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1 Orthogonal basis and projections

For two vectors x = (x1, x2, ..., xn)T , y = (y1, y2, ..., yn)T ∈ Rn, we already know
that the dot product x ◦ y = x1y1+ x2y2+ · · ·+ xnyn = xT y. The length of the
vector x is ‖ x ‖=

√
x21 + x

2
2 + · · ·+ x2n. The angle between nonzero vectors x, y

is ](x, y) = arccos x◦y
‖x‖‖y‖ .

Definition 1 An orthogonal basis S of Rn is a basis such that any two distinct
elements u, v ∈ S are orthogonal.

Lemma 2 Let S = {v1, v2, ..., vn} be an orthogonal basis of Rn. Any element
x ∈ Rn is a linear combination

x = a1v1 + a2v2 + · · ·+ anvn

with ai = x◦vi
‖vi‖2 for each i.

Proof. Note that x ◦ vi = aivi ◦ vi.

Lemma 3 Let H be a subspace of Rn. Any element x ∈ Rn is writen uniquely
as x = x1 + x2 with x1 ∈ H and x2 ∈ H⊥. The x1 is called the projection of x
onto H, denoted by projH(x).

Proof. For the existence, let x1 ∈ H be a vector such that ‖x − x1‖ =
infy∈H ‖x − y‖. Choose x2 = x − x1. By properties of triangles, we know that
x− x1 is orthogonal to x1. The existence can also be proved by assuming that
H has an orthogonal basis (saying {v1, ..., vk}) which can be extended to be an
orthogonal basis of Rn. Then x1 =

∑k
i=1 aivi =

∑k
i=1

x◦vi
‖vi‖2 vi by the previous

lemma.
If x = x′1+x

′
2 with x

′
1 ∈ H and x′2 ∈ H⊥, then x1−x′1 = x′2−x2 ∈ H∩H⊥ =

{0}.
If H is spanned by a nonzero vector u, then x1 = ku for some k. Then

x ◦ u = (x1 + x2) ◦ u = ku ◦ u and thus k = x◦u
u◦u .

Example 4 Let x = [7, 6]T and u = [4, 2]T . Find proju(x).
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A set {v1, v2, · · · , vk} is orthonormal if vi ◦ vi = 1 and vi ◦ vj = 0 for any
i 6= j.

Example 5 Show that {(1/
√
2, 1/
√
2)T , (1/

√
2,−1/

√
2)T } is orthonormal.

Lemma 6 Anm×n matrix U has orthonormal columns if and only if UTU = I.
An orthogonal matrix A is a square invertible matrix A such that ATA = I.

Lemma 7 Let U be an m×n matrix with orthonormal columns, and let x, y ∈
Rn. Then
a) ‖Ux‖ = ‖x‖;
b) Ux ◦ Uy = x ◦ y;
c) Ux ◦ Uy = 0 if and only x ◦ y = 0.

Lemma 8 Let f : Rn → Rn be a linear map. Suppose that f is distance-
preserving, i.e. ‖f(x) − f(y)‖ = ‖x − y‖ for any x, y ∈ Rn. Then f is angle-
preserving, i.e. ](f(x), f(y)) = ](x, y) for any x, y ∈ Rn;
Proof. Suppose that f is distance-preserving. We have ‖f(x)‖ = ‖x‖ and
‖f(x+ y)‖ = ‖x+ y‖ for any x, y ∈ Rn. But this implies that

‖f(x+ y)‖2 = ‖f(x) + f(y)‖2 = (f(x) + f(y)) ◦ (f(x) + f(y))
= f(x) ◦ f(x) + f(y) ◦ f(y) + 2f(x) ◦ f(y)
= ‖x+ y‖2

= x ◦ x+ y ◦ y + 2x ◦ y

and f(x) ◦ f(y) = x ◦ y. Note that cos](x, y) = x◦y
‖x‖‖y‖ =

f(x)◦f(y)
‖f(x)‖‖f(y)‖ =

cos](f(x), f(y)), which gives ](f(x), f(y)) = ](x, y).
Lemma 9 A linear map f : Rn → Rn is distance-preserving if and only if the
standard representation matrix Af of f is orthogonal.

Proof. Let x ∈ Rn be arbitrary vector. If A is orthogonal, we have ‖f(x)‖2 =
‖Ax‖2 = Ax ◦ Ax = (Ax)TAx = xT (ATA)x = x ◦ x = ‖x‖2. Therefore, f is
distance-preserving.
Suppose that f is distance-preserving. The proof of the previous lemma

shows that f(x) ◦ f(y) = x ◦ y for any x, y ∈ Rn. Choose x, y ∈ {e1, e2, ..., en},
the standard basis, to get that f(ei) ◦ f(ei) = eTi ATAej = ei ◦ ej , which is the
(i, j)-th entry of ATA. Therefore, ATA = In.

Example 10 Show that

[ √
2
2 −

√
2
2

−
√
2
2

√
2
2

]
is orthogonal.

Theorem 11 (Orthogonal decomposition theorem) Let W be a subspace of Rn.
Then each element x in Rn is a sum x̂+ z with x̂ ∈W and z ∈W⊥. In fact, if
{u1, u2, · · · , up} is any orthogonal basis of W, then

x̂ =
x ◦ u1
u1 ◦ u1

u1 +
x ◦ u2
u2 ◦ u2

u2 + · · ·+
x ◦ up
up ◦ up

up

and z = x− x̂.
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Proof. Let {u1, u2, · · · , up} be an orthogonal basis of W. Extend this set to be
a basis {u1, u2, · · · , un} of Rn. The proof is finished.

Corollary 12 If {u1, u2, · · · , up} is any orthonormal basis of W, then the pro-
jection of x ∈ Rn onto W is

x̂ = UUTx

where U = [u1, u2, · · · , up].

Example 13 Let u1 =

 25
−1

 , u2 =
−21
1

 and y =
12
3

 . Show that {u1, u2} is
an orthogonal basis for W = Span{u1, u2}. Write y as a sum of a vector in W
and a vector in the orthogonal complement of W.

2 The Gram-Schmidt process

Example 14 Let u1 =

36
0

 , u2 =
12
2

 and W = Span{u1, u2}. Find an or-

thogonal basis of W.

Proof. Take {u1, u2 − u2◦u1
u1◦u1u1}.

Theorem 15 (Gram-Schmidt process) Given a basis {x1, x2, · · · , xp} for a non-
zero subspace W of Rn, define

v1 = x1,

v2 = x2 −
x2 ◦ v1
v1 ◦ v1

v1, · · · ,

vp = xp −
xp ◦ v1
v1 ◦ v1

v1 −
xp ◦ v2
v2 ◦ v2

v2 − · · · −
xp ◦ vp−1
vp−1 ◦ vp−1

vp−1.

Then {v1, v2, · · · , vp} is an orthogonal basis for W. Moreover,

Span{v1, · · · , vk} = Span{x1, · · · , xk}, for each k ≤ p.

Proof. Inductively, we assume that Span{v1, · · · , vk−1} = Span{x1, · · · , xk−1}.
Since xk = vk + zk−1 for a vector zk−1 ∈ Span{v1, · · · , vk−1}, we see that xk ∈
Span{v1, · · · , vk−1, vk} and similarly vk ∈ Span{x1, · · · , xk−1, xk}.

Example 16 Let x1 =


1
1
1
1

 , x2 =

0
1
1
1

 , x3 =

0
0
1
1

. Find an orthonormal basis
of Span{x1, x2, x3}.
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Corollary 17 (QR factorization) Let A be an invertible matrix. Then A = QR
for an orthogonal matrix Q and an upper triangular matrix R.

Proof. Let A = [x1, x2, · · · , xn]. The Gram-Schmidt process produces a matrix
P = [v1, v2, · · · , vn]. Note that A = PS for a strictly upper triangular matrix
S. Let D = diag(v1 ◦ v1, v2 ◦ v2, · · · , vn ◦ vn) be the diagonal matrix, and Q =
[ v1
v1◦v1 ,

v2
v2◦v2 , · · · ,

vn
vn◦vn ]. Therefore, we have A = (PD

−1)DS = QR, with R =
DS. Note that QQT = In.

3 Least-square problem

For a matrix Am×n and b ∈ Rn, we know that Ax = b may not have a solution.
An element x0 ∈ Rn is called a least-square problem for Ax = b if

‖b−Ax0‖ ≤ ‖b−Ax‖

for any x ∈ Rn.

Theorem 18 A vector x0 is a least-square solution of Ax = b if and only if
ATAx0 = A

T b.

Proof. Denote by Ax0 the projection of b onto the column space Col(A). By the
orthogonal decomposition theorem, b − Ax0 ∈ Col(A)⊥ = NulAT . Therefore,
AT (b − Ax0) = 0 and ATAx0 = AT b. Conversely, when ATAx0 = AT b, we
have AT (b − Ax0) = 0 and b − Ax0 = NulAT = Col(A)⊥. This implies that
‖b−Ax0‖ ≤ ‖b−Ax‖ for any x ∈ Rn.

Corollary 19 Ax = b has a unique least-square solution if and only if the
columns of A are linearly independent.

Proof. By the previous theorem, it’s enough to prove that ATA is invertible if
and only if the columns of A are linearly independent. When ATA is invertible,
n = rank(ATA) ≤ rank(A). Therefore, the columns of A are linearly indepen-
dent. Conversely, when the columns of A are linearly independent, Ax = 0 has
only the trivial solution x = 0. If ATAx = 0, then 0 = xTATAx = (Ax)T (Ax),
which implies that Ax = 0 and thus x = 0. Therefore, ATA is invertible.

Example 20 Find a least-square solution for Ax = b, where

A =

4 0
0 2
1 1

 , b =
 20
11

 .

4



Lecture 2: inner product, length and angle

Shengkui Ye

February 13, 2023

1 Inner product: definitions

The following are generalizations of the dot product.

Definition 1 An inner product 〈, 〉 on a real vector space V is a function 〈, 〉 :
V × V → R such that

1. 〈u, v〉 = 〈v, u〉 for any v, u ∈ V ;

2. 〈v, a1u1 + a2u2〉 = a1〈v, u1〉 + a2〈v, u2〉 for any u1, u2, v ∈ V and any
a1, a2 ∈ R;

3. 〈u, u〉 ≥ 0 and 〈u, u〉 = 0 if and only if u = 0.

If the function 〈, 〉 satisfies only condition 1) and 2), we call 〈, 〉 a symmetric
bilinear form.

Remark 2 Sometimes, the inner product is defined on complex vector spaces
by replacing R with C and the condition 1) is 〈u, v〉 = 〈v, u〉, the complex con-
jugation.

Example 3 〈u, v〉 = u ◦ v is an inner product on V = Rn.

Example 4 A matrix An×n is called symmetric if AT = A. The function
〈x, y〉 = xTAy is a symmetric bilinear form. If A is diagonal with positive
diagonal entries, then 〈, 〉 is an inner product on Rn.

Example 5 Let V = Mm×n(R) (the vector space of all m × n real matrices).
The function 〈x, y〉 = Trace(xT y) is an inner product on V.

Example 6 Let C[a, b] be the set of all continuous functions on the closed in-
terval [a, b]. Then 〈f, g〉 =

∫ b
a
fgdx is an inner product.

We denote ‖x‖ =
√
〈x, x〉 ≥ 0 as the length of x ∈ V. For two vectors

x, y ∈ V, the distance d(x, y) = ‖x − y‖. Two vectors x, y are orthogonal if
〈x, y〉 = 0.
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Lemma 7 (Cauchy-Schwarz inequality) For any x, y ∈ V, we have 〈x, y〉 ≤
‖x‖‖y‖. Furthermore, we have ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Proof. For any real number t, we have 0 ≤ 〈tx+y, tx+y〉 = t2〈x, x〉+2t〈x, y〉+
〈y, y〉. Therefore, 4〈x, y〉2 − 4〈x, x〉〈y, y〉 ≤ 0 and thus 〈x, y〉 ≤ ‖x‖‖y‖.

Note that

‖x+ y‖2 = 〈x+ y, x+ y〉 = 〈x, x〉+ 〈y, y〉+ 2〈x, y〉
≤ 〈x, x〉+ 〈y, y〉+ 2‖x‖‖y‖ = (‖x‖+ ‖y‖)2.

When x, y ∈ Rn, the law of cosine gives that

‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2‖x‖‖y‖ cosφ,

〈x, y〉 = ‖x‖‖y‖ cosφ,

where φ is the angle between vector x and y. In general inner-product space,
if 〈x, y〉 = ‖x‖‖y‖ cosφ, we still view φ ∈ [0, π) as an angle between x and y.
In particular, when 〈x, y〉 = 0, we call x, y are orthogonal. Using these general
concepts, we can still talk about orthogonal, orthnormal basis and do Gram-
Schmidt orthogonalization process.

Lemma 8 Let {v1, v2, ..., vn} be an orthonormal basis of an inner product space
V. We have

‖
∑n

i=1
aivi‖ =

∑n

i=1
|ai|2.

Definition 9 Let V be a subspace of an inner product space (W, 〈, 〉) (i.e. W is a
real vector space together with an inner product 〈, 〉). The orthogonal complement
V ⊥ = {x ∈W | 〈x, y〉 = 0}.

Lemma 10 Let A be an m× n matrix.
1) For any x ∈ Rm, y ∈ Rn, we have x ◦Ay = ATx ◦ y.
2) Then (ColA)⊥ = NulAT , (RowA)⊥ = NulA.

Proof. Note that x ◦ Ay = xTAy = (ATx)T y = (ATx) ◦ y. 2) follows 1): for
any x ∈ NulAT we have ATx = 0 and thus x ◦ Ay = 0 for any y, which proves
that x ∈ (ColA)⊥. On the other hand, for any x ∈ (ColA)⊥ we have x ◦Ay = 0
for any y. But ATx ◦ y = 0 for any y, which implies that ATx = 0 by choosing
y in a basis.

Lemma 11 1) The orthgonal complement V ⊥ is a vector subspace of W.
2) W = V

⊕
V ⊥, the direct sum.

3) (V ⊥)⊥ = V.

Proof. 1) For any x, y ∈ V ⊥, we have 〈ax + by, v〉 = a〈x, v〉 + b〈y, z〉 = 0 for
any v ∈ V and arbitrary a, b ∈ R. This shows that ax+ by ∈ V ⊥.
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2) Choose a basis B for V and extend this set to be a basis C of W. Apply
the Gram-Schmidt orthogonalization process to get an orthogonal basis S of W.
Each element x ∈W is a linear combination

x =
∑
s∈S

ass =
∑

s∈S∩V
ass+

∑
s∈S\V

ass ∈ V + V ⊥.

It is enough to show that V ∩V ⊥ = {0}. Actually, any x ∈ V ∩V ⊥ has 〈x, x〉 = 0
implying x = 0.
3) Since any v ∈ V is orthogonal to any x ∈ V ⊥, we have V ⊂ (V ⊥)⊥. If

there is x ∈ (V ⊥)⊥\V, we have

x =
∑
s∈S

ass =
∑

s∈S∩V
ass+

∑
s∈S\V

ass,

with
∑

s∈S\V ass 6= 0, where S is an orthogonal basis as in 1). However,
〈x,
∑

s∈S\V ass〉 = 〈
∑

s∈S\V ass,
∑

s∈S\V ass〉 > 0, a contradiction to the fact
that x is orthogonal to V ⊥.

2 Inner products and matrices

For a complex matrix An×m, its conjugate transpose is the m× n matrix A∗ =
(āji), where āji = a − bi (complex onjugate) if aji = a + bi, a, b ∈ R. A square
complex matrix A is called Hermitian (or self-adjoint) if A = A∗. Note that real
Hermitian matrix is symmetric.

Lemma 12 Let (V, 〈, 〉) be an inner product space of dimension n. There is a
Hermitian matrix An×n such that 〈x, y〉 = xTAy (or 〈x, y〉 = x∗Ay when the
ground field is C) for any x, y ∈ V.

Proof. Choose a basis {e1, e2, ..., en}. Let A = (〈ei, ej〉)1≤i,j≤n. For any x =∑
xiei, y =

∑
yiei, we have 〈x, y〉 =

∑
xiyj〈ei, ej〉 = xTAy (or 〈x, y〉 =∑

x̄iyj〈ei, ej〉 = x∗Ay). By the definition of inner products, we have 〈ei, ej〉 =

〈ej , ei〉.
In the above lemma, we actually assume that x is the same as its coordinate

vector with respect to the basis. We call the matrix A the representation matrix
of the inner product with respect to the basis {e1, e2, ..., en}.

Lemma 13 Let (V = Fn, 〈, 〉) be an inner product space for F = R or C, with a
representation matrix A (with respect to the standard basis). A set {v1, v2, ..., vn}
is an orthonormal basis if and only [v1, v2, ..., vn]∗A[v1, v2, ..., vn] = A.

When the inner product on Cn is the standard one (i.e. A = In), we have that
a set {v1, v2, ..., vn} is an orthonormal basis if and only if [v1, v2, ..., vn]∗[v1, v2, ..., vn] =
In. We call a square complex matrix B unitary if B∗B = In. Note that a real
unitary matrix is orthogonal.
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Theorem 14 Let (V, 〈, 〉) be a complex inner product space of dimension n. For
any complex n × n matrix A, there is an orthogonal basis {v1, v2, ..., vn} of V
such that the representation matrix of A is upper triangular.

Proof. By the Jordan canonical theorem, there is an invertible matrix P and an
upper triangular matrix U such that A = PUP−1. Apply the Gram-Schmidt or-
thogonalization to get a QR-decomposition P = QR. Then A = QRUR−1Q−1.
Note that RUR−1 is upper triangular and the columns of Q are orthogonal.

Corollary 15 (Schur’s theorem) For any matrix An×n, there is a unitary ma-
trix P such that PAP−1 = PAP ∗ is upper triangular. In other words, any
square complex matrix is conjugate to an upper triangular matrix by a unitary
matrix.

Proof. Consider the standard inner product 〈x, y〉 = x∗y on Cn and apply the
previous theorem.

Lemma 16 (Riesz representation theorem) Let (V, 〈, 〉) be an inner product
space over the field F = R or C. Suppose that f : V → F is a linear map (usually
called linear functional). There exists a unique y ∈ V such that f(x) = 〈x, y〉
for any x ∈ V.

Proof. Existence. If f = 0, we just choose y = 0. Otherwise, the complement
(ker f)⊥ is of dimension one. Choose v to be a unit vector of (ker f)⊥ and let
y = f(v)v. For any x ∈ V, we have x = x1+a1v for some x1 ∈ ker f and a1 ∈ F.
Therefore, f(x) = a1f(v) = 〈x, f(v)v〉.
Uniqueness. If there are two vectors y1, y2 both satisfying 〈x, y1〉 = 〈x, y2〉

for any x ∈ V. Then 〈x, y1 − y2〉 = 0, imply y1 = y2 by choosing x = y1 − y2.

Corollary 17 Let f : V →W be a linear map between two inner product spaces
(V, 〈, 〉V ), (W, 〈, 〉W ). There exits a unique linear map f∗ : W → V such that

〈f(x), y〉W = 〈x, f∗(y)〉V

for any x ∈ V, y ∈W. The function f∗ is called the adjoint of f.

Proof. Existence. Fix any y ∈W, the function 〈f(−), y〉W : V → F is a linear
functional. The Riesz representation theorem implies that there is a unique
element z ∈ V satisfying 〈f(−), y〉W = 〈x, z〉V . Define f∗(y) = z.
Uniqueness. If there is another g∗ satisfying 〈f(x), y〉W = 〈x, f∗(y)〉V =

〈x, g∗(y)〉V for any x, y, we must have 〈x, f∗(y) − g∗(y)〉V = 0 which implies
that f∗(y) = g∗(y).

Example 18 Consider the dot product on Rn and the standard inner product
on Cn. We have the adjoint of a real matrix A is its transpose AT and the
adjoint of a complex matrix A is its conjugate transpose. (hint: in this case,
〈Ax, y〉 = x∗A∗y = 〈x,A∗y〉.)
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The following is general version of Lemma 10.

Lemma 19 Let f : V →W be a linear map between two inner product spaces.
We have the following:
1) (f∗)∗ = f.
2) (ker f)⊥ = Im f∗.

3 Inner product spaces and isometries

Definition 20 A linear map f : V → W between inner product spaces is
distance-preserving (or isometric) if ‖f(x) ‖= ‖x ‖ for any x ∈ V.

Lemma 21 A linear map f : V → W is distance-preserving if and only if
〈f(x), f(y)〉 = 〈x, y〉 for any x, y ∈ V.

Lemma 22 Let V be a vector space together with an inner product defined by
〈x, y〉 = x∗Py for a matrix P. A linear map f : V → V is isometric if and only
if A∗PA = P, where A is the standard representation matrix of f.

Proof. Note that 〈f(x), f(y)〉 = 〈x, y〉 if and only (Ax)∗PAy = x∗A∗PAy =
x∗Py. Choose x, y ∈ {e1, e2, ..., en}, the standard basis.

Corollary 23 A complex matrix An×n preserves the standard distance on Cn
if and only if A∗A = In, i.e. A is unitary.

4 Inner products and norms

Definition 24 A normed vector space is a vector space V (over R or C) to-
gether with a function (called a norm): ‖ ‖: V → R sastisfying

1) Homogeneity: ‖αv ‖= |α|‖v ‖ for any for all vectors v and all scalars α;
2) Triangle inequality: ‖x+ y ‖≤ ‖x ‖ +‖y ‖ for any x, y ∈ V ;
3) positivity: ‖x ‖≥ 0 for any vector x, and ‖x ‖= 0 if and only if x = 0.

It is obvious that an inner product 〈, 〉 gives a norm ‖x ‖=
√
〈x, x〉. But not

every norm is from an inner product.

Example 25 Let V = Rn or Cn. For any x ∈ V, define ‖x ‖p= (|x1|p + |x2|p +
· · ·+ |xn|p)1/p for 1 ≤ p <∞ and ‖x ‖∞= max{|xi| : i = 1, 2, ..., n}.

Example 26 Let V = C[0, 1] be the vector space of continuous functions on
the closed interval [0, 1]. Define ‖f ‖p= (∫10 |f |pdx)1/p for 1 ≤ p <∞.

Theorem 27 A norm in a normed space is obtained from some inner product
if and only if it satisfies the Parallelogram Identity

‖x+ y ‖2 +‖x− y ‖2= 2(‖x ‖2 +‖y ‖2)

for any x, y ∈ V.

5



Proof. When the norm comes from an inner product, ‖x + y ‖2 +‖x − y ‖2=
〈x+ y, x+ y〉+ 〈x− y, x− y〉 = 2(‖x ‖2 +‖y ‖2).
Conversely, for real vector spaces we define 〈x, y〉 = 1

4 (‖x+ y ‖2 −‖x− y ‖2)
(called Polarization identities). We check the conditions of an inner product. It
is obvious that 〈x, y〉 = 〈y, x〉, and 〈x, x〉 ≥ 0, 〈x, x〉 = 0 if and only if x = 0. It
is enough to prove that 〈x, y〉 is bilinear. By the parallelogram law we have

2‖x+ z‖2 + 2‖y‖2 = ‖x+ y + z‖2 + ‖x− y + z‖2.

Therefore,

‖x+ y + z‖2 = 2‖x+ z‖2 + 2‖y‖2 − ‖x− y + z‖2

= 2‖y + z‖2 + 2‖x‖2 − ‖y − x+ z‖2

‖x+ y + z‖2 = ‖x‖2 + ‖y‖2 + ‖x+ z‖2 + ‖y + z‖2 − 1

2
‖x− y + z‖2 − 1

2
‖y − x+ z‖2.

‖x+ y − z‖2 = ‖x‖2 + ‖y‖2 + ‖x− z‖2 + ‖y − z‖2 − 1

2
‖x− y − z‖2 − 1

2
‖y − x− z‖2.

〈x+ y, z〉 =
1

4

(
‖x+ y + z‖2 − ‖x+ y − z‖2

)
=

1

4

(
‖x+ z‖2 − ‖x− z‖2

)
+

1

4

(
‖y + z‖2 − ‖y − z‖2

)
= 〈x, z〉+ 〈y, z〉

Inductively, we have 〈nx, z〉 = n〈x, z〉 for each integer n. Similarly, we have
〈x, z〉 = 〈n 1nx, z〉 = n〈 1nx, z〉 and 〈

1
nx, z〉 = 1

n 〈x, z〉 for each nonzero n. This
actually means for any rational number q = m

n we have 〈qx, z〉 = 〈mn x, z〉 =
q〈x, z〉. Note that t → 1

t 〈tx, z〉 ∈ R is continuous on R\{0}. Since every real
number is a limit of a rational sequence, we have that 〈rx, z〉 = r〈x, z〉 for every
rational number r.
For complex vector spaces, define

〈x, y〉 =
1

4
(‖x+ y ‖2 +i‖ix+ y ‖2 −‖ − x+ y ‖2 −i‖ − ix+ y ‖2)

=
1

4

3∑
k=0

ik‖ikx+ y ‖2 .

It’s obvious that 〈x, y〉 = 〈y, x〉. A similar argument proves the bilinear property
of the real and imaginary parts.

Corollary 28 For p 6= 1, the norm ‖− ‖p does not come from an inner product
since the Parallelogram identity does not hold. Let e1, e2 be elements of the
standard basis. We have

2(‖e1 ‖2p +‖e2 ‖2p) = 2 6= ‖e1 + e2 ‖2p +‖e1 − e2 ‖2p= 22/p + 22/p.
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Lecture 3: Symmetric matrices and quadratic
forms

Shengkui Ye

March 20, 2023

1 Symmetric matrices

A square matrix A is symmetric if A = AT . For example, A =
[
2 1
1 2

]
.

Lemma 1.1 If A is symmetric, then any two eigenvectors corresponding to
distinct eigenvalues are orthogonal. In other words, if Ax1 = λ1x1 and Ax2 =
λ2x2 with λ1 6= λ2 then x1 ◦ x2 = 0.

Proof. Note that xT2 λ1x1 = xT2 (Ax1) = xT2 A
Tx1 = (Ax2)

Tx1 = λ2x
T
2 x1, which

implies xT2 x1 = 0 since λ1 6= λ2.
An n × n matrix A is said to be orthogonal diagonalizable if there is an

orthogonal matrix P (i.e. P−1 = PT ) such that P−1AP is diagonal.

Lemma 1.2 An n×n symmetric (real) matrix A has n real eigenvalues, count-
ing multiplicities. For each eigenvalue λ, there is a real eigenvector x corre-
sponding to it.

Proof. Suppose that Ax = λx for a complex value λ and a complex vector x.
Let x∗ be the complex conjugate transpose. Then x∗Ax = x∗λx = λ‖x‖2, but
x∗Ax = (Ax)∗x = (λx)∗x = λ∗x∗x. This implies λ = λ∗ and thus λ is real. The
Fundamental Theorem of Algebra proves that A has n eigenvalues and thus the
symmetric matrix A has n real eigenvalues. Since A−λI has determinant zero,
(A− λI)x = 0 has a nonzero solution in Rn.

Theorem 1.3 (Spectral theorem) An n× n matrix A is orthogonal diagonaliz-
able if and only if A is symmetric.

Proof. If there exists orthogonal matrix P and diagonal matrix D such that
P−1AP = D, then A = PDP−1 = PDPT is symmetric.
The othe direction can be proved by induction. When n = 1, there is nothing

to prove. Suppose the statement is true for n−1. Let λ be a real eigenvalue of A,
with a unit real eigenvector vector x (the existence follows the previous lemma).
Extend x to be a basis B of Rn and apply the Gram-Schmidt process to get an

1



orthonormal basis B = {x1 = x, x2, x3, · · · , xn}. Let P1 = [x1, x2, ..., xn] and
C = P−11 AP1. Note that the first column of C is [λ, 0, 0, · · · , 0]T . Moreover C is
symmetric, since P1 is orthogonal. Therefore, the first row of C is [λ, 0, 0, · · · , 0].
Write

C =

[
λ 0
0 C1

]
for a symmetric matrix C1. The induction step implies that there exists or-
thogonal matrix P2 such that P

−1
2 C1P2 is diagonal. Therefore, we take P =

P1

[
1 0
0 P2

]
such that P−1AP is diagonal.

Example 1.4 Let A =

 3 −2 4
−2 6 2
4 2 3

 . Find the orthogonal diagonalization if
exits.

When A is symmetric, there is an orthogonal matrix P such that P−1AP =
D, a diagonal matrix. Suppose that P = [u1, u2, · · · , un]. Then AP = PD and
thus [Au1, Au2, · · · , Aun] = [d1u1, d2u2, · · · , dnun] where di is the i-th diagonal
entry of D. Since Aui = diui for each i, we know that di is an eigenvalue
and ui is the corresponding eigenvector. Moreover, A = PDP−1 = PDPT =
[d1u1, d2u2, · · · , dnun][u1, u2, · · · , un]T = d1u1u

T
1 +d2u2u

T
2 + · · ·+dnunuTn . This

sum is called the spectral decomposition of A.

2 Applications: Quadratic forms

Definition 2.1 A quadratic form Q is function defined on Rn such that Q(x) =
xTAx for a symmetric matrix A. In other words, Q(x) is a degree-two homoge-
nous polynomial.

Example 2.2 Q(x) = 3x21 + 4x
2
2 = [x1, x2]

[
3
4

] [
x1
x2

]
is a quadratic form.

Example 2.3 Write Q(x) = x1x2 + x
2
2 as the form xTAx for some symmetric

matrix A.

Example 2.4 Let Q(x) = xTAx be a quadratic form. For an invertible matrix
P, let y = P−1x. Then x = Py and Q(x) = yTPTAPy is another quadratic
form of y, which is called a change of variable.

For a general degree-two homogenous polynomial Q(x) =
∑n

i,j=1 aijxixj , is
there a canonical form after change of variables? If there is such one, how to
reduce Q(x) to the canonical form?

Lemma 2.5 Any quadratic form Q(x) = xTAx could be transformed to the
diagonal form. In other words, there exists an orthogonal matrix P such that
x = Py and

Q(x) = yT (PTAP )y = a1y
2
1 + a2y

2
2 + · · ·+ any2n

2



for some real numbers a1, a2, · · · , an.

Proof. It is enough to note that PTAP could be diagonal for some orthogonal
matrix P.

Example 2.6 Let Q(x) = x21 − 8x1x2 − 5x22. Reduce Q(x) to be the canonical
form by change of variables.

Definition 2.7 A quadratic form Q(x) = xTAx (or the coeffi cient matrix A)
is
a) positive definite if Q(x) > 0 for any x 6= 0;
b) negative definite if Q(x) < 0 for any x 6= 0;
c) indefinite if Q(x) assumes both positive and negative values.
d) positive semi-definite if Q(x) ≥ 0 for any x.

Example 2.8 Suppose that Q(x) = xTAx for a symmetric matrix A. If all
eigenvalues of A are positive, then Q is positive definite. Similarly, if all the
eigenvalues are negative, then Q is negative definite.

Corollary 2.9 A symmetric matrix A is positive semi-definite (resp. definite)
if and only if A = RTR for a (resp. invertible) matrix R.

Proof. For any x, we have xTAx = xTRTRx = 〈Rx,Rx〉 ≥ 0. When R is
invertible, 〈Rx,Rx〉 = 0 if and only x = 0.

Lemma 2.10 Let An×n be a positive definite matrix. Define 〈x, y〉 := xTAy.
Then 〈x, y〉 is an inner product on Rn.

Proof. It’s easy to check that 〈x, y〉 is symmetric (as A is symmetric) and
bilinear. When A is positive definite, 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only
x = 0.

3 Applications: Quadratic curves

In high school, we already studied three kinds of curves: ellipse, hyperbola,
parabola. These curves are defined by two-variable degree-two polynomials. It
turns out that these are the only three cases (in a genuine sense).

Definition 3.1 A quadratic curves is a plane curve in R2 defined by a degree-
two two-variable polynomial

ax2 + bxy + cy2 + dx+ ey + f = 0, (1)

where a, b, c, d, e, f ∈ R.

Theorem 3.2 Any quadratic curve is one of the following:
1) ellipse; 2) hyperbola; 3) parabola; 4) intersecting lines; 5) parallel lines,

or 6) a single point.

3



Proof. Write

ax2 + bxy + cy2 + dx+ ey + f

= (x, y)

[
a b/2
b/2 c

] [
x
y

]
+

[
d

e

] [
x
y

]
+ f.

Since
[
a b/2
b/2 c

]
is symmetric, there is an orthogonal matrix P such that[

a b/2
b/2 c

]
= PT

[
d1 0
0 d2

]
P

for some real numbers d1, d2. Change the variables by letting
[
x′

y′

]
= P

[
x
y

]
.

The equation (1) becames

d1x
′2 + d2x

′2 + d′x′ + e′y′ + f ′ = 0. (2)

Since the polynomial is still of degree 2, we may assume that d1 6= 0. If d2 6= 0,
the previous equation (2) can be written as

d1(x
′ + a1)

2 + d2(y
′ + a2)

2 + f ′′ = 0

for some real coeffi cients. Change the variables again by letting x′ + a1 =
x′′, y′ + a2 = y′′. We have

d1x
′′2 + d2y

′′2 = g (3)

for some real numbers d1, d2, g. After exchanging x′′, y′′ and the sign of d1, we
can assume that d1 > 0.

Case 1) d2 > 0. If g > 0, the equation (3) gives an ellipse. If g = 0, the equation
(3) gives a point. If g < 0, the equation (**) does not have real solutions
(or imaginary ellipse).

Case 2) d2 < 0. If g 6= 0, the equation (3) gives a hyperbola. If g = 0, the equation
(3) gives intersecting of two lines.

Case 3) d2 = 0. The equation (2) can be written as

d1(x
′ + a1)

2 + e′y′ + f ′′ = 0. (4)

If e′ 6= 0, we have d1x′′2 + e′y′′ = 0, for some x′′ = x′ + a′, y′′ = x′′ + b′′,
which gives a parabola. Suppose that e′ = 0. If f ′′ < 0, the equation
(4) gives a pair of parrell lines. If f ′′ > 0, the equation (4) has no real
solutions (or a imaginary circle). If f ′′ = 0, the equation (4) actually is a
single point.

Remark 3.3 Ellipse, hyperbola and parabola are called non-degenerate quadratic
curves, while the intersecting curves, parallel lines, and a single point are called
degenerated quadratic curves.

Example 3.4 Determine the type of the quadratic curve x2+xy+y2+x+1 = 0.
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4 Applications: extreme values and singular val-
ues

Theorem 4.1 Let A be a symmetric matrix with an orthogonal diagonalization
A = PDP−1, with the diagonal entries of D arranged as λ1 ≥ λ2 ≥ · · · ≥ λn,
and P is an orthogonal matrix. Then

λ1 = max
‖x‖=1

xTAx, λn = min
‖x‖=1

xTAx,

with the extreme values are achived when x are the corresponding eigenvectors.

Proof. Let y = (y1, · · · , yn)T = PTx. When ‖x‖ = 1, we have ‖y‖ = 1. Note
that

xTAx = xTPDP−1xT = (PTx)TDPTx = λ1y
2
1 + λ2y

2
2 + · · ·+ λny2n

≤ λ1(y
2
1 + y

2
2 + · · ·+ y2n) = λ1.

The maximum is achived when y = (1, 0, · · · , 0)T and x = Py, an eigenvalue
corresponding to λ1. Similarly, xTAx ≥ λn(y21+y22+ · · ·+y2n), with the mimumn
is achived when y = (0, · · · , 0, 1)T and x = Py, an eigenvalue corresponding to
λn.

Definition 4.2 Let Am×n be a matrix. A singular value σi of A is the square
root of an eigenvalue λi of ATA, i.e. σi =

√
λi(ATA).

Note that ATA is symmetric and positive semi-definite. There is an orthogo-
nal diagonalization ATA = PDP−1. Let Pi be a column of P, ie. an eigenvector.
Then PTi A

TAPi = λiP
T
i Pi, which implies that ‖APi‖ = σi. View A as a linear

map Rn → Rm, with {P1, ..., Pn} an orthonormal basis of Rn. The singular
value σi is the length ‖APi‖.

Lemma 4.3 Suppose that the eigenvalues of ATA are λ1 ≥ λ2 ≥ · · ·λk >
λk+1 = λk+2 = · · · = 0, with corresponding eigenvectors v1, v2, ..., vn. Then
{Av1, Av2, · · · , Avk} is an orthogonal basis of Col(A).

Proof. Note that v1, v2, ..., vn form an orthogonal basis of Rn. This means
Col(A) is spanned by {Av1, Av2, ..., Avn}. But Avk+1 = 0 = Avk+2 = · · · =
Avn.Moreover, Avi◦Avj = vTi A

TAvj = 0, Avi◦Avi = λi‖vi‖2 for any i 6= j ≤ k.
Therefore, {Av1, Av2, · · · , Avk} is an orthogonal basis.

Theorem 4.4 (singular value decomposition) Let Am×n be a matrix of rank r.
There exist a diagonal matrix Dr×r (with diagonal entries the singular values
of A) and orthogonal matrices Um×m, Vn×n such that

A = U

[
D 0
0 0

]
m×n

V T .
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Proof. As in the previous lemma, let λi and vi be the eigenvalues and eigenvec-
tors (with ‖vi‖ = 1) of ATA. Let ui = Avi

‖Avi‖ , i ≤ r. Extend {u1, u2, ..., ur} to be
an orthonormal basis {u1, u2, ..., ur, ur+1, ..., um} of Rm. Take U = [u1, u2, · · · , um]
and V = [v1, v2, · · · , vn]. It can be directly checked that

A[v1, v2, · · · , vn] = [Av1, Av2, · · · , Avn]
= [σ1u1, σ2u2, · · · , σrur, 0, · · · , 0]

= U

[
D 0
0 0

]
.

The result is proved by noting that V −1 = V T .

Example 4.5 Find the singular value decomposition (SVD) of A =
[
1 1
0 1

]
.

Example 4.6 Let A =

[
1 1 1
2 2 2

]
, viewed as a linear map R3 → R2. Find a

unit vector v ∈ R3 such that ‖Av‖ is the maximum.
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Lecture 4: Symmetric matrices and quadratic
forms

Shengkui Ye

April 17, 2023

1 Self-adjoint operators

Recall that a self-adjoint operator is a linear map f : V → V on an inner product
space satisfying f = f∗, i.e. 〈f(x), y〉 = 〈x, f(y)〉 for any x, y ∈ V. This is a
generalization of a symmetric matrix. Many properties on symmetric matrices
are still true for self-adjoint operators.

Lemma 1.1 Let f = f∗ be a self-adjoint operator in an inner product space V .
We have the following:

1) all eigenvalues of f are real;
2) eigenvectors from distinct eigenvalues are orthogonal;

Proof. Suppose that the inner product is represented by A and B is the stan-
dard matrix of f . We have B∗A = AB. Suppose that Bx = λx for a com-
plex value λ and a complex vector x. Then x∗ABx = x∗Aλx = λ‖x‖2, but
x∗ABx = (Bx)∗Ax = (λx)∗Ax = λ∗x∗Ax. This implies λ = λ∗ and thus λ is
real.

Suppose that Bx1 = λ1x1, Bx2 = λ2x2 for λ1 6= λ2 and eigenvectors x1, x2.
We have 〈x2, Bx1〉 = 〈x2, λ1x1〉 = 〈Bx2, x1〉 = λ2〈x2, x1〉, which implies xT2 x1 =
0 since λ1 6= λ2.

Theorem 1.2 (spectral theorem)Let f = f∗ be a self-adjoint operator on a
finite-dimensional inner product space V over a field F = R or C. There exists
an orthonormal basis on which the representation matrix of f is a real diagonal
matrix. In particular, for any Hermitian (or self-adjoint) matrix A, there exist
a unitary matrix U and a real diagonal matrix D such that A = UDU∗.

Proof. Consider the characteristic polynomial of f. Over the complex numbers
C, there is an eigenvalue λ, which is actually real since f is self-adjoint. Choose
a unit eigenvector v1, i.e. f(v1) = λ1v1. The orthogonal complement (Fv1)

⊥

is invariant under the transformation by f (∀x ∈ (Fv1)
⊥, we have 〈v1, fx〉 =

〈f∗v1, x〉 = 〈fv1, x〉 = λ1〈v1, x〉 = 0). We repeat the argument to choose
another eigenvector v2 ∈ (Fv1)

⊥. After finitely many steps, we get an orthogonal
basis {v1, ..., vn} on which the representation matrix of f is real diagonal.

1



The complex case can be proved as following. Schur’s theorem implies that
there is an orthogonal basis on which the representation matrix of f is an up-
per triangular matrix, i.e. f = URU−1 for an upper triangular matrix (here
we denote f as its standard representation matrix). Suppose that the inner
product is represented by a matrix A. Note that a self-adjoint upper triangular
matrix must be diagonal with real entries. Actually, we have (fx)∗Ay = x∗Afy
and f∗A = Af, (U−1)∗R∗U∗A = AURU−1, R∗U∗AU = U∗AUR, (noting that
U∗AU = In), implying R∗ = R and R must be diagonal.

Recall that a square real matrix A is orthogonal diagonalizable if and only if
A is symmetric. Can we have a similar result for unitary matrices? We already
know that a self-adjoint matrix is diagonalizable by a unitary matrix. It turns
out that the converse is not true.

Definition 1.3 A linear map (or matrix) N : V → V on an inner product
space V is normal, if NN∗ = N∗N.

Example 1.4 A self-adjoint matrix is normal. An orthgonal (or unitary) ma-
trix is normal. A unitary diagonalizable matrix is normal. Unitary conjugates
of a normal matrix is normal.

Lemma 1.5 A linear map (or matrix) N : V → V is normal if and only if

‖ Nx ‖=‖ N∗x ‖, for any x ∈ V.

Proof. IfN is normal, we have ‖ Nx ‖2= 〈Nx,Nx〉 = 〈x,N∗Nx〉 = 〈x,NN∗x〉 =
〈N∗x,N∗x〉 =‖ N∗x ‖2 for any x.

Conversely, the Polarization Identities imply for any x, y ∈ V that

〈N∗Nx, y〉 = 〈Nx,Ny〉 =
1

4

∑3

k=0
ik ‖ Nx+ ikNy ‖

=
1

4

∑3

k=0
ik ‖ N(x+ iky) ‖

=
1

4

∑3

k=0
ik ‖ N∗(x+ iky) ‖

= 〈N∗x,N∗y〉 = 〈NN∗x, y〉

and thus N∗N = NN∗.

Theorem 1.6 Any normal linear map in a complex vector space has an or-
thonormal basis consisting of eigenvectors. In particular, a complex matrix is
unitary diagonalizable if and only if it is normal.

Proof. Schur’s theorem implies that there is an orthogonal basis on which the
representation matrix of f is an upper triangular matrix A. It is enough to
prove that an upper triangular normal matrix must be diagonal. Suppose that

A =

[
a11 ∗
0 A′

]
.

2



Since AA∗ = A∗A, the (1, 1)-th entries are ā11a11 = a11ā11 + a12ā12 + · · · +
a1nā1n. This gives that a12 = a13 = ... = a1n = 0. Repeat this argument to
prove that A is diagonal.
We already know that a unitary diagonalizable matrix is normal. The con-

verse is proved by choosing the standard inner product on Cn.

2 Polar and singular decomposition

Definition 2.1 A self-adjoint linear map f : V → V on an inner product space
V is called positive definite if

〈fx, x〉 > 0,∀x 6= 0.

Similarly, f is called positive semi-definite if

〈fx, x〉 ≥ 0,∀x ∈ V.

Example 2.2 For any complex matrix Bm×n, the product B∗B is positive semi-
definite, since 〈B∗Bx, x〉 = 〈Bx,Bx〉 ≥ 0 for any x ∈ Cn.

Theorem 2.3 For a self-adjoint linear map f, we have the following.
1) f is positive definite if and only if the eigenvalues of f are positive.
2) f is positive semi-definite if and only if the eigenvalues of f are non-

negative.

Proof. By Lemma 1.2, there is an orthonormal basis on which the representa-
tion matrix of f is diagonal. A diagonal matrix is positive definite if and only
if the diagonal entries are positive.

Remark 2.4 It is interesting to note that the positive definiteness of a self-
adjoint linear map f depends only on its eigenvalues, independent of the basis
and the inner product.

Corollary 2.5 Let A be a positive semidefinite operator. There exists a unique
positive semi-definite operator B such that A = B2. We denote B = A

1
2 =
√
A.

Proof. Existence. There is a basis S on which A is diagonal with positive
diagonal entries λ1 ≥ λ2 ≥ ...λn ≥ 0. Define B as the the linear map whose
representation matrix on the basis is

√
λ1 ≥

√
λ2 ≥ ...

√
λn ≥ 0.

Uniqueness. Suppose that A = C2 for a self-adjoint positive semi-definite
matrix C. Choose an orthogonal basis S′ on which C is diagonal with diagonal
entries µ1 ≥ µ2 ≥ ...µn ≥ 0. Then A has eigenvalues µ21 ≥ µ22 ≥ ...µ2n ≥ 0.
Moreover, Ax = λx if and only if Cx =

√
λx. Therefore, Bx =

√
λx for any

eigenvector x of A. This implies B = C.

Lemma 2.6 For any linear map A : V → V on an inner product space V. We
have

‖
√
A∗Ax‖ = ‖Ax‖,∀x ∈ V.
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Proof. ‖
√
A∗Ax‖2 = 〈

√
A∗Ax,

√
A∗Ax〉 = 〈x,A∗Ax〉 = 〈Ax,Ax〉 = ‖Ax‖2.

Theorem 2.7 (Polar decomposition) For any linear map A : V → V on an
inner product space V. There is an unitary operator U such that

A = U
√
A∗A.

Proof. By the previous lemma, we have kerA = ker
√
A∗A = Im(

√
A∗A)∗⊥ =

Im(
√
A∗A)⊥ since

√
A∗A is self-adjoint. We will define U explicitly by specifying

its image on Im(
√
A∗A)

⊕
kerA = V. For any x ∈ Im(

√
A∗A), choose y ∈ V

such that
√
A∗Ay = x. Define U1 : Im(

√
A∗A)→ ImA by Ux = Ay. If another

y′ has
√
A∗Ay′ = x, we have

√
A∗A(y− y′) = 0 and y− y′ ∈ kerA. This checks

that U is well-defined on Im(
√
A∗A). Note that ImA = (kerA∗)⊥. Since the

subspace kerA is isomorphic to kerA∗ (by the rank theorem), we can choose
an isometry U2 : kerA → kerA∗ = (ImA)⊥. It can be directly checked that
U = U1 ⊕ U2 is unitary and A = U

√
A∗A.

The following is a general singular value decomposition.

Theorem 2.8 For any linear map A : V1 → V2 between inner product spaces
V1, V2. There exists orthonormal base {v1, v2, ..., vm} for V1 and {w1, w2, ..., wn}
for V2, such that the representation matrix A is diagonal with diagonal entries
the singular values of A. In other words,

A = [w1, ..., wn]D[v1, v2, ..., wm].

3 Matrix norms

Let An×m : Cm → Cn be a complex matrix.

Definition 3.1 The real number sup{‖Ax‖ : ‖x‖ ≤ 1} is called the operator
norm of A and denoted as ‖A‖.

Theorem 3.2 Let Mn×m(C) be the vector space of all n × m matrices. We
have the following.

Lemma 3.3 1) (Mn×m(C), ‖ − ‖) is a normed space;
2) ‖Ax‖ ≤ ‖A‖‖x‖ for any x ∈ Cm;
3) ‖AB‖ ≤ ‖A‖‖B‖ if AB can be defined;
3) ‖A‖ = s1 ≤ ‖A‖2 = trace(A∗A) =

∑
s2i , where si’s are the singular

values.

Proof. 1) The conditions for a normed space can be checked directly. 2)
It’s obvious that ‖A0‖ = 0. For nonzero x, we have ‖Ax‖ = ‖A x

‖x‖‖x‖‖ =

‖A x
‖x‖‖‖x‖ ≤ ‖A‖‖x‖. 3) Note that sup{‖Ax‖ : ‖x‖ ≤ 1} = ‖Ax0‖ for some

x0 ∈ {x : ‖x‖ ≤ 1} (a continuous function can achieve its supremum on a
compact set). Suppose that ‖AB‖ = ‖ABx0‖. By 2), we have ‖ABx0‖ ≤
‖A‖‖Bx0‖ ≤ ‖A‖‖B‖. 4) follows the theorem of singular value decomposition.
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4 Canonical forms of orthogonal matrices

Theorem 4.1 Let A be an n× n orthogonal matrix.
1) If detA = 1, then A is orthogonal conjugate to

Rφ1
. . .

Rφk
In−2k


where Rφi =

[
cosφi − sinφi
sinφi cosφi

]
is the rotation matrix of angle φi.

2) If detA = −1, then A is orthgonal conjugate to
Rφ1

. . .
Rφk

Il
−1

 .

Proof. View A as a complex matrix. If Ax = λx for a unit vector x, we
have ‖Ax‖ = ‖λx‖ implying |λ| = 1. Note that Ax̄ = λ̄x̄. If λ 6= ±1, write
λ = cosφ+ i sinφ and x = x1 + ix2 for real vectors x1, x2. It can directly check
that

A[x1, x2] = [x1, x2]

[
cosφ − sinφ
sinφ cosφ

]
.

Note that λ 6= λ̄, which implies x ⊥ x̄ and thus xT1 x1 = xT2 x2, x1 ⊥ x2.
Moreover, the complement SpanR{x1, x2}⊥ is invariant under A. If λ = ±1, we
can choose a real eigenvector x and consider the complement SpanR{x1, x2}⊥.
Note that the number of −1 must be even when detA = 1, while the number is
odd when detA = −1. An inductive argument finishes the proof after reordering
the elements in the basis.
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Lecture 5 : Symmetric matrices and quadratic
forms

Shengkui Ye

May 3, 2023

1 Symmetric bilinear forms

Definition 1.1 A symmetric bilinear form on a real vector space V over a field
F is a function 〈, 〉 : V × V → F such that

1. 〈u, v〉 = 〈v, u〉 for any v, u ∈ V ;

2. 〈v, a1u1 + a2u2〉 = a1〈v, u1〉 + a2〈v, u2〉 for any u1, u2, v ∈ V and any
a1, a2 ∈ F ;

Example 1.2 Let V = R3. The function

〈x, y〉 = x1y1 + x2y2 − x3y3

is a symmetric bilinear form.

Lemma 1.3 A symmetric bilinear form 〈, 〉 : V × V → F can always be repre-
sented by 〈x, y〉 = xTAy for some symmetric matrix A.

For a quadratic form q(x) = xTAx =
∑

1≤i,j≤n
aij
2 xixj , we already know

that for an orthogonal matrix P the new form q(Px) = xTPTAPx is a sum
of squares. But for a change of variable y = Sx (for an invertible matrix S),
we may still have q(Sx) = xTSTASx a sum of squares. In this section, we will
study some invariants of q(x) which depend only on A, not on S.

Definition 1.4 Two square real matrices A,B are congruent if there is an in-
vertible matrix S such that B = SAST . Similarly, we call two square complex
matrices A,B congruent if there is an invertible matrix S such that B = SAS∗.

Definition 1.5 For a Hermitian matrix A (i.e. A∗ = A), let n+, n−, n0 be the
number of positive, negative, zero eigenvalues, respectively. We can the triple
(n+, n−, n0) the signature of A.

Theorem 1.6 (Sylvester’s law of inertia) Two Hermitian matrices A,B are
congruent if and only if they have the same signature (i.e. they have the same
number of of positive, negative, zero eigenvalues.)
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Proof. Since A,B are Hermitian, there exist unitary matrices Q1, Q2 such that
Q1AQ

∗
1 = D1, Q2BQ

∗
2 = D2 are both real diagonal matrices. After permutation

of diagonal elements and changing the absolute values, we see that D1, D2 are
congruent, which implies that A,B are congruent.

Suppose that B = SAS∗ for an invertible matrix S. Since A is Hermitian,
there is a unitary matrix U such that A = UDU∗ for a real diagonal matrix
D. Then B = SUDU∗S∗. We claim that n+(B) = max{dimV : V < Fn is a
subspace on which B is positive definite}. Actually, B = V D′V ∗ for a unitary
matrix V and a real diagonal matrix D′. Let V be the subspace spanned by
the eigenvectors corresponding to the positive eigenvalues of D′ (and B). We
see that B is positive definite o V. If W is a subspace on which B is positive
definite with the maximal dimW, we know that the orthogonal complement
W⊥ is B-invariant (for any x ∈ W, y ∈ W⊥, we have 〈x,By〉 = 〈B∗x, y〉 = 0).
Since B has positive eigenvalues on W, this shows dimW ≤ n+. Note that
n+(B) = n+(D) = n+(A). Similarly, we have n−(B) = n−(A), n0(B) = n0(A).

Corollary 1.7 The maximal dimension of a positive definite subspace for quadratic
form q(x) = xTAx is n+.

2 Dual space

The following is a generalization of orthogonal complement.

Definition 2.1 Let V be a vector over a field F. Its dual space is V ∗ = {f | f :
V → F is linear}.

Exercise 2.2 Check that V ∗ is a vector space over F.

Example 2.3 Let V = C[0, 1] be the vector space of continuous functions. The
integration

∫ 1
0
is a linear functional, i.e. a linear map from V to R.

Lemma 2.4 Let V be a vector space. We have V ∼= (V ∗)∗, i.e. the dual of the
dual of V is isomorphic to V.

Definition 2.5 A bilinear form xTAy is non-degenerated if A is invertible.

Lemma 2.6 Let 〈, 〉 : V × V → F be a symmetric bilinear form. The following
are equivalent.
1) 〈, 〉 is non-degenerated.
2) The map V → V ∗,

x 7−→ 〈−, x〉

is isomorphic of vector spacs. Here 〈−, x〉 is a linear function y 7→ 〈y, x〉 for
any y ∈ V.
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