Lecture 1: dot product, length and angle

Shengkui Ye

January 30, 2023

1 Orthogonal basis and projections

For two vectors $x = (x_1, x_2, ..., x_n)^T$, $y = (y_1, y_2, ..., y_n)^T \in \mathbb{R}^n$, we already know that the dot product $x \circ y = x_1y_1 + x_2y_2 + \cdots + x_ny_n = x^T y$. The length of the vector x is $\|x\| = \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2}$. The angle between nonzero vectors x, y is $\angle(x, y) = \arccos \frac{x \cdot \overline{y}}{\Vert x \Vert \Vert y \Vert}$.

Definition 1 An orthogonal basis S of \mathbb{R}^n is a basis such that any two distinct elements $u, v \in S$ are orthogonal.

Lemma 2 Let $S = \{v_1, v_2, ..., v_n\}$ be an orthogonal basis of \mathbb{R}^n . Any element $x \in \mathbb{R}^n$ is a linear combination

$$
x = a_1v_1 + a_2v_2 + \cdots + a_nv_n
$$

with $a_i = \frac{x \circ v_i}{\|v_i\|^2}$ for each i.

Proof. Note that $x \circ v_i = a_i v_i \circ v_i$.

Lemma 3 Let H be a subspace of \mathbb{R}^n . Any element $x \in \mathbb{R}^n$ is writen uniquely as $x = x_1 + x_2$ with $x_1 \in H$ and $x_2 \in H^{\perp}$. The x_1 is called the projection of x onto H, denoted by $proj_H(x)$.

Proof. For the existence, let $x_1 \in H$ be a vector such that $||x - x_1|| =$ $\inf_{y \in H} ||x - y||$. Choose $x_2 = x - x_1$. By properties of triangles, we know that $x - x_1$ is orthogonal to x_1 . The existence can also be proved by assuming that H has an orthogonal basis (saying $\{v_1, ..., v_k\}$) which can be extended to be an orthogonal basis of \mathbb{R}^n . Then $x_1 = \sum_{i=1}^k a_i v_i = \sum_{i=1}^k \frac{x \circ v_i}{\|v_i\|^2} v_i$ by the previous lemma.

If $x = x_1' + x_2'$ with $x_1' \in H$ and $x_2' \in H^{\perp}$, then $x_1 - x_1' = x_2' - x_2 \in H \cap H^{\perp}$ $\{0\}$.

If H is spanned by a nonzero vector u, then $x_1 = ku$ for some k. Then $x \circ u = (x_1 + x_2) \circ u = ku \circ u$ and thus $k = \frac{x \circ u}{u \circ u}$.

Example 4 Let $x = [7, 6]^T$ and $u = [4, 2]^T$. Find $proj_u(x)$.

A set $\{v_1, v_2, \dots, v_k\}$ is orthonormal if $v_i \circ v_i = 1$ and $v_i \circ v_j = 0$ for any $i \neq j.$

Example 5 Show that $\{(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})^T, (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})^T\}$ is orthonormal.

Lemma 6 An $m \times n$ matrix U has orthonormal columns if and only if $U^T U = I$. An orthogonal matrix A is a square invertible matrix A such that $A^T A = I$.

Lemma 7 Let U be an $m \times n$ matrix with orthonormal columns, and let $x, y \in$ \mathbb{R}^n . Then

a) $||Ux|| = ||x||;$ b) $Ux \circ Uy = x \circ y;$ c) $Ux \circ Uy = 0$ if and only $x \circ y = 0$.

Lemma 8 Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a linear map. Suppose that f is distancepreserving, i.e. $||f(x) - f(y)|| = ||x - y||$ for any $x, y \in \mathbb{R}^n$. Then f is anglepreserving, i.e. $\measuredangle(f(x), f(y)) = \measuredangle(x, y)$ for any $x, y \in \mathbb{R}^n$;

Proof. Suppose that f is distance-preserving. We have $||f(x)|| = ||x||$ and $|| f(x + y) || = ||x + y||$ for any $x, y \in \mathbb{R}^n$. But this implies that

$$
||f(x + y)||^2 = ||f(x) + f(y)||^2 = (f(x) + f(y)) \circ (f(x) + f(y))
$$

= $f(x) \circ f(x) + f(y) \circ f(y) + 2f(x) \circ f(y)$
= $||x + y||^2$
= $x \circ x + y \circ y + 2x \circ y$

and $f(x) \circ f(y) = x \circ y$. Note that $\cos \angle(x, y) = \frac{x \circ y}{\|x\| \|y\|} = \frac{f(x) \circ f(y)}{\|f(x)\| \|f(y)\|}$ $\cos \angle(f(x), f(y))$, which gives $\angle(f(x), f(y)) = \angle(x, y)$.

Lemma 9 A linear map $f : \mathbb{R}^n \to \mathbb{R}^n$ is distance-preserving if and only if the standard representation matrix A_f of f is orthogonal.

Proof. Let $x \in \mathbb{R}^n$ be arbitrary vector. If A is orthogonal, we have $||f(x)||^2$ = $||Ax||^2 = Ax \circ Ax = (Ax)^T Ax = x^T (A^T A)x = x \circ x = ||x||^2$. Therefore, f is distance-preserving.

Suppose that f is distance-preserving. The proof of the previous lemma shows that $f(x) \circ f(y) = x \circ y$ for any $x, y \in \mathbb{R}^n$. Choose $x, y \in \{e_1, e_2, ..., e_n\}$, the standard basis, to get that $f(e_i) \circ f(e_i) = e_i^T A^T A e_j = e_i \circ e_j$, which is the (i, j) -th entry of $A^T A$. Therefore, $A^T A = I_n$.

Example 10 Show that
$$
\begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}
$$
 is orthogonal.

Theorem 11 (Orthogonal decomposition theorem) Let W be a subspace of \mathbb{R}^n . Then each element x in \mathbb{R}^n is a sum $\hat{x} + z$ with $\hat{x} \in W$ and $z \in W^{\perp}$. In fact, if ${u_1, u_2, \cdots, u_p}$ is any orthogonal basis of W, then

$$
\hat{x} = \frac{x \circ u_1}{u_1 \circ u_1} u_1 + \frac{x \circ u_2}{u_2 \circ u_2} u_2 + \dots + \frac{x \circ u_p}{u_p \circ u_p} u_p
$$

and $z = x - \hat{x}$.

Proof. Let $\{u_1, u_2, \dots, u_p\}$ be an orthogonal basis of W. Extend this set to be a basis $\{u_1, u_2, \dots, u_n\}$ of \mathbb{R}^n . The proof is finished.

Corollary 12 If $\{u_1, u_2, \dots, u_p\}$ is any orthonormal basis of W, then the projection of $x \in \mathbb{R}^n$ onto W is

$$
\hat{x} = U U^T x
$$

where $U = [u_1, u_2, \cdots, u_p].$

Example 13 Let $u_1 =$ $\sqrt{2}$ 4 2 5 $^{-1}$ 3 $\Big\}$, $u_2 =$ $\sqrt{2}$ 4 $\frac{-2}{2}$ 1 1 3 \int and $y =$ $\sqrt{2}$ 4 1 2 3 3 $\big|$. Show that $\{u_1, u_2\}$ is

an orthogonal basis for $W = \text{Span}\{u_1, u_2\}$. Write y as a sum of a vector in W and a vector in the orthogonal complement of W:

2 The Gram-Schmidt process

Example 14 Let $u_1 =$ $\sqrt{2}$ 4 3 6 0 3 $\Big\}$, $u_2 =$ $\sqrt{2}$ 4 1 2 2 3 | and $W = \text{Span}\{u_1, u_2\}$. Find an or-

thogonal basis of W:

Proof. Take $\{u_1, u_2 - \frac{u_2 \circ u_1}{u_1 \circ u_1} u_1\}.$

Theorem 15 (Gram-Schmidt process) Given a basis $\{x_1, x_2, \dots, x_p\}$ for a nonzero subspace W of \mathbb{R}^n , define

$$
v_1 = x_1,
$$

\n
$$
v_2 = x_2 - \frac{x_2 \circ v_1}{v_1 \circ v_1} v_1, \dots,
$$

\n
$$
v_p = x_p - \frac{x_p \circ v_1}{v_1 \circ v_1} v_1 - \frac{x_p \circ v_2}{v_2 \circ v_2} v_2 - \dots - \frac{x_p \circ v_{p-1}}{v_{p-1} \circ v_{p-1}} v_{p-1}.
$$

Then $\{v_1, v_2, \cdots, v_p\}$ is an orthogonal basis for W. Moreover,

$$
\text{Span}\{v_1, \cdots, v_k\} = \text{Span}\{x_1, \cdots, x_k\}, \text{for each } k \leq p.
$$

Proof. Inductively, we assume that $\text{Span}\{v_1, \dots, v_{k-1}\} = \text{Span}\{x_1, \dots, x_{k-1}\}.$ Since $x_k = v_k + z_{k-1}$ for a vector $z_{k-1} \in \text{Span}\{v_1, \dots, v_{k-1}\}$, we see that $x_k \in$ $\text{Span}\{v_1, \dots, v_{k-1}, v_k\}$ and similarly $v_k \in \text{Span}\{x_1, \dots, x_{k-1}, x_k\}.$

Example 16 Let
$$
x_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}
$$
, $x_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}$, $x_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$. Find an orthonormal basis

of $\text{Span}\{x_1, x_2, x_3\}.$

Corollary 17 (QR factorization) Let A be an invertible matrix. Then $A = QR$ for an orthogonal matrix Q and an upper triangular matrix R .

Proof. Let $A = [x_1, x_2, \dots, x_n]$. The Gram-Schmidt process produces a matrix $P = [v_1, v_2, \dots, v_n]$. Note that $A = PS$ for a strictly upper triangular matrix S. Let $D = \text{diag}(v_1 \circ v_1, v_2 \circ v_2, \cdots, v_n \circ v_n)$ be the diagonal matrix, and $Q =$ $\left[\frac{v_1}{v_1 \circ v_1}, \frac{v_2}{v_2 \circ v_2}, \cdots, \frac{v_n}{v_n \circ v_n}\right]$. Therefore, we have $A = (PD^{-1})DS = QR$, with $R =$ DS. Note that $QQ^T = I_n$.

3 Least-square problem

For a matrix $A_{m\times n}$ and $b \in \mathbb{R}^n$, we know that $Ax = b$ may not have a solution. An element $x_0 \in \mathbb{R}^n$ is called a least-square problem for $Ax = b$ if

$$
\|b - Ax_0\| \le \|b - Ax\|
$$

for any $x \in \mathbb{R}^n$.

Theorem 18 A vector x_0 is a least-square solution of $Ax = b$ if and only if $A^T A x_0 = A^T b.$

Proof. Denote by Ax_0 the projection of b onto the column space $Col(A)$. By the orthogonal decomposition theorem, $b - Ax_0 \in Col(A)^{\perp} = Null^{T}$. Therefore, $A^T(b - Ax_0) = 0$ and $A^T Ax_0 = A^T b$. Conversely, when $A^T Ax_0 = A^T b$, we have $A^T(b - Ax_0) = 0$ and $b - Ax_0 = \text{Nul}A^T = \text{Col}(A)^{\perp}$. This implies that $||b - Ax_0|| \le ||b - Ax||$ for any $x \in \mathbb{R}^n$.

Corollary 19 $Ax = b$ has a unique least-square solution if and only if the columns of A are linearly independent.

Proof. By the previous theorem, it's enough to prove that A^TA is invertible if and only if the columns of A are linearly independent. When A^TA is invertible, $n = rank(A^TA) \le rank(A)$. Therefore, the columns of A are linearly independent. Conversely, when the columns of A are linearly independent, $Ax = 0$ has only the trivial solution $x = 0$. If $A^T A x = 0$, then $0 = x^T A^T A x = (Ax)^T (Ax)$, which implies that $Ax = 0$ and thus $x = 0$. Therefore, A^TA is invertible.

Example 20 Find a least-square solution for $Ax = b$, where

$$
A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}, b = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}.
$$

Lecture 2: inner product, length and angle

Shengkui Ye

February 13, 2023

1 Inner product: definitions

The following are generalizations of the dot product.

Definition 1 An inner product \langle, \rangle on a real vector space V is a function \langle, \rangle : $V \times V \rightarrow \mathbb{R}$ such that

- 1. $\langle u, v \rangle = \langle v, u \rangle$ for any $v, u \in V$;
- 2. $\langle v, a_1u_1 + a_2u_2 \rangle = a_1 \langle v, u_1 \rangle + a_2 \langle v, u_2 \rangle$ for any $u_1, u_2, v \in V$ and any $a_1, a_2 \in \mathbb{R}$;
- 3. $\langle u, u \rangle > 0$ and $\langle u, u \rangle = 0$ if and only if $u = 0$.

If the function \langle , \rangle satisfies only condition 1) and 2), we call \langle , \rangle a symmetric bilinear form.

Remark 2 Sometimes, the inner product is defined on complex vector spaces by replacing $\mathbb R$ with $\mathbb C$ and the condition 1) is $\langle u, v \rangle = \overline{\langle v, u \rangle}$, the complex conjugation.

Example 3 $\langle u, v \rangle = u \circ v$ is an inner product on $V = \mathbb{R}^n$.

Example 4 A matrix $A_{n \times n}$ is called symmetric if $A^T = A$. The function $\langle x, y \rangle = x^T A y$ is a symmetric bilinear form. If A is diagonal with positive diagonal entries, then \langle, \rangle is an inner product on \mathbb{R}^n .

Example 5 Let $V = M_{m \times n}(\mathbb{R})$ (the vector space of all $m \times n$ real matrices). The function $\langle x, y \rangle = Trace(x^T y)$ is an inner product on V.

Example 6 Let $C[a, b]$ be the set of all continuous functions on the closed interval [a, b]. Then $\langle f, g \rangle = \int_a^b f g \, dx$ is an inner product.

We denote $||x|| = \sqrt{\langle x, x \rangle} \geq 0$ as the length of $x \in V$. For two vectors $x, y \in V$, the distance $d(x, y) = ||x - y||$. Two vectors x, y are orthogonal if $\langle x, y \rangle = 0.$

Lemma 7 (Cauchy-Schwarz inequality) For any $x, y \in V$, we have $\langle x, y \rangle \leq$ $||x|| ||y||$. Furthermore, we have $||x + y|| \le ||x|| + ||y||$.

Proof. For any real number t, we have $0 \leq \langle tx+y, tx+y \rangle = t^2 \langle x, x \rangle + 2t \langle x, y \rangle +$ $\langle y, y \rangle$. Therefore, $4\langle x, y \rangle^2 - 4\langle x, x \rangle \langle y, y \rangle \leq 0$ and thus $\langle x, y \rangle \leq ||x|| ||y||$.

Note that

$$
||x + y||2 = \langle x + y, x + y \rangle = \langle x, x \rangle + \langle y, y \rangle + 2\langle x, y \rangle
$$

$$
\leq \langle x, x \rangle + \langle y, y \rangle + 2||x|| ||y|| = (||x|| + ||y||)2.
$$

When $x, y \in \mathbb{R}^n$, the law of cosine gives that

$$
\begin{array}{rcl}\n\|x - y\|^2 & = & \|x\|^2 + \|y\|^2 - 2\|x\| \|y\| \cos \phi, \\
\langle x, y \rangle & = & \|x\| \|y\| \cos \phi,\n\end{array}
$$

where ϕ is the angle between vector x and y. In general inner-product space, if $\langle x, y \rangle = ||x|| ||y|| \cos \phi$, we still view $\phi \in [0, \pi)$ as an angle between x and y. In particular, when $\langle x, y \rangle = 0$, we call x, y are orthogonal. Using these general concepts, we can still talk about orthogonal, orthnormal basis and do Gram-Schmidt orthogonalization process.

Lemma 8 Let $\{v_1, v_2, ..., v_n\}$ be an orthonormal basis of an inner product space V: We have

$$
\|\sum_{i=1}^n a_i v_i\| = \sum_{i=1}^n |a_i|^2.
$$

Definition 9 Let V be a subspace of an inner product space (W, \langle, \rangle) (i.e. W is a real vector space together with an inner product \langle , \rangle . The orthogonal complement $V^{\perp} = \{x \in W \mid \langle x, y \rangle = 0\}.$

Lemma 10 Let A be an $m \times n$ matrix.

1) For any $x \in \mathbb{R}^m$, $y \in \mathbb{R}^n$, we have $x \circ Ay = A^T x \circ y$. 2) Then $(ColA)^{\perp} = NullA^{T}$, $(RowA)^{\perp} = NullA$.

Proof. Note that $x \circ Ay = x^T A y = (A^T x)^T y = (A^T x) \circ y$. 2) follows 1): for any $x \in \text{Nul}A^T$ we have $A^T x = 0$ and thus $x \circ Ay = 0$ for any y, which proves that $x \in (ColA)^{\perp}$. On the other hand, for any $x \in (ColA)^{\perp}$ we have $x \circ Ay = 0$ for any y. But $A^T x \circ y = 0$ for any y, which implies that $A^T x = 0$ by choosing y in a basis. \blacksquare

Lemma 11 1) The orthgonal complement V^{\perp} is a vector subspace of W. 2) $W = V \bigoplus V^{\perp}$, the direct sum. 3) $(V^{\perp})^{\perp} = V.$

Proof. 1) For any $x, y \in V^{\perp}$, we have $\langle ax + by, v \rangle = a \langle x, v \rangle + b \langle y, z \rangle = 0$ for any $v \in V$ and arbitrary $a, b \in \mathbb{R}$. This shows that $ax + by \in V^{\perp}$.

2) Choose a basis B for V and extend this set to be a basis C of W . Apply the Gram-Schmidt orthogonalization process to get an orthogonal basis S of W . Each element $x \in W$ is a linear combination

$$
x = \sum_{s \in S} a_s s = \sum_{s \in S \cap V} a_s s + \sum_{s \in S \backslash V} a_s s \in V + V^\perp.
$$

It is enough to show that $V \cap V^{\perp} = \{0\}$. Actually, any $x \in V \cap V^{\perp}$ has $\langle x, x \rangle = 0$ implying $x = 0$.

3) Since any $v \in V$ is orthogonal to any $x \in V^{\perp}$, we have $V \subset (V^{\perp})^{\perp}$. If there is $x \in (V^{\perp})^{\perp} \backslash V$, we have

$$
x=\sum_{s\in S}a_{s}s=\sum_{s\in S\cap V}a_{s}s+\sum_{s\in S\backslash V}a_{s}s,
$$

with $\sum_{s\in S\setminus V} a_s s \neq 0$, where S is an orthogonal basis as in 1). However, $\langle x, \sum_{s \in S \setminus V} a_s s \rangle = \langle \sum_{s \in S \setminus V} a_s s, \sum_{s \in S \setminus V} a_s s \rangle > 0$, a contradiction to the fact that x is orthogonal to V^{\perp} .

2 Inner products and matrices

For a complex matrix $A_{n\times m}$, its conjugate transpose is the $m \times n$ matrix $A^* =$ (\bar{a}_{ji}) , where $\bar{a}_{ji} = a - b\mathbf{i}$ (complex onjugate) if $a_{ji} = a + b\mathbf{i}, a, b \in \mathbb{R}$. A square complex matrix A is called Hermitian (or self-adjoint) if $A = A^*$. Note that real Hermitian matrix is symmetric.

Lemma 12 Let (V, \langle, \rangle) be an inner product space of dimension n. There is a Hermitian matrix $A_{n\times n}$ such that $\langle x,y \rangle = x^T A y$ (or $\langle x,y \rangle = x^* A y$ when the ground field is \mathbb{C}) for any $x, y \in V$.

Proof. Choose a basis $\{e_1, e_2, ..., e_n\}$. Let $A = (\langle e_i, e_j \rangle)_{1 \le i,j \le n}$. For any $x = \sum x_i e_i, y = \sum y_i e_i$, we have $\langle x, y \rangle = \sum x_i y_i \langle e_i, e_j \rangle = x^T A y$ (or $\langle x, y \rangle = \sum x_i e_j$.) $x_i e_i, y = \sum y_i e_i$, we have $\langle x, y \rangle = \sum x_i y_j \langle e_i, e_j \rangle = x^T A y$ (or $\langle x, y \rangle =$ $\sum \bar{x}_i y_j \langle e_i, e_j \rangle = x^* Ay$. By the definition of inner products, we have $\langle e_i, e_j \rangle =$ $\langle e_j, e_i \rangle$.

In the above lemma, we actually assume that x is the same as its coordinate vector with respect to the basis. We call the matrix A the representation matrix of the inner product with respect to the basis $\{e_1, e_2, ..., e_n\}$.

Lemma 13 Let $(V = \mathbb{F}^n, \langle, \rangle)$ be an inner product space for $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , with a representation matrix A (with respect to the standard basis). A set $\{v_1, v_2, ..., v_n\}$ is an orthonormal basis if and only $[v_1, v_2, ..., v_n]^* A [v_1, v_2, ..., v_n] = A.$

When the inner product on \mathbb{C}^n is the standard one (i.e. $A = I_n$), we have that a set $\{v_1, v_2, ..., v_n\}$ is an orthonormal basis if and only if $[v_1, v_2, ..., v_n]^* [v_1, v_2, ..., v_n] =$ I_n . We call a square complex matrix B unitary if $B^*B = I_n$. Note that a real unitary matrix is orthogonal.

Theorem 14 Let (V, \langle, \rangle) be a complex inner product space of dimension n. For any complex $n \times n$ matrix A, there is an orthogonal basis $\{v_1, v_2, ..., v_n\}$ of V such that the representation matrix of A is upper triangular.

Proof. By the Jordan canonical theorem, there is an invertible matrix P and an upper triangular matrix U such that $A = PUP^{-1}$. Apply the Gram-Schmidt orthogonalization to get a QR -decomposition $P = QR$. Then $A = QRUR^{-1}Q^{-1}$. Note that RUR^{-1} is upper triangular and the columns of Q are orthogonal.

Corollary 15 *(Schur's theorem)* For any matrix $A_{n \times n}$, there is a unitary matrix P such that $PAP^{-1} = PAP^*$ is upper triangular. In other words, any square complex matrix is conjugate to an upper triangular matrix by a unitary matrix.

Proof. Consider the standard inner product $\langle x, y \rangle = x^*y$ on \mathbb{C}^n and apply the previous theorem.

Lemma 16 (Riesz representation theorem) Let (V, \langle, \rangle) be an inner product space over the field $F = \mathbb{R}$ or \mathbb{C} . Suppose that $f : V \to F$ is a linear map (usually called linear functional). There exists a unique $y \in V$ such that $f(x) = \langle x, y \rangle$ for any $x \in V$.

Proof. Existence. If $f = 0$, we just choose $y = 0$. Otherwise, the complement $(\ker f)^{\perp}$ is of dimension one. Choose v to be a unit vector of $(\ker f)^{\perp}$ and let $y = f(v)v$. For any $x \in V$, we have $x = x_1 + a_1v$ for some $x_1 \in \text{ker } f$ and $a_1 \in F$. Therefore, $f(x) = a_1 f(v) = \langle x, f(v)v \rangle.$

Uniqueness. If there are two vectors y_1, y_2 both satisfying $\langle x, y_1 \rangle = \langle x, y_2 \rangle$ for any $x \in V$. Then $\langle x, y_1 - y_2 \rangle = 0$, imply $y_1 = y_2$ by choosing $x = y_1 - y_2$.

Corollary 17 Let $f: V \to W$ be a linear map between two inner product spaces (V, \langle, \rangle_V) , (W, \langle, \rangle_W) . There exits a unique linear map $f^*: W \to V$ such that

$$
\langle f(x), y \rangle_W = \langle x, f^*(y) \rangle_V
$$

for any $x \in V, y \in W$. The function f^* is called the adjoint of f.

Proof. Existence. Fix any $y \in W$, the function $\langle f(-), y \rangle_W : V \to F$ is a linear functional. The Riesz representation theorem implies that there is a unique element $z \in V$ satisfying $\langle f(-), y \rangle_W = \langle x, z \rangle_V$. Define $f^*(y) = z$.

Uniqueness. If there is another g^* satisfying $\langle f(x), y \rangle_W = \langle x, f^*(y) \rangle_V =$ $\langle x, g^*(y) \rangle_V$ for any x, y , we must have $\langle x, f^*(y) - g^*(y) \rangle_V = 0$ which implies that $f^*(y) = g^*(y)$.

Example 18 Consider the dot product on \mathbb{R}^n and the standard inner product on \mathbb{C}^n . We have the adjoint of a real matrix A is its transpose A^T and the adjoint of a complex matrix A is its conjugate transpose. (hint: in this case, $\langle Ax, y \rangle = x^* A^* y = \langle x, A^* y \rangle.$

The following is general version of Lemma 10.

Lemma 19 Let $f: V \to W$ be a linear map between two inner product spaces. We have the following:

1) $(f^*)^* = f$. 2) $(\ker f)^{\perp} = \text{Im } f^*$.

3 Inner product spaces and isometries

Definition 20 A linear map $f : V \rightarrow W$ between inner product spaces is distance-preserving (or isometric) if $||f(x)||= ||x||$ for any $x \in V$.

Lemma 21 A linear map $f: V \to W$ is distance-preserving if and only if $\langle f(x), f(y) \rangle = \langle x, y \rangle$ for any $x, y \in V$.

Lemma 22 Let V be a vector space together with an inner product defined by $\langle x, y \rangle = x^*Py$ for a matrix P. A linear map $f: V \to V$ is isometric if and only if $A^*PA = P$, where A is the standard representation matrix of f.

Proof. Note that $\langle f(x), f(y) \rangle = \langle x, y \rangle$ if and only $(Ax)^* P A y = x^* A^* P A y =$ x^*Py . Choose $x, y \in \{e_1, e_2, ..., e_n\}$, the standard basis.

Corollary 23 A complex matrix $A_{n \times n}$ preserves the standard distance on \mathbb{C}^n if and only if $A^*A = I_n$, i.e. A is unitary.

4 Inner products and norms

Definition 24 A normed vector space is a vector space V (over \mathbb{R} or \mathbb{C}) toqether with a function (called a norm): $\| \|: V \to \mathbb{R}$ sastisfying

1) Homogeneity: $\|\alpha v\| = |\alpha| \|v\|$ for any for all vectors v and all scalars α ;

2) Triangle inequality: $\|x + y\| \le \|x\| + \|y\|$ for any $x, y \in V$;

3) positivity: $||x|| \ge 0$ for any vector x, and $||x|| = 0$ if and only if $x = 0$.

It is obvious that an inner product \langle , \rangle gives a norm $||x|| = \sqrt{\langle x, x \rangle}$. But not every norm is from an inner product.

Example 25 Let $V = \mathbb{R}^n$ or \mathbb{C}^n . For any $x \in V$, define $||x||_p = (|x_1|^p + |x_2|^p +$ $\cdots + |x_n|^p)^{1/p}$ for $1 \le p < \infty$ and $||x||_{\infty} = \max\{|x_i| : i = 1, 2, ..., n\}.$

Example 26 Let $V = C[0, 1]$ be the vector space of continuous functions on the closed interval [0, 1]. Define $||f||_p = (\int_0^1 |f|^p dx)^{1/p}$ for $1 \le p < \infty$.

Theorem 27 A norm in a normed space is obtained from some inner product if and only if it satisfies the Parallelogram Identity

$$
||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)
$$

for any $x, y \in V$.

Proof. When the norm comes from an inner product, $||x + y||^2 + ||x - y||^2 =$ $\langle x+y,x+y\rangle + \langle x-y,x-y\rangle = 2(||x||^2 + ||y||^2).$

Conversely, for real vector spaces we define $\langle x, y \rangle = \frac{1}{4}(\Vert x + y \Vert^2 - \Vert x - y \Vert^2)$ (called Polarization identities). We check the conditions of an inner product. It is obvious that $\langle x, y \rangle = \langle y, x \rangle$, and $\langle x, x \rangle \geq 0, \langle x, x \rangle = 0$ if and only if $x = 0$. It is enough to prove that $\langle x, y \rangle$ is bilinear. By the parallelogram law we have

$$
2||x+z||2 + 2||y||2 = ||x + y + z||2 + ||x - y + z||2.
$$

Therefore,

$$
||x + y + z||^{2} = 2||x + z||^{2} + 2||y||^{2} - ||x - y + z||^{2}
$$

\n
$$
= 2||y + z||^{2} + 2||x||^{2} - ||y - x + z||^{2}
$$

\n
$$
||x + y + z||^{2} = ||x||^{2} + ||y||^{2} + ||x + z||^{2} + ||y + z||^{2} - \frac{1}{2}||x - y + z||^{2} - \frac{1}{2}||y - x + z||^{2}
$$

\n
$$
||x + y - z||^{2} = ||x||^{2} + ||y||^{2} + ||x - z||^{2} + ||y - z||^{2} - \frac{1}{2}||x - y - z||^{2} - \frac{1}{2}||y - x - z||^{2}
$$

:

:

$$
\langle x+y,z\rangle = \frac{1}{4} (||x+y+z||^2 - ||x+y-z||^2)
$$

= $\frac{1}{4} (||x+z||^2 - ||x-z||^2) + \frac{1}{4} (||y+z||^2 - ||y-z||^2)$
= $\langle x,z\rangle + \langle y,z\rangle$

Inductively, we have $\langle nx, z \rangle = n \langle x, z \rangle$ for each integer n. Similarly, we have $\langle x,z\rangle = \langle n\frac{1}{n}x,z\rangle = n\langle \frac{1}{n}x,z\rangle$ and $\langle \frac{1}{n}x,z\rangle = \frac{1}{n}\langle x,z\rangle$ for each nonzero n. This actually means for any rational number $q = \frac{m}{n}$ we have $\langle qx, z \rangle = \langle \frac{m}{n} x, z \rangle =$ $q(x, z)$. Note that $t \to \frac{1}{t} \langle tx, z \rangle \in \mathbb{R}$ is continuous on $\mathbb{R} \setminus \{0\}$. Since every real number is a limit of a rational sequence, we have that $\langle rx, z \rangle = r\langle x, z \rangle$ for every rational number r:

For complex vector spaces, define

$$
\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 + \mathbf{i}\|\mathbf{i}x + y\|^2 - \| - x + y\|^2 - \mathbf{i}\| - \mathbf{i}x + y\|^2)
$$

=
$$
\frac{1}{4} \sum_{k=0}^{3} \mathbf{i}^k \|\mathbf{i}^k x + y\|^2.
$$

It's obvious that $\langle x, y \rangle = \overline{\langle y, x \rangle}$. A similar argument proves the bilinear property of the real and imaginary parts.

Corollary 28 For $p \neq 1$, the norm $\| - \|_p$ does not come from an inner product since the Parallelogram identity does not hold. Let e_1, e_2 be elements of the standard basis. We have

$$
2(\|e_1\|_p^2 + \|e_2\|_p^2) = 2 \neq \|e_1 + e_2\|_p^2 + \|e_1 - e_2\|_p^2 = 2^{2/p} + 2^{2/p}.
$$

Lecture 3: Symmetric matrices and quadratic forms

Shengkui Ye

March 20, 2023

1 Symmetric matrices

A square matrix A is symmetric if $A = A^T$. For example, $A =$ $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$.

Lemma 1.1 If A is symmetric, then any two eigenvectors corresponding to distinct eigenvalues are orthogonal. In other words, if $Ax_1 = \lambda_1 x_1$ and $Ax_2 =$ $\lambda_2 x_2$ with $\lambda_1 \neq \lambda_2$ then $x_1 \circ x_2 = 0$.

Proof. Note that $x_2^T \lambda_1 x_1 = x_2^T (Ax_1) = x_2^T A^T x_1 = (Ax_2)^T x_1 = \lambda_2 x_2^T x_1$, which implies $x_2^T x_1 = 0$ since $\lambda_1 \neq \lambda_2$.

An $n \times n$ matrix A is said to be orthogonal diagonalizable if there is an orthogonal matrix P (i.e. $P^{-1} = P^{T}$) such that $P^{-1}AP$ is diagonal.

Lemma 1.2 An $n \times n$ symmetric (real) matrix A has n real eigenvalues, counting multiplicities. For each eigenvalue λ , there is a real eigenvector x corresponding to it.

Proof. Suppose that $Ax = \lambda x$ for a complex value λ and a complex vector x. Let x^* be the complex conjugate transpose. Then $x^*Ax = x^*\lambda x = \lambda ||x||^2$, but $x^*Ax = (Ax)^*x = (\lambda x)^*x = \lambda^*x^*x$. This implies $\lambda = \lambda^*$ and thus λ is real. The Fundamental Theorem of Algebra proves that A has n eigenvalues and thus the symmetric matrix A has n real eigenvalues. Since $A - \lambda I$ has determinant zero, $(A - \lambda I)x = 0$ has a nonzero solution in \mathbb{R}^n .

Theorem 1.3 (Spectral theorem) An $n \times n$ matrix A is orthogonal diagonalizable if and only if A is symmetric.

Proof. If there exists orthogonal matrix P and diagonal matrix D such that $P^{-1}AP = D$, then $A = PDP^{-1} = PDP^{T}$ is symmetric.

The othe direction can be proved by induction. When $n = 1$, there is nothing to prove. Suppose the statement is true for $n-1$. Let λ be a real eigenvalue of A, with a unit real eigenvector vector x (the existence follows the previous lemma). Extend x to be a basis B of \mathbb{R}^n and apply the Gram-Schmidt process to get an orthonormal basis $B = \{x_1 = x, x_2, x_3, \dots, x_n\}$. Let $P_1 = [x_1, x_2, ..., x_n]$ and $C = P_1^{-1}AP_1$. Note that the first column of C is $[\lambda, 0, 0, \cdots, 0]^T$. Moreover C is symmetric, since P_1 is orthogonal. Therefore, the first row of C is $[\lambda, 0, 0, \cdots, 0].$ Write

$$
C=\begin{bmatrix}\lambda&0\\0&C_1\end{bmatrix}
$$

for a symmetric matrix C_1 . The induction step implies that there exists orthogonal matrix P_2 such that $P_2^{-1}C_1P_2$ is diagonal. Therefore, we take $P =$ P_1 $\begin{bmatrix} 1 & 0 \end{bmatrix}$ 0 P_2 Ĭ. such that $P^{-1}AP$ is diagonal. $\sqrt{2}$ $3 -2 4$ 3

Example 1.4 Let $A =$ 4 -2 6 2 4 2 3 \vert . Find the orthogonal diagonalization if

exits.

When A is symmetric, there is an orthogonal matrix P such that $P^{-1}AP =$ D, a diagonal matrix. Suppose that $P = [u_1, u_2, \dots, u_n]$. Then $AP = PD$ and thus $[Au_1, Au_2, \cdots, Au_n] = [d_1u_1, d_2u_2, \cdots, d_nu_n]$ where d_i is the *i*-th diagonal entry of D. Since $Au_i = d_iu_i$ for each i, we know that d_i is an eigenvalue and u_i is the corresponding eigenvector. Moreover, $A = PDP^{-1} = PDP^{T} =$ $[d_1u_1, d_2u_2, \cdots, d_nu_n][u_1, u_2, \cdots, u_n]^T = d_1u_1u_1^T + d_2u_2u_2^T + \cdots + d_nu_nu_n^T$. This sum is called the spectral decomposition of A.

2 Applications: Quadratic forms

Definition 2.1 A quadratic form Q is function defined on \mathbb{R}^n such that $Q(x) =$ $x^T A x$ for a symmetric matrix A. In other words, $Q(x)$ is a degree-two homogenous polynomial.

Example 2.2 $Q(x) = 3x_1^2 + 4x_2^2 = [x_1, x_2]$ 3 4 $\lceil x_1 \rceil$ $\overline{x_2}$ 1 is a quadratic form.

Example 2.3 Write $Q(x) = x_1x_2 + x_2^2$ as the form $x^T Ax$ for some symmetric matrix A:

Example 2.4 Let $Q(x) = x^T A x$ be a quadratic form. For an invertible matrix P, let $y = P^{-1}x$. Then $x = Py$ and $Q(x) = y^T P^T A P y$ is another quadratic form of y, which is called a change of variable.

For a general degree-two homogenous polynomial $Q(x) = \sum_{i,j=1}^{n} a_{ij} x_i x_j$, is there a canonical form after change of variables? If there is such one, how to reduce $Q(x)$ to the canonical form?

Lemma 2.5 Any quadratic form $Q(x) = x^T A x$ could be transformed to the diagonal form. In other words, there exists an orthogonal matrix P such that $x = Py$ and

$$
Q(x) = y^T (P^T A P) y = a_1 y_1^2 + a_2 y_2^2 + \dots + a_n y_n^2
$$

for some real numbers a_1, a_2, \cdots, a_n .

Proof. It is enough to note that $P^{T}AP$ could be diagonal for some orthogonal matrix P .

Example 2.6 Let $Q(x) = x_1^2 - 8x_1x_2 - 5x_2^2$. Reduce $Q(x)$ to be the canonical form by change of variables.

Definition 2.7 A quadratic form $Q(x) = x^T A x$ (or the coefficient matrix A) is

- a) positive definite if $Q(x) > 0$ for any $x \neq 0$;
- b) negative definite if $Q(x) < 0$ for any $x \neq 0$;
- c) indefinite if $Q(x)$ assumes both positive and negative values.
- d) positive semi-definite if $Q(x) \geq 0$ for any x.

Example 2.8 Suppose that $Q(x) = x^T A x$ for a symmetric matrix A. If all eigenvalues of A are positive, then Q is positive definite. Similarly, if all the eigenvalues are negative, then Q is negative definite.

Corollary 2.9 A symmetric matrix A is positive semi-definite (resp. definite) if and only if $A = R^T R$ for a (resp. invertible) matrix R.

Proof. For any x, we have $x^T A x = x^T R^T R x = \langle Rx, Rx \rangle \geq 0$. When R is invertible, $\langle Rx, Rx \rangle = 0$ if and only $x = 0$.

Lemma 2.10 Let $A_{n \times n}$ be a positive definite matrix. Define $\langle x, y \rangle := x^T A y$. Then $\langle x, y \rangle$ is an inner product on \mathbb{R}^n .

Proof. It's easy to check that $\langle x, y \rangle$ is symmetric (as A is symmetric) and bilinear. When A is positive definite, $\langle x, x \rangle \geq 0$ and $\langle x, x \rangle = 0$ if and only $x=0.$

3 Applications: Quadratic curves

In high school, we already studied three kinds of curves: ellipse, hyperbola, parabola. These curves are deÖned by two-variable degree-two polynomials. It turns out that these are the only three cases (in a genuine sense).

Definition 3.1 A quadratic curves is a plane curve in \mathbb{R}^2 defined by a degreetwo two-variable polynomial

$$
ax^2 + bxy + cy^2 + dx + ey + f = 0,
$$
\n(1)

where $a, b, c, d, e, f \in \mathbb{R}$.

Theorem 3.2 Any quadratic curve is one of the following:

1) ellipse; 2) hyperbola; 3) parabola; 4) intersecting lines; 5) parallel lines, or 6) a single point.

Proof. Write

$$
ax^{2} + bxy + cy^{2} + dx + ey + f
$$

= $(x, y) \begin{bmatrix} a & b/2 \\ b/2 & c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} d \\ e \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + f.$

Since $\begin{bmatrix} a & b/2 \\ b & c \end{bmatrix}$ $b/2$ c 1 is symmetric, there is an orthogonal matrix P such that

$$
\begin{bmatrix} a & b/2 \\ b/2 & c \end{bmatrix} = P^T \begin{bmatrix} d_1 & 0 \\ 0 & d_2 \end{bmatrix} P
$$

for some real numbers d_1, d_2 . Change the variables by letting $\begin{bmatrix} x' \\ y' \end{bmatrix}$ y^{\prime} ¹ $=$ \overline{P} $\lceil x \rceil$ \hat{y} l. : The equation (1) becames

$$
d_1x'^2 + d_2x'^2 + d'x' + e'y' + f' = 0.
$$
 (2)

Since the polynomial is still of degree 2, we may assume that $d_1 \neq 0$. If $d_2 \neq 0$, the previous equation (2) can be written as

$$
d_1(x' + a_1)^2 + d_2(y' + a_2)^2 + f'' = 0
$$

for some real coefficients. Change the variables again by letting $x' + a_1 =$ $x'', y' + a_2 = y''.$ We have

$$
d_1 x''^2 + d_2 y''^2 = g \tag{3}
$$

for some real numbers d_1, d_2, g . After exchanging x'', y'' and the sign of d_1 , we can assume that $d_1 > 0$.

- Case 1) $d_2 > 0$. If $g > 0$, the equation (3) gives an ellipse. If $g = 0$, the equation (3) gives a point. If $g < 0$, the equation (**) does not have real solutions (or imaginary ellipse).
- Case 2) $d_2 < 0$. If $g \neq 0$, the equation (3) gives a hyperbola. If $g = 0$, the equation (3) gives intersecting of two lines.

Case 3) $d_2 = 0$. The equation (2) can be written as

$$
d_1(x'+a_1)^2 + e'y' + f'' = 0.
$$
 (4)

If $e' \neq 0$, we have $d_1x''^2 + e'y'' = 0$, for some $x'' = x' + a'$, $y'' = x'' + b''$, which gives a parabola. Suppose that $e' = 0$. If $f'' < 0$, the equation (4) gives a pair of parrell lines. If $f'' > 0$, the equation (4) has no real solutions (or a imaginary circle). If $f'' = 0$, the equation (4) actually is a single point.

 \blacksquare

Remark 3.3 Ellipse, hyperbola and parabola are called non-degenerate quadratic curves, while the intersecting curves, parallel lines, and a single point are called degenerated quadratic curves.

Example 3.4 Determine the type of the quadratic curve $x^2 + xy + y^2 + x + 1 = 0$.

4 Applications: extreme values and singular values

Theorem 4.1 Let A be a symmetric matrix with an orthogonal diagonalization $A = PDP^{-1}$, with the diagonal entries of D arranged as $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$, and P is an orthogonal matrix. Then

$$
\lambda_1 = \max_{\|x\|=1} x^T A x, \lambda_n = \min_{\|x\|=1} x^T A x,
$$

with the extreme values are achived when x are the corresponding eigenvectors.

Proof. Let $y = (y_1, \dots, y_n)^T = P^T x$. When $||x|| = 1$, we have $||y|| = 1$. Note that

$$
x^T A x = x^T P D P^{-1} x^T = (P^T x)^T D P^T x = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2
$$

$$
\leq \lambda_1 (y_1^2 + y_2^2 + \dots + y_n^2) = \lambda_1.
$$

The maximum is achived when $y = (1, 0, \dots, 0)^T$ and $x = Py$, an eigenvalue corresponding to λ_1 . Similarly, $x^T A x \geq \lambda_n (y_1^2 + y_2^2 + \cdots + y_n^2)$, with the mimumn is achived when $y = (0, \dots, 0, 1)^T$ and $x = Py$, an eigenvalue corresponding to λ_n .

Definition 4.2 Let $A_{m \times n}$ be a matrix. A singular value σ_i of A is the square root of an eigenvalue λ_i of $A^T A$, i.e. $\sigma_i = \sqrt{\lambda_i (A^T A)}$.

Note that $A^T A$ is symmetric and positive semi-definite. There is an orthogonal diagonalization $A^T A = P D P^{-1}$. Let P_i be a column of P, ie. an eigenvector. Then $P_i^T A^T A P_i = \lambda_i P_i^T P_i$, which implies that $||A P_i|| = \sigma_i$. View A as a linear map $\mathbb{R}^n \to \mathbb{R}^m$, with $\{P_1, ..., P_n\}$ an orthonormal basis of \mathbb{R}^n . The singular value σ_i is the length $||AP_i||$.

Lemma 4.3 Suppose that the eigenvalues of $A^T A$ are $\lambda_1 \geq \lambda_2 \geq \cdots \lambda_k >$ $\lambda_{k+1} = \lambda_{k+2} = \cdots = 0$, with corresponding eigenvectors $v_1, v_2, ..., v_n$. Then $\{Av_1, Av_2, \cdots, Av_k\}$ is an orthogonal basis of $Col(A)$.

Proof. Note that $v_1, v_2, ..., v_n$ form an orthogonal basis of R^n . This means $Col(A)$ is spanned by $\{Av_1, Av_2, ..., Av_n\}$. But $Av_{k+1} = 0 = Av_{k+2} = ...$ Av_n . Moreover, $Av_i \circ Av_j = v_i^T A^T Av_j = 0$, $Av_i \circ Av_i = \lambda_i ||v_i||^2$ for any $i \neq j \leq k$. Therefore, $\{Av_1, Av_2, \cdots, Av_k\}$ is an orthogonal basis.

Theorem 4.4 (singular value decomposition) Let $A_{m \times n}$ be a matrix of rank r. There exist a diagonal matrix $D_{r \times r}$ (with diagonal entries the singular values of A) and orthogonal matrices $U_{m \times m}$, $V_{n \times n}$ such that

$$
A = U \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix}_{m \times n} V^T.
$$

Proof. As in the previous lemma, let λ_i and v_i be the eigenvalues and eigenvectors (with $||v_i|| = 1$) of $A^T A$. Let $u_i = \frac{Av_i}{||Av_i||}$, $i \leq r$. Extend $\{u_1, u_2, ..., u_r\}$ to be an orthonormal basis $\{u_1, u_2, ..., u_r, u_{r+1}, ..., u_m\}$ of \mathbb{R}^m . Take $U = [u_1, u_2, ..., u_m]$ and $V = [v_1, v_2, \dots, v_n]$. It can be directly checked that

$$
A[v_1, v_2, \cdots, v_n] = [Av_1, Av_2, \cdots, Av_n]
$$

= $[\sigma_1 u_1, \sigma_2 u_2, \cdots, \sigma_r u_r, 0, \cdots, 0]$
= $U \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix}.$

The result is proved by noting that $V^{-1} = V^T$.

Example 4.5 Find the singular value decomposition (SVD) of $A =$ $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

Example 4.6 Let $A =$ $\begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix}$, viewed as a linear map $\mathbb{R}^3 \to \mathbb{R}^2$. Find a unit vector $v \in \mathbb{R}^3$ such that $||Av||$ is the maximum.

Lecture 4: Symmetric matrices and quadratic forms

Shengkui Ye

April 17, 2023

1 Self-adjoint operators

Recall that a self-adjoint operator is a linear map $f: V \to V$ on an inner product space satisfying $f = f^*$, i.e. $\langle f(x), y \rangle = \langle x, f(y) \rangle$ for any $x, y \in V$. This is a generalization of a symmetric matrix. Many properties on symmetric matrices are still true for self-adjoint operators.

Lemma 1.1 Let $f = f^*$ be a self-adjoint operator in an inner product space V. We have the following:

1) all eigenvalues of f are real;

2) eigenvectors from distinct eigenvalues are orthogonal;

Proof. Suppose that the inner product is represented by A and B is the standard matrix of f. We have $B^*A = AB$. Suppose that $Bx = \lambda x$ for a complex value λ and a complex vector x. Then $x^*ABx = x^*A\lambda x = \lambda ||x||^2$, but $x^*ABx = (Bx)^*Ax = (\lambda x)^*Ax = \lambda^*x^*Ax$. This implies $\lambda = \lambda^*$ and thus λ is real.

Suppose that $Bx_1 = \lambda_1x_1, Bx_2 = \lambda_2x_2$ for $\lambda_1 \neq \lambda_2$ and eigenvectors x_1, x_2 . We have $\langle x_2, Bx_1 \rangle = \langle x_2, \lambda_1 x_1 \rangle = \langle Bx_2, x_1 \rangle = \lambda_2 \langle x_2, x_1 \rangle$, which implies $x_2^T x_1 =$ 0 since $\lambda_1 \neq \lambda_2$.

Theorem 1.2 (spectral theorem) Let $f = f^*$ be a self-adjoint operator on a finite-dimensional inner product space V over a field $F = \mathbb{R}$ or \mathbb{C} . There exists an orthonormal basis on which the representation matrix of f is a real diagonal matrix. In particular, for any Hermitian (or self-adjoint) matrix A; there exist a unitary matrix U and a real diagonal matrix D such that $A = UDU^*$.

Proof. Consider the characteristic polynomial of f . Over the complex numbers $\mathbb C$, there is an eigenvalue λ , which is actually real since f is self-adjoint. Choose a unit eigenvector v_1 , i.e. $f(v_1) = \lambda_1 v_1$. The orthogonal complement $(Fv_1)^{\perp}$ is invariant under the transformation by $f(\forall x \in (Fv_1)^{\perp})$, we have $\langle v_1, fx \rangle =$ $\langle f^*v_1, x \rangle = \langle fv_1, x \rangle = \lambda_1 \langle v_1, x \rangle = 0$. We repeat the argument to choose another eigenvector $v_2 \in (F v_1)^{\perp}$. After finitely many steps, we get an orthogonal basis $\{v_1, ..., v_n\}$ on which the representation matrix of f is real diagonal.

The complex case can be proved as following. Schur's theorem implies that there is an orthogonal basis on which the representation matrix of f is an upper triangular matrix, i.e. $f = URU^{-1}$ for an upper triangular matrix (here we denote f as its standard representation matrix). Suppose that the inner product is represented by a matrix A: Note that a self-adjoint upper triangular matrix must be diagonal with real entries. Actually, we have $(fx)^*Ay = x^*Afy$ and $f^*A = Af, (U^{-1})^*R^*U^*A = AURU^{-1}, R^*U^*AU = U^*AUR$, (noting that $U^*AU = I_n$, implying $R^* = R$ and R must be diagonal.

Recall that a square real matrix A is orthogonal diagonalizable if and only if A is symmetric. Can we have a similar result for unitary matrices? We already know that a self-adjoint matrix is diagonalizable by a unitary matrix. It turns out that the converse is not true.

Definition 1.3 A linear map (or matrix) $N: V \rightarrow V$ on an inner product space V is normal, if $NN^* = N^*N$.

Example 1.4 A self-adjoint matrix is normal. An orthgonal (or unitary) matrix is normal. A unitary diagonalizable matrix is normal. Unitary conjugates of a normal matrix is normal.

Lemma 1.5 A linear map (or matrix) $N: V \to V$ is normal if and only if

$$
\parallel Nx\parallel=\parallel N^*x\parallel, \text{ for any } x\in V.
$$

Proof. If N is normal, we have $||Nx||^2 = \langle Nx, Nx \rangle = \langle x, N^*Nx \rangle = \langle x, NN^*x \rangle =$ $\langle N^*x, N^*x \rangle = ||N^*x||^2$ for any x.

Conversely, the Polarization Identities imply for any $x, y \in V$ that

$$
\langle N^*Nx, y \rangle = \langle Nx, Ny \rangle = \frac{1}{4} \sum_{k=0}^3 \mathbf{i}^k \parallel Nx + \mathbf{i}^kNy \parallel
$$

$$
= \frac{1}{4} \sum_{k=0}^3 \mathbf{i}^k \parallel N(x + \mathbf{i}^k y) \parallel
$$

$$
= \frac{1}{4} \sum_{k=0}^3 \mathbf{i}^k \parallel N^*(x + \mathbf{i}^k y) \parallel
$$

$$
= \langle N^*x, N^*y \rangle = \langle NN^*x, y \rangle
$$

and thus $N^*N = NN^*$.

Theorem 1.6 Any normal linear map in a complex vector space has an orthonormal basis consisting of eigenvectors. In particular, a complex matrix is unitary diagonalizable if and only if it is normal.

Proof. Schur's theorem implies that there is an orthogonal basis on which the representation matrix of f is an upper triangular matrix A . It is enough to prove that an upper triangular normal matrix must be diagonal. Suppose that

$$
A = \begin{bmatrix} a_{11} & * \\ 0 & A' \end{bmatrix}.
$$

Since $AA^* = A^*A$, the (1,1)-th entries are $\bar{a}_{11}a_{11} = a_{11}\bar{a}_{11} + a_{12}\bar{a}_{12} + \cdots$ $a_{1n}\bar{a}_{1n}$. This gives that $a_{12} = a_{13} = ... = a_{1n} = 0$. Repeat this argument to prove that A is diagonal.

We already know that a unitary diagonalizable matrix is normal. The converse is proved by choosing the standard inner product on \mathbb{C}^n .

2 Polar and singular decomposition

Definition 2.1 A self-adjoint linear map $f: V \to V$ on an inner product space V is called positive definite if

$$
\langle fx, x \rangle > 0, \forall x \neq 0.
$$

Similarly, f is called positive semi-definite if

 $\langle fx, x \rangle \geq 0, \forall x \in V.$

Example 2.2 For any complex matrix $B_{m \times n}$, the product B^*B is positive semidefinite, since $\langle B^*Bx, x \rangle = \langle Bx, Bx \rangle \ge 0$ for any $x \in \mathbb{C}^n$.

Theorem 2.3 For a self-adjoint linear map f, we have the following.

1) f is positive definite if and only if the eigenvalues of f are positive.

2) f is positive semi-definite if and only if the eigenvalues of f are nonnegative.

Proof. By Lemma 1.2, there is an orthonormal basis on which the representation matrix of f is diagonal. A diagonal matrix is positive definite if and only if the diagonal entries are positive. \blacksquare

Remark 2.4 It is interesting to note that the positive definiteness of a selfadjoint linear map f depends only on its eigenvalues, independent of the basis and the inner product.

Corollary 2.5 Let A be a positive semidefinite operator. There exists a unique positive semi-definite operator B such that $A = B^2$. We denote $B = A^{\frac{1}{2}} = \sqrt{A}$.

Proof. Existence. There is a basis S on which A is diagonal with positive diagonal entries $\lambda_1 \geq \lambda_2 \geq \ldots \lambda_n \geq 0$. Define B as the the linear map whose representation matrix on the basis is $\sqrt{\lambda_1} \geq \sqrt{\lambda_2} \geq ... \sqrt{\lambda_n} \geq 0$.

Uniqueness. Suppose that $A = C^2$ for a self-adjoint positive semi-definite matrix C. Choose an orthogonal basis S' on which C is diagonal with diagonal entries $\mu_1 \geq \mu_2 \geq \ldots \mu_n \geq 0$. Then A has eigenvalues $\mu_1^2 \geq \mu_2^2 \geq \ldots \mu_n^2 \geq 0$. Moreover, $Ax = \lambda x$ if and only if $Cx = \sqrt{\lambda x}$. Therefore, $Bx = \sqrt{\lambda x}$ for any eigenvector x of A. This implies $B = C$.

Lemma 2.6 For any linear map $A: V \to V$ on an inner product space V. We have

$$
\|\sqrt{A^*A}x\| = \|Ax\|, \forall x \in V.
$$

Proof. $\|\sqrt{A^*A}x\|^2 = \langle \sqrt{A^*A}x, \sqrt{A^*A}x \rangle = \langle x, A^*Ax \rangle = \langle Ax, Ax \rangle = \|Ax\|^2.$

Theorem 2.7 (Polar decomposition) For any linear map $A: V \to V$ on an inner product space V: There is an unitary operator U such that

$$
A = U\sqrt{A^*A}.
$$

Proof. By the previous lemma, we have ker $A = \ker \sqrt{A^*A} = \text{Im}(\sqrt{A^*A})^{*\perp} =$ $\text{Im}(\sqrt{A^*A})^{\perp}$ since $\sqrt{A^*A}$ is self-adjoint. We will define U explicitly by specifying its image on $\text{Im}(\sqrt{A^*A}) \bigoplus \text{ker } A = V$. For any $x \in \text{Im}(\sqrt{A^*A})$, choose $y \in V$ such that $\sqrt{A^*Ay} = x$. Define U_1 : $\lim_{x \to \infty} (\sqrt{A^*A}) \to \lim_{x \to \infty} A$ by $Ux = Ay$. If another y' has $\sqrt{A^*A}y' = x$, we have $\sqrt{A^*A}(y - y') = 0$ and $y - y' \in \text{ker } A$. This checks that U is well-defined on $\text{Im}(\sqrt{A^*A})$. Note that $\text{Im} A = (\text{ker } A^*)^{\perp}$. Since the subspace ker A is isomorphic to ker A^* (by the rank theorem), we can choose an isometry U_2 : ker $A \to \ker A^* = (\operatorname{Im} A)^{\perp}$. It can be directly checked that $U = U_1 \oplus U_2$ is unitary and $A = U\sqrt{A^*A}$.

The following is a general singular value decomposition.

Theorem 2.8 For any linear map $A: V_1 \rightarrow V_2$ between inner product spaces V_1, V_2 . There exists orthonormal base $\{v_1, v_2, ..., v_m\}$ for V_1 and $\{w_1, w_2, ..., w_n\}$ for V_2 , such that the representation matrix A is diagonal with diagonal entries the singular values of A. In other words,

$$
A = [w_1, ..., w_n]D[v_1, v_2, ..., w_m].
$$

3 Matrix norms

Let $A_{n \times m} : \mathbb{C}^m \to \mathbb{C}^n$ be a complex matrix.

Definition 3.1 The real number $\sup\{\|Ax\| : \|x\| \leq 1\}$ is called the operator norm of A and denoted as $||A||$.

Theorem 3.2 Let $M_{n\times m}(\mathbb{C})$ be the vector space of all $n \times m$ matrices. We have the following.

Lemma 3.3 1) $(M_{n\times m}(\mathbb{C}), || - ||)$ is a normed space;

2) $||Ax|| \le ||A|| ||x||$ for any $x \in \mathbb{C}^m$;

3) $||AB|| \le ||A|| ||B||$ if AB can be defined;

3) $||A|| = s_1 \le ||A||_2 = trace(A^*A) = \sum s_i^2$, where s_i 's are the singular values.

Proof. 1) The conditions for a normed space can be checked directly. 2) It's obvious that $||A0|| = 0$. For nonzero x, we have $||Ax|| = ||A \frac{x}{||x||} ||x|| || =$ $||A\frac{x}{||x||}|| ||x|| \le ||A|| ||x||.$ 3) Note that $\sup\{||Ax|| : ||x|| \le 1\} = ||Ax_0||$ for some $x_0 \in \{x : ||x|| \leq 1\}$ (a continuous function can achieve its supremum on a compact set). Suppose that $||AB|| = ||ABx_0||$. By 2), we have $||ABx_0|| \le$ $||A|| ||Bx_0|| \le ||A|| ||B||$. 4) follows the theorem of singular value decomposition.

4 Canonical forms of orthogonal matrices

Theorem 4.1 Let A be an $n \times n$ orthogonal matrix.

1) If det $A = 1$, then A is orthogonal conjugate to

$$
\begin{bmatrix} R_{\phi_1} & & & \\ & \ddots & & \\ & & R_{\phi_k} & \\ & & & I_{n-2k} \end{bmatrix}
$$

where $R_{\phi_i} =$ $\begin{bmatrix} \cos \phi_i & -\sin \phi_i \end{bmatrix}$ $\sin \phi_i - \cos \phi_i$ Ĭ. is the rotation matrix of angle ϕ_i . 2) If det $A = -1$, then A is orthgonal conjugate to

Proof. View A as a complex matrix. If $Ax = \lambda x$ for a unit vector x, we have $||Ax|| = ||\lambda x||$ implying $|\lambda| = 1$. Note that $A\overline{x} = \overline{\lambda}\overline{x}$. If $\lambda \neq \pm 1$, write $\lambda = \cos \phi + i \sin \phi$ and $x = x_1 + ix_2$ for real vectors x_1, x_2 . It can directly check that

$$
A[x_1, x_2] = [x_1, x_2] \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}.
$$

Note that $\lambda \neq \overline{\lambda}$, which implies $x \perp \overline{x}$ and thus $x_1^T x_1 = x_2^T x_2, x_1 \perp x_2$. Moreover, the complement $Span_{\mathbb{R}}\{x_1, x_2\}^{\perp}$ is invariant under A. If $\lambda = \pm 1$, we can choose a real eigenvector x and consider the complement $Span_{\mathbb{R}}\{x_1, x_2\}^{\perp}$. Note that the number of -1 must be even when det $A = 1$, while the number is odd when det $A = -1$. An inductive argument finishes the proof after reordering the elements in the basis. $\quad \blacksquare$

Lecture 5 : Symmetric matrices and quadratic forms

Shengkui Ye

May 3, 2023

1 Symmetric bilinear forms

Definition 1.1 A symmetric bilinear form on a real vector space V over a field F is a function $\langle , \rangle : V \times V \to F$ such that

- 1. $\langle u, v \rangle = \langle v, u \rangle$ for any $v, u \in V$;
- 2. $\langle v, a_1u_1 + a_2u_2 \rangle = a_1 \langle v, u_1 \rangle + a_2 \langle v, u_2 \rangle$ for any $u_1, u_2, v \in V$ and any $a_1, a_2 \in F;$

Example 1.2 Let $V = \mathbb{R}^3$. The function

$$
\langle x, y \rangle = x_1 y_1 + x_2 y_2 - x_3 y_3
$$

is a symmetric bilinear form.

Lemma 1.3 A symmetric bilinear form $\langle , \rangle : V \times V \to F$ can always be represented by $\langle x, y \rangle = x^T A y$ for some symmetric matrix A.

For a quadratic form $q(x) = x^T A x = \sum_{1 \leq i,j \leq n}$ $\frac{a_{ij}}{2}x_ix_j$, we already know that for an orthogonal matrix P the new form $q(Px) = x^T P^T A P x$ is a sum of squares. But for a change of variable $y = Sx$ (for an invertible matrix S), we may still have $q(Sx) = x^T S^T A S x$ a sum of squares. In this section, we will study some invariants of $q(x)$ which depend only on A, not on S.

Definition 1.4 Two square real matrices A, B are congruent if there is an invertible matrix S such that $B = SAS^T$. Similarly, we call two square complex matrices A, B congruent if there is an invertible matrix S such that $B = SAS^*$.

Definition 1.5 For a Hermitian matrix A (i.e. $A^* = A$), let n_+, n_-, n_0 be the number of positive, negative, zero eigenvalues, respectively. We can the triple (n_+, n_-, n_0) the signature of A.

Theorem 1.6 (Sylvester's law of inertia) Two Hermitian matrices A, B are congruent if and only if they have the same signature (i.e. they have the same number of of positive, negative, zero eigenvalues.)

Proof. Since A, B are Hermitian, there exist unitary matrices Q_1, Q_2 such that $Q_1 A Q_1^* = D_1, Q_2 B Q_2^* = D_2$ are both real diagonal matrices. After permutation of diagonal elements and changing the absolute values, we see that D_1, D_2 are congruent, which implies that A, B are congruent.

Suppose that $B = SAS^*$ for an invertible matrix S. Since A is Hermitian, there is a unitary matrix U such that $A = UDU^*$ for a real diagonal matrix D. Then $B = SUDU^*S^*$. We claim that $n_+(B) = \max\{\dim V : V < F^n \text{ is a }$ subspace on which B is positive definite). Actually, $B = V D^{\prime} V^*$ for a unitary matrix V and a real diagonal matrix D' . Let V be the subspace spanned by the eigenvectors corresponding to the positive eigenvalues of D' (and B). We see that B is positive definite o V. If W is a subspace on which B is positive definite with the maximal dim W , we know that the orthogonal complement W^{\perp} is B-invariant (for any $x \in W, y \in W^{\perp}$, we have $\langle x, By \rangle = \langle B^*x, y \rangle = 0$). Since B has positive eigenvalues on W, this shows dim $W \leq n_{+}$. Note that $n_{+}(B) = n_{+}(D) = n_{+}(A)$. Similarly, we have $n_{-}(B) = n_{-}(A), n_{0}(B) = n_{0}(A)$.

Corollary 1.7 The maximal dimension of a positive definite subspace for quadratic form $q(x) = x^T A x$ is n_+ .

2 Dual space

The following is a generalization of orthogonal complement.

Definition 2.1 Let V be a vector over a field F. Its dual space is $V^* = \{f \mid f :$ $V \rightarrow F$ is linear.

Exercise 2.2 Check that V^* is a vector space over F.

Example 2.3 Let $V = C[0, 1]$ be the vector space of continuous functions. The integration \int_0^1 is a linear functional, i.e. a linear map from V to R.

Lemma 2.4 Let V be a vector space. We have $V \cong (V^*)^*$, i.e. the dual of the dual of V is isomorphic to V .

Definition 2.5 A bilinear form $x^T A y$ is non-degenerated if A is invertible.

Lemma 2.6 Let $\langle , \rangle : V \times V \to F$ be a symmetric bilinear form. The following are equivalent.

1) \langle , \rangle is non-degenerated.

2) The map $V \to V^*$,

 $x \longmapsto \langle -, x \rangle$

is isomorphic of vector spacs. Here $\langle -, x \rangle$ is a linear function $y \mapsto \langle y, x \rangle$ for any $y \in V$.