is obvious that 4) ⇐⇒ 6) by the definition of "one-to-
one". 1) =⇒ 7) since x = A−1b is a solution. It is obvious that 7) ⇐⇒ 8) ⇐⇒
9) by the definitions of "span" and "onto". When 9) holds, the standard basis
{e1, e2, ..., en} of Rn has preimages. This means that there exists xi ∈ Rn such
that Axi = ei. Therefore, A[x1, ..., xn] = In. This proves 9) =⇒ 10). From the
definition of inverse, we have 1) =⇒ 10), 1) =⇒ 11). If 11) holds, then Ax = 0
has 0 = CAx = x and thus 4) holds. Similarly, 10) implies AT is invertible.
Since (AT )−1 = (A−1)T , we have 1) ⇐⇒ 12).

Corollary 16 Let f : Rn → Rn be a linear transformation. There exists a
linear transformation g : Rn → Rn such that such that f ◦ g = g ◦ f = idRn (the
identica map) if and only if the standard matrix of f is invertible.

Proof. It follows the uniqueness of standard matrices for g, f ◦ g and g ◦ f.

3 Subspaces, dimensions and ranks

Definition 17 A subspace of Rn is a subset H of Rn such that ax + by ∈ H
for any x, y ∈ H and a, b ∈ R.
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Example 18 A line, or a plane passing 0 is a subspace of Rn. The span of any
subset {v1, v2, · · · , vk} ⊂ Rn is defined as the set of all vectors

a1v1 + a2v2 + · · ·+ akvk,

for each ai ∈ R. The span is a subspace.

Example 19 For a matrix An×m, the span of columns of A is a vector space.
The set {x ∈ Rm | Ax = 0} is a subspace.

Definition 20 A basis for a subspace H of Rn is a set S such 1) S is linearly
independent; and 2) S spans Rn.

Example 21 Let An×n be a square invertibe matrix. The column vectors of A
form a basis for Rn.

Lemma 22 Let S = {s1, s2, · · · , sn} be a basis of Rn. Every vector x ∈ Rn is
a unique linear combination

x1s1 + x2s2 + · · ·+ xnsn

of S. The vector (x1, x2, · · · , xn) is called the coordinate of x relative to S.

Proof. Since S spans Rn, any vector x is a linear combination of S. Since S is
linear independent, the linear combination is unique (i.e. suppose there are two
different linear combination. take the difference to get a contradiction).

Definition 23 Let H < Rn be subspace and S a basis of H. The number of
elements in S is called the dimension dim(H) of H.

Definition 24 For a matrix A, the rank rank(A) is the dimension of the sub-
space spanned by column vectors of A.

Example 25 Let

A =

−3 6 −1 1 −7
1 −2 2 3 −1
2 −4 5 8 −4

 .
Find a basis for the null space {x : Ax = 0} and the rank(A).

Lemma 26 The rank of a matrix A equals to the number of leading 1s in its
reduced echelon form.

3.1 Rank theorem

Example 27 Let

A =

−3 6 −1 1 −7
1 −2 2 3 −1
2 −4 5 8 −4

 .
Compute its rank rank(A).
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Lemma 28 For invertible matrice Bm×m, Cn×n and matrix Am×n we have
rank(BAC) = rank(A).

Proof. Let A = [A1, A2, ..., An], where Ai is the i-th column. Then BA =
[BA1, BA2, ..., BAm]. View B as a linear transformation f : Rn → Rn given by
x→ Bx. Since B is invertible, f is bijective. This implies that

BSpan{A1, A2, ..., An} = Span{BA1, BA2, ..., BAn}.

If {x1, x2, · · · , xk} is a basis of Span{A1, A2, ..., An}, then {Bx1, Bx2, · · · , Bxk}
is a basis of Span{BA1, BA2, ..., BAn}. This proves that rank(BA) = rank(A)
for any Am×n.
For the other part, we prove that Col(A) = Col(BC). For any x ∈ Col(A), we

have x =
∑n

i=1 aiAi for numbers a1, a2, ..., an. Actually, x = A

a1...
an

 . But x =
AC(C−1

a1...
an

), which implies that x ∈ Col(BC). Similarly, any y ∈ Col(BC)
has y = ACz for a vector z ∈ Rn. Then y = A(Cz) ∈ Col(A). This proves that
rank(AC) = rank(A), as the dimensions are the same.

Corollary 29 For matrix An×m, we have rank(A) = rank(AT ).

Proof. Apply elementary row operations to reduce A into the reduced echelon

form C =

[
Ik ∗
0 0

]
. There is an invertible matrix B (product of elementary ma-

trices) such that BA = C. Lemma 28 implies that rank(A) = rank(C) = k. Since
ATBT = CT , the same lemma implies rank(AT ) = rank(CT ) = rank(C) =
rank(A).

Theorem 30 Let An×m be a matrix. Denote by Col(A) the vector space spanned
by columns of A, Nul(A) the subspace {x ∈ Rm | Ax = 0}. Then

dimCol(A) + dimNul(A) = m.

Proof. Reduce A by elementary row and column operations to the reduced

echelon matrix
[
Ik ∗
0 0

]
. Lemma 28 implies that dimCol(A) is k, and the di-

mension of Nul(A) is the number of free variables for the solutions of Ax = 0.
Therefore, we have dimNul(A) = m− k.

Theorem 31 Let An×n be a square matrix. The following statements are equiv-
alent:
0) A is invertible.
1) The column vectors of A form a basis for Rn.
2) Col(A) = Rn.
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3) dimCol(A) = n.
4) rank(A) = n.
5) Nul(A) = 0.

Proof. By the definitions and the previous theorem, we have 1) =⇒ 2) =⇒
3) =⇒ 4) =⇒ 5) =⇒ 1). The equivalence 0) ⇐⇒ 5) is already proved.
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Lecture 3 : Vector spaces

Shengkui Ye

October 16, 2022

1 Vector spaces and subspaces

Let F = R (the set of all real numbers), C (the set of all complex numbers), or
Q (the set of all rational numbers).

Definition 1 A vector space over F is a set V, together with two operations +
and multiplication by F , satisfying the obvious commutativity, associativity and
distribution law. Explicitly, it satisfies the 8 conditions in the textbook.

Example 2 The set Rn is a vector space; For fixed positive integers m,n, the
set Mm×n(R) of all m × n matrices is a vector space. The set V = {f | f is a
continuous function on the interval [0, 1]} is a vector space.

Definition 3 A subspace of a vector space V is a subset H such that ax+by ∈ H
for any x, y ∈ H and a, b ∈ R.

Example 4 A line, or a plane passing 0 is a subspace of Rn. The span of any
subset {v1, v2, · · · , vk} ⊂ Rn is a subspace.

Example 5 Let n be a positive integer. The set H of all diagonal n×n matrices
is a subspace of Mn×n(R). The set of polynomials of degree at most n is a
subspace of {f | f is a continuous function on the interval [0, 1]}.

Example 6 For a matrix An×m, the span of columns of A is a vector space.
The set {x ∈ Rm | Ax = 0} is a subspace of Rm.

2 Basis and dimensions

Let V be a vector space. Simimilar to the Rn, we can define linear combinations,
linear independence, basis and dimensions for general vector spaces V, as these
concepts involve only additions and scalar multiplications.

For a subset S of V, a linear combination is a1v1+a2v2+ · · ·+akvk for some
finitely many elements v1, v2, ..., vk ∈ S and a1, a2, ..., ak ∈ F. A subset S ⊂ V
is linearly independent if any linear combination a1v1 + a2v2 + · · · + akvk = 0
with v1, v2, · · · , vk ∈ S will imply that each ai = 0, i = 1, 2, ..., k.
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Definition 7 A basis for a subspace H of V is a set S such 1) S is linearly
independent; and 2) S spans H, i.e. any vector in H is a linear combination of
S.

Example 8 Let An×n be a square invertible matrix. The column vectors of A
form a basis for Rn.

Lemma 9 Let S be a subset of a vector space V and

H = {a1v1 + a2v2 + · · ·+ akvk | v1, v2, ..., vk ∈ S, a1, a2, ..., ak ∈ F}

the subspace spanned by S.
1) Suppose that one of the vector in S, say vk, is a linear combination of

other vectors in S. Then H is the span of S\{vk}, the set of S without vk.
2) Suppose that S is a finite set. If H 6= 0, then some subset of S is a basis

of H.

Proof. 1) It is enough to prove that any x ∈ H is a linear combination of
elements in S\{vk}. Since x ∈ H, x = a1v1 + a2v2 + · · · + alvl. Suppose that
vk =

∑l
i=1,i6=k bivi. Then x = a1v1+a2v2+· · ·+

∑l
i=1,i6=k akbivi =

∑l
i=1,i6=k(ai+

akbi)vi, a linear combination of S\{vk}.
2) If S is linearly independent, then S is a basis by the definition. Otherwise,

S is linearly dependent and one element vk is a linear combination of S\{vk}.
By (1), H is the span of S\{vk}. Continue such a process until a subset S′ of S
is linearly independent and H is spanned by S′. Then S′ is a basis.

Lemma 10 Let S = {s1, s2, · · · , sn} be a basis of V. Every vector x ∈ V is a
unique linear combination

x1s1 + x2s2 + · · ·+ xnsn

of S. The vector (x1, x2, · · · , xn)T ∈ Rn is called the coordinate of x relative to
S, denoted by [x]S .

Proof. Since S spans V, any vector x is a linear combination of S. Since S is
linear independent, the linear combination is unique (i.e. suppose there are two
different linear combinations. Take the difference to get a contradiction).

Definition 11 Let V be a vector space and S a basis of V. The number of
elements in S is called the dimension dim(V ) of V. It’s possible that dim(V ) =∞
when S is infinite.

Lemma 12 Let V be a vector space having a basis S = {b1, b2, · · · , bn}. Then
any subset S′ in V containing more than n vectors must be linearly dependent.

Proof. Suppose that S′ = {c1, c2, · · · , cp} with p > n. Then each ci is a linear
combination of S, where the coeffi cients form the coordinate [ci]B ∈ Rn. Since
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p > n, the set {[c1]B , [c2]B , · · · , [cp]B} is linearly dependent. Thus there exists
a vector (a1, a2, · · · , ap) 6= 0 such that

∑p
i=1 ai[ci]B = 0. Note that

ci = [b1, b2, · · · , bn][ci]B
[c1, c2, · · · , cp](a1, a2, · · · , ap)T = [b1, b2, · · · , bn][[c1]B , · · · , [cp]B ](a1, a2, · · · , ap)T

= 0

and thus
∑p

i=1 aici = 0. This proves S
′ is linearly independent.

Corollary 13 If a vector space V has a basis of n vectors, then any basis must
consist of exactly n vectors.

Theorem 14 (basis extension theorem) Let V be a finite-dimensional vector
space. Any linearly independent set S can be extended to be a basis of V.

Proof. If Span(S) = V, then S is a basis. Otherwise, V ! Span(S) and choose
0 6= v ∈ V but v /∈ Span(S). Then S ∪ {v} is linearly independent (otherwise,
one element is a linear combination of the previous vectors and such an element
must be v). Continue such a process to get a maximal linearly independent
set, which is a basis. Note that a linearly independent set has at most dimV
elements by the previous lemma, and such a process must stop after at most
dimV steps.

Corollary 15 (basis theorem) Let V = Rn. Any linearly independent set con-
sisting of n vectors is a basis of V.

2.1 Linear Transformations

A function f from a set X to a set Y is a rule that for each (input) x ∈ X
assigns a value (output) y = f(x) ∈ Y. Here X is called the domain and Y is
called the codomain of f.

Definition 16 A linear transformation (map) f : V1 → V2 between vector
spaces V1, V2 is a function such that

f(ax+ by) = af(x) + bf(y)

for any a, b ∈ R and x, y ∈ V1.

Example 17 1) For a matrix An×m, the matrix multiplication function f :
Rm → Rn,

x 7→ Ax,

is linear;
2) Rotations and reflections of R2 that fixing the origin are linear maps.

Example 18 The kernel ker f = {x ∈ V1 | f(x) = 0} and the image Im f =
{f(x) | x ∈ V1} are both vector spaces. A linear map f : V1 → V2 is determined
by its image on a spanning (or generating) set of V1.
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Theorem 19 (general rank theorem) Let f : V1 → V2 be a linear map. We
have

dimker f + dim Im f = dimV1.

Proof. Let {e1, e2, ..., ek} be a basis of ker f. Extend this set to be a basis
{e1, e2, ..., ek, w1, w2, ..., wl} of V1 by the basis extension theorem. It can directly
checkted that {f(w1), f(w2), ..., f(wl)} is a basis of Im f.

2.2 Linear maps and matrix multiplications

Let V,W be finite-dimensional vector spaces and f : V →W be a linear transfor-
mation. Fix a basis B = {b1, b2, · · · , bn} of V and a basis C = {c1, c2, · · · , bm}
of W. Any vector x ∈ V is a unique linear combination

x = x1b1 + x2b2 + · · ·+ xnbn

of B, i.e. x = [b1, b2, · · · , bn][x]B . Here

[x]B = (x1, x2, ..., xn)
T

is called the coordinate of x with respect to B. Similarly, f(x) is also a linear
combination

f(x) = y1c1 + y2c2 + · · ·+ ymcm
of W. In other words, we have

f(x) = [c1, c2, · · · , cm][f(x)]C .

A matrix A = Af,B,C is called the representation matrix of f with respect to
bases B,C, if

[f(x)]C = A[x]B

for any x ∈ V.

Example 20 When V =W = Rn and B is the standard basis

{(1, 0, · · · , 0)T , (0, 1, · · · , 0)T , · · · , (0, 0, · · · , 1)T },

the representation matrix Af,B,B is the standard matrix defined before. When
V =W and B = C, we simply call the representation matrix A the B-matrix of
f.

Example 21 When V = W and f = Id, the identical map, the representation
matrix AId,B,C is called the transition matrix (or Change of coordinate matrix)
from the basis B to the basis C. Show that AId,B,C = A−1Id,C,B .

Lemma 22 Let f : V →W be a linear transformation and B = {b1, b2, · · · , bn}
a basis of V, C a basis of W. The representation matrix of f with respect to B,C
is

A = [[f(b1)]C , [f(b2)]C , · · · , [f(bn)]C ].

4



Proof. It’s obvious that [[b1]B , [b2]B , · · · , [bn]B ] is the identity matrix. The
claim is proved by [f(x)]C = A[x]B for any x.

Example 23 Let M2 = {
[
a b
c d

]
| a, b, c, d ∈ R} be the set of all 2×2 matrices.

Let f : M2 → M2 be given by f(x) = xT , the transpose function. Prove that
f is linear and find the representation matrix of f with respect to the basis

{e1 =
[
1 0
0 0

]
, e2 =

[
0 1
0 0

]
, e3 =

[
0 0
1 0

]
, e4 =

[
0 0
0 1

]
}.

Lemma 24 Let f : V → V be a linear transformation and B1, B2 be two bases
of V. The representation matrices A1, A2 of f with respect to B1, B2 are similar.

Proof. Suppose that B1 = {b1, b2, · · · , bn}, B2 = {b′1, b′2, · · · , b′n}. According to
the definition, we have

f(x) = [b1, b2, · · · , bn][f(x)]B1 = [b
′
1, b
′
2, · · · , b′n][f(x)]B2

[f(x)]B1 = A1[x]B1 , [f(x)]B2 = A2[x]B2 .

Therefore,
[b1, b2, · · · , bn]A1[x]B1

= [b′1, b
′
2, · · · , b′n]A2[x]B2

.

Let P be the transition matrix from B1 to B2, i.e. P [x]B1 = [x]B2 . Choose
x = b′1, b

′
2, · · · , b′n to get that

P [[b′1]B1
, [b′2]B1

, · · · , [b′n]B1
] = In,

[b1, b2, · · · , bn]A1[[b′1]B1
, [b′2]B1

, · · · , [b′n]B1
] = [b′1, b

′
2, · · · , b′n]A2.

Note that [b1, b2, · · · , bn][[b′1]B1
, [b′2]B1

, · · · , [b′n]B1
] = [b′1, b

′
2, · · · , b′n]. Therefore,

we have
PA1P

−1 = A2.

Example 25 Let f, g : V1 → V2 be two linear maps. For any a, b ∈ R, we have
a new function af + bg : V1 → V2 defined by (af + bg)(x) = af(x) + bg(x) for
any x ∈ V1. It can be directly checked that af + bg is linear as well. Therefore,
the set Hom(V1, V2) of all linear maps is a vector space.

Definition 26 Two vector spaces V1, V2 are called isomorphic if there exists a
bijective linear map f between them.

Example 27 M2(R) is isomorphic to R4.

Theorem 28 Two vector spaces V1, V2 are isomorphic if and only if dimV1 =
dimV2.

Proof. Choose base B1, B2 for V1, V2 respectively. If dimV1 = dimV2, there
is a bijective φ : B1 → B2. Define a map f : V1 → V2 as follows. For any
x =

∑
b∈B1

xbb, let f(x) =
∑

b∈B1
xbφ(b). It’s direct that f is isomorphic. The

other direct is obvious.
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Lecture 4: Determinants

Shengkui Ye

November 7, 2022

1 Determinant: definitions

For a 2× 2 matrix A =
[
a b
c d

]
, the determinant is defined as detA = ad− bc.

Inductively, we define:

Definition 1 For an n×n matrix A, let A1i be the submatrix obtained from A
by deleting the 1-th row and i-th column. The determinant

detA = a11 detA11 − a12 detA12 + · · ·+ (−1)n+1a1n detA1n.

Example 2 Compute the determinant of A =

1 5 0
2 4 −1
0 −2 0

 .
Similarly, we let Aij be the submatrix obtained from A by deleting the i-th

row and j-th column. Let Cij = (−1)i+j detAij , called the (i, j)-cofactor.

Theorem 3 For any i = 1, 2, · · · , n, we have

detA = ai1Ci1 + ai2Ci2 + · · ·+ ainCin,
detA = a1iC1i + a2iC2i + · · ·+ aniCni.

Example 4 Compute the determinant of A =

1 5 0
0 4 −1
0 −2 0

 .

Example 5 Let A =


d1
∗ d2

∗ . . .
∗ ∗ dn

 be an upper triangular matrix. Show
that detA = d1d2 · · · dn.

1



2 Properties

Theorem 6 Let A be a square matrix.
1) If two rows are exchanged to produce B, then detB = −detA.
2) If one row is multiplied by k to produce B, then detB = k detA.
3) If a multiple of one row is added to another row to produce a matrix B,

then detA = detB.

Proof. Suppose that A = (aij).
For 1), it is obvious when the size is 2. When the size of A is larger than 2,

we will prove the statement by induction. Suppose that the i, j-th (i < j) rows
are exchanged.
Case 2.1. When i, j are both larger than 1, expand A,B along the first row

to get

detA = a11C11 + a12C12 + · · ·+ a1nC1n,
detB = a11C

′
11 + a12C

′
12 + · · ·+ a1nC ′1n.

Here C ′1l is the cofactor of B. By induction, we have C
′
1l = −C1l for each

l = 1, 2, · · · , n. Therefore, detA = −detB.
Case 2.2. When i = 1, j = 2. Let Ãst be the submatrix of A by deleting the

first two rows and the s-th, t-th columns. Direct calculation shows that

detA = a11 detA11 − a12 detA12 + · · ·+ (−1)n+1a1n detA1n

=

n∑
s=1

(−1)1+sa1s detA1s

=

n∑
s=1

(−1)1+sa1s(
∑
t<s

(−1)1+ta2t det Ãst +
∑
t>s

(−1)ta2t det Ãst)

=
∑
t<s

(−1)s+ta1sa2t det Ãst +
∑
t>s

(−1)1+s+ta1sa2t det Ãst

= −(
∑
t>s

(−1)s+ta2ta1s det Ãst +
∑
t<s

(−1)1+s+ta2ta1s det Ãst)

= − detB.

Case 2.3. When i = 1, j > 2, we exchange the j-th and 2nd rows of B to
get a matrix C. Continue to exchange the 1st, 2nd rows of C to get a matrix D.
Exchange the j-th and 2nd rows of D to get C. By Case 2.1 and Case 2.2, we
have detB = −detC = detD = −detA.

After exchanging rows, the 2) is obvious from the definition by expanding
along the first row.
For 3), suppose that B = (bij) with bij = aij + aakj for some i and k and

any j = 1, 2, ..., n. Expand B along the i-th row to get

detB =

n∑
j=1

bijCij =

n∑
j=1

(aij + aakj)Cij = detA+ a

n∑
j=1

akjCij .
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Note that
∑n
j=1 akjCij is the derminant of the matrix C obtained from A by

replacing the i-th row by the k-th row. By 1), detC = 0 since exchanging i, k
rows does not change C. Thus we have detB = detA.

Corollary 7 1) detA = ai1Ci1 + ai2Ci2 + · · ·+ ainCin for any i = 1, 2, ..., n.
2) If two rows of a matrix A are the same, then detA = 0.

Example 8 Let A =

 1 −4 2
−2 8 −9
−1 7 0

 . Show that detA = 15.
Theorem 9 A square matrix A is invertible if and only if detA 6= 0.

Proof. When A is invertible, A can be reduced by elementary row operations
to the identity matrix and thus has non-zero detA. On the other hand, when
detA 6= 0, the reduced echelon form of A is invertible and thus A is invertible.

Theorem 10 For two square matrices A,B, we have detAB = detAdetB.

Proof. Since A,B are invertible, we reduce them by elementary row operations
to the identity matices. Suppose that A = E1E2 · · ·Ek, B = F1F2 · · ·Fl for
elementary matrices Ei, Fj , 1 ≤ i ≤ k, 1 ≤ j ≤ l. By Theorem 6, detA equals to
(−1)k1 detD1, where k1 is the number of type 1) permutation matrices and D1

is the product of type 2) diagonal matrices. Similarly, detB = (−1)k2 detD2

using the same notation. Since AB = E1E2 · · ·EkF1F2 · · ·Fl, we have detAB =
(−1)k1+k2 det(D1D2) = detAdetB.

Corollary 11 For a square matrix An×n, we have detA = detAT . Further-
more,

detA = a1iC1i + a2iC2i + · · ·+ aniCni
for any i = 1, 2, ..., n (Expansion along Columns).

Proof. If A is not invertible, then detA = 0. In this case, AT is not invertible as
well and thus detAT = 0. Suppose that A is invertible and A = E1E2 · · ·Ek for
elementary matrices Ei, 1 ≤ i ≤ k. Note that AT = ETk · · ·ET2 ET1 . By Theorem
6, detA and detAT both equal to (−1)k1 detD1, where k1 is the number of type
1) permutation matrices and D1 is the product of type 2) diagonal matrices.

Let σ : {1, 2, ..., n} → {1, 2, ..., n} be a bijection of the set consisting of n
natural numbers. Usually, the bijection σ is called a permutation of the n-letters.
The set Sn be the set of all bijections σ.

Corollary 12 detA =
∑
σ∈Sn sgn(σ)aσ(1),1aσ(2),2 · · · aσ(n),n, sgn(σ) ∈ {1,−1}.

In particular, detA is a polynomial of its entries.
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Proof. Expand the determinant detA along the first column to get that detA =∑n
i1=1

(−1)1+i1ai1,1 detAi1,1. Continue to expand detAi1,1 along its first column
to get that detAi1,1 =

∑
i2 6=i1(−1)

2+i2ai2,2 det(Ai1,1)i2,1. Continue this process
to get that

detA =
∑
σ∈Sn

sgn(σ)aσ(1),1aσ(2),2 · · · aσ(n),n,

where (σ(1), σ(2), ..., σ(n)) = (i1, i2, ..., in) is a permutation of (1, 2, ..., n) (and
thus σ can be viewed as a bijection from the n-letter set {1, 2, ..., n}).

Remark 13 Although sgn(σ) ∈ {1,−1}, it’s usually complicated to determine
it explicitly. Prove that when σ is an interchange (i.e. there exist integers
i 6= j ≤ n such that σ(i) = j, σ(j) = i and σ(k) = k for any k 6= i, j.), the
sign sgn(σ) = −1. The proof of the previous corollary gives a practical way to
calculate sgn(σ).

3 Cramer’s Rule

Theorem 14 Let A be an invertible n× n matrix. For any b ∈ Rn, the system
Ax = b has the solution

xi =
detAi(b)

detA
, i = 1, 2, · · · , n,

where Ai(b) is the matrix obtained from A by replacing the i-th column by b.

Proof. Suppose that I = [e1, e2, ..., en], where the columns are the standard
basis. Note that A×Ii(x) = [Ae1, · · ·Ax, · · ·Aen] = Ai(b) and thus detAIi(x) =
detA · xi = detAi(b), since det Ii(x) = xi.

Example 15 Use cramer’s rule to solve
[
3 −2
−5 4

]
x =

[
6
8

]
.

By Cramer’s rule, A−1 = (detAi(ej)
detA )1≤i,j≤n since AA−1 = In.

Corollary 16 Let A∗ = (Cji)1≤i,j≤n, called the adjoint matrix A, where Cji is
the ji-th cofactor. Then

A−1 =
1

detA
A∗.

Proof. It is enough to note that detAi(ej) = Cji, by expanding Ai(ej) along
the j-th column.

Example 17 Let A be an integer matrix (i.e. entries are integers) and detA =
1. The previous corollary implies that the inverse A−1 is an integer matrix as
well. Similarly, when A is a polynomial matrix (i.e. entries are polynomials)
and detA = 1, the inverse A−1 is a polynomial matrix.
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Corollary 18 Let An×n be a square matrix, n ≥ 2. If rank(A) = n, then
rank(A∗) = n; if rank(A) = n− 1, the rank(A∗) = 1; if rank(A) ≤ n− 2, the
rank(A∗) = 0.

Proof. If rank(A) = n, then A is invertible and thus A∗ = det(A)A−1 is of full
rank.
If rank(A) = n − 1, then A has n − 1 linearly independent rows. These

rows form a matrix of rank n − 1 and the submatrix thus has n − 1 linearly
independent columns. These columns form a submatrix of A with non-zero
cofactor. Therefore, A∗ 6= 0. Note that AA∗ = 0 and the columns of A∗ are the
solutions of Ax = 0. The rank theorem implies that Nul(A) has dimension 1.
Therefore, dim rank(A∗) = 1.
If rank(A) ≤ n − 2, then any n − 1 rows of A are linearly dependent.

Therefore, any cofactor Cij = 0 and A∗ = 0.
The following is a result relating the rank of A to the determinant of its

submatrices.

Lemma 19 Let A be a matrix. The rank of A equals to the maximal integer k
such that there exists a non-zero k×k submatrix B of A with nonzero detB 6= 0.

Proof. Note that rank(A) = dimCol(A). When k > rank(A), any k columns
of A are linearly dependent. This means any k × k submatrix of A has linear
dependent columns.
When k = rank(A), choose k linearly independent columns {A1, A2, ..., Ak}

of A. Then rank[A1, ..., Ak] = k = rank[A1, ..., Ak]
T . There are k rows of

[A1, ..., Ak], which are linearly independent. These k rows give a k × k sub-
matrix with nonzero determinant.

4 Geometric meaning of determinants

Lemma 20 If A is a 2× 2 matrix, the area of the parallelogram determined by
the columns of A is |detA|.

Proof. If the two rows of A are parrell, then A is not invertible and thus
detA = 0. We simply assume that detA 6= 0 and the two rows are linearly
independent. If c = 0, then the parallelogram has bottom |a|, and hight |d|.
Thus the area is |ad| = detA. Generally, when c 6= 0, rotate the plane anti-
clockwise by degree φ. The corresponding linear transformation is[

cosφ sinφ
− sinφ cosφ

]
: R2 → R2.

Choose an appropriate angle φ such that
[
cosφ sinφ
− sinφ cosφ

] [
a
c

]
has its second

component 0. Therefore,

detA = det

[
cosφ sinφ
− sinφ cosφ

]−1
det

[
cosφ sinφ
− sinφ cosφ

]
A

5



whose absolute value is the area of the parrellogram formed by the two rows of[
cosφ sinφ
− sinφ cosφ

]
A. The proof is finished.

Lemma 21 If A is a 3× 3 matrix, the volume of the parallelepiped determined
by the columns of A is |detA|.

Proof. The proof is similar to that of the previous lemma. Suppose that R3
has the ordinary coordinates x, y, z. If the third row vector of A lies on the
z-coordinate, then the first two column vectors of A lie in the xoy-plane. By
the previous lemma, the area of the bottom parallelogram is the absolute value

of detA33 = det
[
a11 a12
a21 a22

]
. Expand A along the third row to get

detA = a33 det

[
a11 a12
a21 a22

]
,

whose absolute value is the volume of the parallelepiped, whose hight is |a33|,
area of the bottom is |detA33|. For the general case, we rotate R3, such that
the last column of AT (i.e. the last row of A) lies in the z-coordinate. Since the
rotation does not change volums, the proof is finished.

Lemma 22 Let S ⊂ R3 be region with its volume defined. If f : R3 → R3 be
a linear map with standard matrix A, then the volume of f(S) is |detA|vol(S).
Similar result holds for f : R2 → R2 on areas.

Proof. By the definition of volumes in Calculus, the volume of S is the infi-
mum of the sum of volums of small cubes covering S. Since f is linear, it is
additive on the small cubes. Therefore, it’s enough to prove the case when S is
a cube. Without loss of generality, we assume that one vertex of S is the origin.
Suppose that S has its three edges (a, 0, 0)T , (0, b, 0)T , (0, 0, c)T . Then f(S) is a

parallelepiped, formed by the rows of A

a b
c

. By the geometric meaning
of determinant, f(S) has the volume |detA|abc = |detA|vol(S).

Example 23 Let a, b > 0. Find the area of {(x, y) | x2a2 +
y2

b2 ≤ 1}.

Proof. Let S = {(x, y) | x2 + y2 ≤ 1}. Define f : R2 → R2 as

f(

[
x
y

]
) =

[
x/a
y/b

]
=

[
1
a

1
b

] [
x
y

]
.

Therefore, f({(x, y) | x2a2 +
y2

b2 ≤ 1}) = S, and thus Area(S) = π
detA = πab.
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Lecture 5: Eigenvalues and eigenvectors

Shengkui Ye

November 22, 2022

1 Eigenvalues and eigenvectors: definitions

Definition 1 Let A be an n×n matrix. Suppose that there exists scalar λ and
nonzero vector x such that

Ax = λx.

The λ is called an eigenvalue of A and x an eigenvector of A corresponding to
λ.

Example 2 Let A =
[
1 6
5 2

]
and x =

[
6
−5

]
. Check that x is an eigenvector.

Remark 3 Let Rx be the line spanned by x. If x is an eigenvector, then A
(viewed as a linear transformation Rn → Rn) maps Rx to Rx, i.e. the line Rx
is preserved by A.

Lemma 4 λ is an eigenvalue of A if and only if det(A− λIn) = 0.

Proof. By the definition, Ax = λx if and only if (A − λIn)x = 0. In other
words, λ is an eigenvalue of A if and only if (A − λIn)x = 0 has a non-zero
solution, which is equivalent to det(A− λIn) = 0.

Corollary 5 0 is an eigenvalue of A if and only if A is not invertible.

Example 6 Let A =


a11 ∗ ∗

a22 ∗
. . .

ann

 be an upper triangular matrix.

The eigenvalues of A are diagonal entries.

Example 7 For a fixed eigenvalue λ, the set Vλ = {x | Ax = λx} of eigenvec-
tors is a vector subspace, called the eigenspace of A corresponding to λ.

Lemma 8 If x1, x2, · · · , xk are eigenvectors corresponding to distinct eigenval-
ues λ1, λ2, · · · , λk, then {x1, x2, · · · , xk} are linearly independent.

1



Proof. After reordering the index, we assume that λ1, λ2, · · · , λk are all dis-
tinct. Suppose that {x1, x2, · · · , xl−1} are linearly independent, but {x1, x2, · · · , xl}
are linear dependent. For some ai we have a1x1 + a2x2 + · · · + al−1xl−1 = xl.
Multiplying A at both sides, we have

a1Ax1 + a2Ax2 + · · ·+ al−1Axl−1 = Axl

a1λ1x1 + a2λ2x2 + · · ·+ al−1λl−1xl−1 = λlxl.

Therefore, a1(λl − λ1)x1 + · · ·+ al−1(λl − λl−1)xl−1 = 0, which is a contradic-
tion. This means that the linear independence of {x1, x2, · · · , xl−1} implies the
linear dependence of {x1, x2, · · · , xl−1, xl} for any l. Eventually, we have that
{x1, x2, · · · , xk} are linearly independent.

2 Characteristic polynomial and diagonalization

Definition 9 For a matrix An×n, the det(A− λIn) is called the characteristic
polynomial of A. The roots of this polynomial are eigenvalues.

Example 10 Find the eigenvalues of
[
2 3
3 −6

]
.

Two matrices A,B are called similar if there exists an invertible matrix P
such that PAP−1 = B. Changing A into PAP−1 is called a similarity transfor-
mation.

Lemma 11 Two similar matrices A,B have the same characteristic polynomi-
als and thus the same eigenvalues.

Proof. det(PAP−1−λIn) = detP (A−λIn)P−1 = detP det(A−λIn) detP−1 =
det(A− λIn).

Definition 12 Let A be an n×n matrix. If det(A−λIn) = (−1)n(λ−λ1)n1(λ−
λ2)

n2 · · · (λ−λk)nk , then the integer ni is called the algebraic multiplicity of the
eigenvalue λi.
For an eigenvalue λ, the space Vλ = {v | Av = λv} is called an eigensapce of

A corresponding to λ. The dimension dimVλ is called the geometric multiplicity
of λ.

Example 13 Let A =

3 1 1
0 3 2
0 0 1

 . Find its eigenvalues and their algebraic and
geometric multiplicities.

A matrix A is diagonalizable if there exists invertible matrix P such that
PAP−1 is diagonal.

Theorem 14 An n×n matrix A is diagonalizable if and only if A has n linear
independent eigenvectors.
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Proof. Suppose that there exist invertible matrix P and diagonal matrix D
such that PAP−1 = D. Then AP−1 = P−1D. Then the columns of P−1 are
eigenvectors and thus linear independent.
If {x1, x2, ..., xn} are eigenvectors of A, then

A[x1, x2, ..., xn] = [Ax1, Ax2, ..., Axn]

= [x1, x2, ..., xn]diag(λ1, λ2, ..., λn).

Here diag(λ1, λ2, ..., λn) is the diagonal matrix with diagonal entries λi. When
{x1, x2, ..., xn} are linear independent, the matrix [x1, x2, ..., xn] are invertible
and thus [x1, x2, ..., xn]−1A[x1, x2, ..., xn] = diag(λ1, λ2, ..., λn).
The proof of the previous theorem shows thatA = [x1, x2, ..., xn]diag(λ1, λ2, ..., λn)[x1, x2, ..., xn]−1

for the eigenvalues λi and eigenvectors vi, when A is diagonalizable.

Corollary 15 If An×n has n distinct eigenvalues, then A is diagonalizable.

Proof. If A has n distinct eigenvalues, then it has n linearly independent
eigenvectors.

Example 16 Diagonalize the following matrix, if possible

A =

 1 3 3
−3 −5 −3
3 3 1

 .
Theorem 17 Let A be an n×n matrix whose distinct eigenvalues are λ1, ..., λp.

1. For 1 ≤ k ≤ p, the dimension of the eigenspace for λk is less than or equal
to the multiplicity of the eigenvalue λk.

2. The matrix A is diagonalizable if and only if the sum of the dimensions
of the eigenspaces equals n, and this happens if and only if

(i) the characteristic polynomial factors completely into linear factors and

(ii) the geometric mutiplicity equals to the algebraic mutiplicity for each
eigenvalue, i.e. the dimension of the eigenspace for each λk equals the
algebraic multiplicity of k.

3. If A is diagonalizable and Bk is a basis for the eigenspace corresponding to
λk for each k, then the total collection of vectors in the sets B1, B2, · · · , Bp
forms an eigenvector basis for Rn.

Proof. (2) If A is diagonalizable, assume there exist invertible matrix P and
diagonal matrix D such that PAP−1 = D. Then the characteristic polynomial
of A is the same as that ofD, which is a product of linear factors. The dimension
of the eigenspace of D for each λk clearly equals the multiplicity of k. View P
as an invertible linear transformation. Note that P{v ∈ Rn | Av = λkv} is the
corresponding eigenspace of D.
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Conversely, when the dimension of the eigenspace for each λk equals the
multiplicity of k, we can choose k linearly independent vectors in the eigenspace
Vλk . Since

∑
k = n, we have n linearly independent eigenvectors. Therefore, A

is diagonalizable.
(3) follows (2), since the dimension of the eigenspace for each λk equals the

multiplicity of k. (1) will be proved in the next section.

Example 18 Calculate all the eigenvalues and eigenvectors of A =

[
1 1
0 1

]
.

Prove that A is not diagonalizable.

The characteristic polynomial p(A) of a matrix A with real entries has real
coeffi cients. It does not always factor into linear factors. Sometimes, p(A) =
(λ−λ1)n1(λ−λ2)n2 · · · (λ−λk)nk has (non-real) complex roots. But the complex
roots occur in conjugate pairs.

Example 19 Let A =
[
cosφ sinφ
− sinφ cosφ

]
. The characteristic polynomial is λ2 −

2(cosφ)λ + 1. The two roots are the conjugate pair λ1 = cosφ +
√
1− cos2 φi,

λ2 = cosφ−
√
1− cos2 φi. When cosφ 6= 0, these are complex eigenvalues.

3 Eigenvectors and linear transformations

Lemma 20 Let f : V → V be a linear transformation and B1, B2 be two bases
of V. The representation matrices A1, A2 of f with respect to B1, B2 are similar.

Proof. Suppose that B1 = {b1, b2, · · · , bn}, B2 = {b′1, b′2, · · · , b′n}. According to
the definition, we have

f(x) = [b1, b2, · · · , bn][f(x)]B1
= [b′1, b

′
2, · · · , b′n][f(x)]B2

[f(x)]B1
= A1[x]B1

, [f(x)]B2
= A2[x]B2

.

Therefore,
[b1, b2, · · · , bn]A1[x]B1

= [b′1, b
′
2, · · · , b′n]A2[x]B2

.

Let P be the transition matrix from B1 to B2, i.e. P [x]B1
= [x]B2

. Choose
x = b′1, b

′
2, · · · , b′n to get that

P [[b′1]B1
, [b′2]B1

, · · · , [b′n]B1
] = In,

[b1, b2, · · · , bn]A1[[b′1]B1
, [b′2]B1

, · · · , [b′n]B1
] = [b′1, b

′
2, · · · , b′n]A2.

Note that [b1, b2, · · · , bn][[b′1]B1
, [b′2]B1

, · · · , [b′n]B1
] = [b′1, b

′
2, · · · , b′n]. Therefore,

we have
PA1P

−1 = A2.

4



Corollary 21 Let f : V → V be a linear transformation. The eigenvalue of (a
representation matrix of) f does not dependent on the choice of bases.

The following is part (1) of Theorem 17.

Corollary 22 Let λ be an eigenvalue of a matrix An×n and Vλ the eigenspace
corresponding to λ. Then the geometric multiplicity dimVλ ≤ the algebraic mul-
tiplicity of λ.

Proof. Suppose that dimVλ = p and choose a basis {v1, v2, · · · , vp} of Vλ.
Extend the basis to be a basis S = {v1, v2, · · · , vp, · · · , vn} of Rn. Let A′ be the
representation matrix of the linear transformation A : Rn → Rn, x 7→ Ax, with
respect to the basis S. In other words, A′[x]S = [Ax]S for any vector x ∈ Rn.
Since Avi = λvi for i ≤ p, the matrix

A′ =

[
λIp C1
0 C2

]
,

where C1, C2 are submatrices of appropriate sizes. Note that A and A′ are
similar by the previous lemma and the characteristic polynomial of A′ and A
are same, which is

det(A′ − xIn) = (x− λ)pp1(x).

Here p1(x) is the characteristic polynomial of C2. Therefore, dimVλ = p ≤ the
algebraic multiplicity of λ.
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Lecture 6: Canonical forms and decompositions

Shengkui Ye

November 29, 2022

1 Jordan canonical forms for complex matrices

A matrix A is called nilpotent if Ak = 0 for some positive integer k. The Jordan
block is an upper triangular matrix of the form

Jd,n =


d 1 0

d
. . . 0
. . . 1

d


n×n

.

The direct sum (or block sum) of two matrix A,B is a block diagonal matrix[
A 0
0 B

]
.

Lemma 1 Let V be a finite-dimensional vector space and f : V → V be a linear
map. There exist subspaces V1, V2 < V such that
1) V = V1

⊕
V2 (i.e. V = V1 + V2 and V1 ∩ V2 = 0);

2) f(V1) = V1 and f |V1 is invertible.
3) f(V2) < V2, and there is an integer k such that fk(x) = 0 for any x ∈ V2

(i.e. f |V2 is nilpotent).

Proof. For each integer i, note that the kernels satisfy ker f i ≤ ker f i+1. Since
V is finite-dimensional, there is a smallest integer k such that ker fk = ker fk+1.
Actually, ker fk = ker fk+l for any integer l ≥ 0 as the following. For any z ∈
ker fk+l, we have 0 = fk+l(z) = fk+1+l−1(z), implying f l−1(z) ∈ ker fk+1 =
ker fk and fk+l−1(z) = 0. Repeat the argument to get 0 = fk+l−1(z) = · · · =
fk(z).
Note that any x ∈ ker fk ∩ Im fk has x = fk(y), fk(x) = 0 for some y ∈ V.

This means that fk(fk(y)) = 0 and y ∈ ker fk+k = ker fk. Therefore, 0 =
fk(y) = x. By the generalized rank theorem dimV = dim ker fk + dim Im fk,
we know that V = ker f + Im fk. This finishes the proof of 1) with V2 = ker fk

and V1 = Im fk.
It’s obvious that f(V1) ≤ V1, f(V2) ≤ V2. For any x ∈ V2, we have fk(x) = 0.

In order to prove f |V2 is invertible, it is enough to prove f |V2 is injective since V2
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is of finite dimension. For any z ∈ Im fk satisfying f(z) = 0, we have z = fk(y)
for some y and fk+1(y) = 0. This means y ∈ ker fk+1 = ker fk and thus z = 0.
The injectivity of f |V2 is proved.

Lemma 2 For a nilpotent matrix An×n, the sum I +A is conjugate to a direct
sum of Jordan blocks with 1s along the diagonal.

Proof. We prove that V = Fn has a basis

{a1, Aa1, . . . , Ak1−1a1, a2, Aa2, . . . , Ak2−1a2, . . . , as, . . . , Aas, . . . , Aks−1as}

satisfying Akiai = 0 for each i, which implies that the representation matrix of
I + A with respect to this basis is a direct sum of Jordan blocks with 1 along
the diagonal. The proof is based on the induction of dimV. When dimV = 1,
choose 0 6= v ∈ V. Suppose that Av = λv. Then Akv = λkv = 0 and thus λ = 0.
Suppose that the case is proved for vector spaces of dimension k < n. Note that
the subspace AV 6= V (otherwise, AV = V implies AkV = Ak−1V = V = 0).
By induction, the subspace AV (noting that A(AV ) ⊂ AV ) has a basis

S = {a1, Aa1, . . . , Ak1−1a1, a2, Aa2, . . . , Ak2−1a2, . . . , as, . . . , Aas, . . . , Aks−1as}.

Choose bi ∈ V satisfying A(bi) = ai. Then A maps the set

S′ = {b1, Ab1 = a1, . . . , A
k1b1 = Ak1−1a1, b2, Ab2, . . . , A

k2b2, bs, . . . , Abs, . . . , A
ksbs}

to the basis S. This implies that the set S′ is linearly independent (Other-
wise,

∑s
j=1(xjbj +

∑kj−1
i=0 xjiA

iaj) = 0 for some nonzero xj , which implies

A(
∑s
j=1(xjbj +

∑kj−1
i=0 xjiA

iaj)) =
∑s
j=1(xjaj +

∑kj−1
i=0 xjiA

i+1aj) = 0, a con-
tradiction to the fact that S is a basis). Extend this set S′ to be a V ′s basis

S′′ = {b1, Ab1, . . . , Ak1b1, b2, Ab2, . . . , Ak2b2, bs, . . . , Abs, . . . , Aksbs, bs+1, . . . , bs′}.

Note that Abi = 0 for i ≥ s+ 1 and Aki+1bi = Akiai = 0 for each i ≤ s.

Theorem 3 (Jordan canonical form) Any complex matrix An×n is conjugate
to a direct sum of Jordan blocks, where the diagonal entries are eigenvalues.

Proof. Consider the linear map A : Cn → Cn. Over the field C of complex
numbers, we have det(A − λIn) = (−1)n(λ − λ1)n1(λ − λ2)n2 · · · (λ − λk)nk , a
product of distinct eigenvalues λ1, ..., λk. View f = A − λ1In as a linear map
Cn → Cn. Lemma 1 implies that Cn = V1

⊕
V2, where f |V2 is nilpotent and

f |V1 is invertible. Since the eigenspace Vλ1 = ker(A − λ1In) < V2, we see that
dimV2 > 0. Lemma 2 implies that (A−λ1In+In)|V2 is conjugate to a direct sum
of Jordan blocks with 1s along the diagonal. This means that A|V2 is conjugate
to a direct sum of Jordan blocks Jλ1,n1j . Consider A|V1 : V1 → V1 instead of
A : Cn → Cn and repeat the argument. Note that there are only k eigenvalues.
The proof will be finished in k steps.
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Remark 4 The Jordan canonical form does not hold true for real matrices. For

example A =

[
cosφ − sinφ
sinφ cosφ

]
, φ 6= 0, π, has no real eigenvalues. The very first

V2 in the proof of the previous theorem would be trivial.

Corollary 5 (Jordan-Chevalley decomposition) Any square matrix An×n can
be written as
1) a sum A = S + N, with S a diagonalizable matrix and N a nilpotent

matrix, satisfying SN = NS; and
2) a product A = SU, with S a diagonalizable matrix and N − In a nilpotent

matrix, satisfying SU = US. Here U is called unipotent.

Proof. For a Jordan block Jd,k, let S = dIk, N = Jd,k − S and U = Ik +N.

For a polynomial p(x) =
∑n
i=0 aix

i, its matrix value is p(A) = anA
n + ....+

a1A + a0In =
∑n
i=0 aiA

i ∈ Mk×k(F ) for a matrix Ak×k with entries in a field
F.

Corollary 6 (Cayley—Hamilton Theorem) Let An×n be a square matrix and
p(x) = det(A− λIn) its characteristic polynomial. We have p(A) = 0.

Proof. For any invertible matrix Bn×n, note that (BAB−1)i = BAiB−1

and thus p(BAB−1) = Bp(A)B−1. The Jordan canonical form implies that
BAB−1 = D for some upper triangular matrixD (a direct sum of Jordan blocks)
and some invertible matrix B. It is enough to prove that p(D) = Bp(A)B−1 = 0.
Suppose that p(x) = det(A − λIn) = (−1)nΠl

i=1(λ − λi)
ni for distinct roots

λ1, ..., λl. For each Jordan block Jni,λi , we have J − λiIni a nilpotent matrix.
A direct calculation shows that (J − λiIni)

ni = 0. In the product p(B) =
(−1)nΠl

i=1(A− λiIn)ni , each factor (B − λiIn)ni has the corresponding ni × ni
block matrix zero. Therefore, p(B) = 0.

2 Real matrices

Example 7 Any 2 × 2 matrix
[
a −b
b a

]
is a product r

[
cosφ − sinφ
sinφ cosφ

]
, for

r =
√
a2 + b2 and a suitable angle φ.

Lemma 8 Let A be any 2 × 2 matrix with a complex eigenvalue λ = a + bi

(b 6= 0). Then A is conjugate to r

[
cosφ − sinφ
sinφ cosφ

]
with r =

√
detA and a

suitable angle φ.

Proof. Let v = Re +i Im (viewed as a complex vector) be an eigenvector of λ,
where Re is the real part and Im is the imaginary part. Denote by v̄ = Re−i Im
the complex conjugate of v. Then Av = λv implies that

Av̄ = λ̄v̄.
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Since eigenvectors corresponding to different eigenvalues are linearly indepen-
dent, we know that v and v̄ are linearly independent. Since

[Re, Im]

[
1 1
i −i

]
= [v, v̄],

we know that [Re, Im] are linearly independent. Note that ARe = aRe−b Im,
A Im = a Im +bRe . Therefore,

A[Re, Im] = [Re, Im]

[
a b
−b a

]
,

[Re, Im]−1A[Re, Im] =

[
a b
−b a

]
=

[√
a2 + b2 0

0
√
a2 + b2

][ a√
a2+b2

b√
a2+b2

− b√
a2+b2

a√
a2+b2

]
.

The proof is finished by taking r =
√
a2 + b2 and φ = arccos a√

a2+b2
.

Theorem 9 Let A =

[
a b
c d

]
be a 2× 2 real matrix. Then A is conjugate to

1) a diagonal matrix; or

2) an upper triangular matrix
[
λ 1
0 λ

]
or

3) a multiple of an rotation matrix r
[
cosφ − sinφ
sinφ cosφ

]
with r =

√
detA and

a suitable angle φ.

Proof. Consider the characteristic polynomial det(A − λI2) = λ2 − tr(A)λ +
det(A). When ∆ = tr(A)2 − 4 det(A) > 0, there are two distinct eigenvalues
and A is diagonalizable. When ∆ = tr(A)2 − 4 det(A) = 0, there is only one
eigenvalue λ. If dimVλ = 2, we know that A is diagonalizable. Otherwise,
dimVλ = 1. Suppose that Av = λv for some v 6= 0 and {v, w} is a basis of

R2. The representation matrix of A with respect to {v, w} is D =

[
λ x
0 λ

]
for

some x 6= 0. But D − λI2 is nilpotent. Lemma 2 implies that D is conjugate

to
[
λ 1
0 λ

]
. When ∆ = tr(A)2 − 4 det(A) < 0, there are two distinct complex

eigenvalues. The previous lemma proves 3).

Corollary 10 Let A2×2 be a real matrix of det(A) = 1. Then A is conjugate to

either
[
λ 0
0 1

λ

]
, or ±

[
1 1
0 1

]
or a rotation matrix

[
cosφ − sinφ
sinφ cosφ

]
.
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