Lecture 1: dot product, length and angle

Shengkui Ye
January 30, 2023

1 Orthogonal basis and projections

For two vectors = (21, T2, ..., Tn) L,y = (Y1, Y2, -, yn)T € R™, we already know
that the dot product z oy = z1y; + Toys + - - + 2, yn = 27 y. The length of the
vector z is || @ ||= /23 + 23 + - - - + 22. The angle between nonzero vectors x, y
is £(x,y) = arccos %

Definition 1 An orthogonal basis S of R™ is a basis such that any two distinct
elements u,v € S are orthogonal.

Lemma 2 Let S = {v1,v,...,u,} be an orthogonal basis of R™. Any element
x € R™ is a linear combination

T = a1V + agvUa + - + anpvy,
with a; = % for each i.
T
Proof. Note that zov; = a;v;0v;. B

Lemma 3 Let H be a subspace of R™. Any element x € R™ is writen uniquely
as x = x1 + xo with x1 € H and o € HL. The x71 is called the projection of x
onto H, denoted by projm(x).

Proof. For the existence, let 1 € H be a vector such that ||z — x| =
infyepr [|# — y||. Choose 2 = x — 1. By properties of triangles, we know that
x — x1 is orthogonal to x1. The existence can also be proved by assuming that
H has an orthogonal basis (saying {vi, ..., vx}) which can be extended to be an
orthogonal basis of R®. Then z; = Zle a;v; = Zle ﬁﬁ“i by the previous
lemma.

If v = 2} +b with o) € Handz) € H thenz; —2) = 2b—2o € HNH+ =
{0}. m

If H is spanned by a nonzero vector u, then z; = ku for some k. Then
zxou=(x1 4+ 22)ou=kuowu and thus k = 2%

uou *

Example 4 Let z = [7,6]T and u = [4,2]T. Find proj,(z).



A set {vi,vs,- -, v} is orthonormal if v; o v; = 1 and v; o v; = 0 for any
i # 7.
Example 5 Show that {(1/v/2,1/v/2)T,(1/v/2,—-1/3/2)T} is orthonormal.

Lemma 6 Anmxn matriz U has orthonormal columns if and only if UTU = I.
An orthogonal matriz A is a square invertible matriz A such that ATA = 1.

Lemma 7 Let U be an m X n matriz with orthonormal columns, and let x,y €
R™. Then

a) |Uz]| = [l|;

b)) UroUy ==xoy;

¢) Uz oUy =0 if and only x oy = 0.
Lemma 8 Let f : R" — R™ be a linear map. Suppose that f is distance-
preserving, i.e. ||f(x) — f(y)ll = ||z — y| for any z,y € R™. Then f is angle-
preserving, i.e. L(f(x), f(y)) = 4L(x,y) for any x,y € R";
Proof. Suppose that f is distance-preserving. We have | f(z)|| = ||z|| and
If(x+v)|| = ||x + y|| for any =,y € R™. But this implies that

If@+lI* = [1f@)+ @I = (f@) + f) o (f(a) + f(y))
= f(@)o f(x)+ f(y)o fly) +2f(x)o f(y)
2+ y]|?
= zxzox+yoy+22zoy

and f(z) o f(y) = z oy. Note that cos £(z,y) = Haﬁﬁlﬁ;ll =
cos £(f(x), f(y)), which gives £(f(x), f(y)) = £(z,y). =

Lemma 9 A linear map f : R™ — R"™ is distance-preserving if and only if the
standard representation matriz Ay of f is orthogonal.

f@)of(y)  _
7@ 7T

Proof. Let z € R™ be arbitrary vector. If A is orthogonal, we have || f(x)|* =
|Az||? = Az o Az = (Az)T Az = 2T (AT A)x = x oz = ||z||?. Therefore, f is
distance-preserving.

Suppose that f is distance-preserving. The proof of the previous lemma
shows that f(z)o f(y) = z oy for any x,y € R™. Choose z,y € {e1,ea,...,e,},
the standard basis, to get that f(e;) o f(e;) = el AT Ae; = e; o e;, which is the
(i,§)-th entry of AT A. Therefore, ATA=1,. m

V2 V2
Example 10 Show that _%ﬁ é is orthogonal.
2 2

Theorem 11 (Orthogonal decomposition theorem) Let W be a subspace of R™.
Then each element x in R™ is a sum & + z with & € W and z € W, In fact, if

{u1,u2,--- ,up} is any orthogonal basis of W, then
. Towu T 0Us x o U,
T = u + Ug + -+ Uy
U1 © Uy U2 © U Up © Up

and z = — T.



Proof. Let {uy,us,- - ,u,} be an orthogonal basis of W. Extend this set to be
a basis {uy,us, - ,u,} of R™. The proof is finished. m

Corollary 12 If {uq,u2, -+ ,up} is any orthonormal basis of W, then the pro-
jection of x € R™ onto W s

t=UU"z
where U = [u1,ug, -+, up).
2 -2 1
Example 13 Letu; = | 5 | ,us= | 1 | andy = |2]| . Show that {u1,us} is
-1 1 3

an orthogonal basis for W = Span{uy,us}. Write y as a sum of a vector in W
and a vector in the orthogonal complement of W.

2 The Gram-Schmidt process

3 1
Example 14 Let uy = |6| ,us = |2| and W = Span{uy,us}. Find an or-
0 2
thogonal basis of W.
U201
Proof. Take {ui,us — mul}. [ ]
Theorem 15 (Gram-Schmidt process) Given a basis {1, 2, -+ ,xp} for a non-
zero subspace W of R™, define
U1 = I,
X9 O V1
V2 = T2 Uy oy
V1 © U1
T, O U1 Iy O Vg Ty O Vp_1
v, = Tp— L vy — -2 Vg — e — —E P gy .
V1 © U1 Vg O V2 Up—1 © Up—1
Then {v1,va, -+ ,vp} is an orthogonal basis for W. Moreover,

Span{vy,--- ,v;} = Span{xy,--- ,x}, for each k < p.

Proof. Inductively, we assume that Span{vy, -+ ,vx_1} = Span{zy, - ,zr_1}.
Since x = v + 21 for a vector zx_1 € Span{vy,--- ,vp_1}, we see that x €
Span{vy, -+ ,vk_1,v} and similarly vy € Span{zy,--- ,Tk_1,2r}. W

1 0 0

1 1 0 . .
Example 16 Let x1 = 1em2= 2= ] Find an orthonormal basis

1 1 1

of Span{z1, xa, T3}



Corollary 17 (QR factorization) Let A be an invertible matriz. Then A = QR
for an orthogonal matriz Q and an upper triangular matriz R.

Proof. Let A = [x1, x5, -+ ,z,]. The Gram-Schmidt process produces a matrix
P = [v1,v2, - ,v,]. Note that A = PS for a strictly upper triangular matrix
S. Let D = diag(vy o v1,v2 002, -+, U, 0 U,) be the diagonal matrix, and @ =
[vlvolvl , v2v02v2 AR vnv;bn]' Therefore, we have A = (PD~1)DS = QR, with R =

DS. Note that QQT =1,,. m

3 Least-square problem

For a matrix A,,x, and b € R™, we know that Az = b may not have a solution.
An element zy € R™ is called a least-square problem for Az = b if

[b— Azol| < [|b— Az||
for any x € R™.

Theorem 18 A wvector xq is a least-square solution of Ax = b if and only if
AT Azy = ATb.

Proof. Denote by Az the projection of b onto the column space Col(A). By the
orthogonal decomposition theorem, b — Azg € Col(A)*t = NulAT. Therefore,
AT(b — Azo) = 0 and AT Axg = ATb. Conversely, when AT Azy = ATb, we
have AT(b — Azg) = 0 and b — Azg = NulAT = Col(A)L. This implies that
b — Azp|| < ||b — Az|| for any x € R". m

Corollary 19 Ax = b has a unique least-square solution if and only if the
columns of A are linearly independent.

Proof. By the previous theorem, it’s enough to prove that A7 A is invertible if
and only if the columns of A are linearly independent. When AT A is invertible,
n = rank(AT A) < rank(A). Therefore, the columns of A are linearly indepen-
dent. Conversely, when the columns of A are linearly independent, Az = 0 has
only the trivial solution = = 0. If AT Az = 0, then 0 = 27 AT Az = (Az)T (Axz),
which implies that Az = 0 and thus & = 0. Therefore, AT A4 is invertible. m

Example 20 Find a least-square solution for Ax = b, where

4 0
A=10 2|, b=1|0
11



Lecture 2: inner product, length and angle

Shengkui Ye
February 13, 2023

1 Inner product: definitions
The following are generalizations of the dot product.

Definition 1 An inner product (,) on a real vector space V is a function (,) :
V xV — R such that

1. (u,v) = (v,u) for any v,u € V;

2. (v,a1u1 + agus) = ar{v,u1) + as(v,us) for any ui,uz,v € V and any
ai,as € R;

3. (u,uy >0 and (u,u) = 0 if and only if u = 0.

If the function (,) satisfies only condition 1) and 2), we call (,) a symmetric
bilinear form.

Remark 2 Sometimes, the inner product is defined on complex vector spaces
by replacing R with C and the condition 1) is {(u,v) = {v,u), the complex con-
Jugation.

Example 3 (u,v) =uowv is an inner product on V = R".

Example 4 A matriz A,xn 15 called symmetric if AT = A. The function
(x,y) = 2T Ay is a symmetric bilinear form. If A is diagonal with positive
diagonal entries, then (,) is an inner product on R™.

Example 5 Let V = M,,,«n(R) (the vector space of all m x n real matrices).
The function (z,y) = Trace(zTy) is an inner product on V.

Example 6 Let Cla,b] be the set of all continuous functions on the closed in-
terval [a,b]. Then (f,g) = f: fgdx is an inner product.

We denote ||z]| = /(z,z) > 0 as the length of z € V. For two vectors
x,y € V, the distance d(z,y) = [z — y|. Two vectors z,y are orthogonal if

<x,y> =0.



Lemma 7 (Cauchy-Schwarz inequality) For any z,y € V, we have (z,y) <
lz|lllyl|. Furthermore, we have ||z + y|| < ||lz| + ||y

Proof. For any real number ¢, we have 0 < (tz+y, tz+y) = t*(z, ) +2t{z, y) +
(y,y). Therefore, 4(x,y)? — 4(x, z)(y,y) < 0 and thus (x,y) < ||z|/|y||-
Note that

|z + yl? (x+y,z+y) = (z,2)+ (y,y) + 2z, y)

< wa) + (yoy) + 2llzlllyl] = (el + llyl)*.

]
When z,y € R", the law of cosine gives that

lz=yl* = ll=l* + IylI* = 2lllllyll cos ¢,
() = lzllyllcos,

where ¢ is the angle between vector x and y. In general inner-product space,
if (z,y) = ||=||||y|| cos ¢, we still view ¢ € [0,7) as an angle between x and y.
In particular, when (z,y) = 0, we call z,y are orthogonal. Using these general
concepts, we can still talk about orthogonal, orthnormal basis and do Gram-
Schmidt orthogonalization process.

Lemma 8 Let {v1,vs,...,v,} be an orthonormal basis of an inner product space

V. We have
n n 2
1> el =Y ail*.
i=1 =1

Definition 9 Let V' be a subspace of an inner product space (W, {(,)) (i.e. W isa
real vector space together with an inner product {,)). The orthogonal complement
Vi ={zeW| (z,y) =0}

Lemma 10 Let A be an m X n matriz.
1) For any v € R™,y € R", we have x 0 Ay = ATz oy.
2) Then (ColA)*+ = NulAT, (RowA)t = NulA.

Proof. Note that z o Ay = 27 Ay = (AT2)Ty = (ATx) o y. 2) follows 1): for
any = € NulA” we have ATz = 0 and thus x o Ay = 0 for any y, which proves
that = € (ColA)*. On the other hand, for any x € (ColA)* we have x 0 Ay =0
for any y. But ATz oy = 0 for any y, which implies that A7z = 0 by choosing
y in a basis. m

Lemma 11 1) The orthgonal complement V1 is a vector subspace of W.
2) W=V @V, the direct sum.
3) (VHt =V.

Proof. 1) For any x,y € V1, we have (azx + by,v) = a(x,v) + b(y, z) = 0 for
any v € V and arbitrary a,b € R. This shows that ax + by € V.



2) Choose a basis B for V and extend this set to be a basis C' of W. Apply
the Gram-Schmidt orthogonalization process to get an orthogonal basis S of W.
Each element © € W is a linear combination

x:Zass: Z ass + Z ass €V 4+ V-t

seS seSNV seS\V

It is enough to show that VNV+ = {0}. Actually, any z € VNV~ has (z,z) =0
implying « = 0.

3) Since any v € V is orthogonal to any z € V*, we have V. C (V1)1 If
there is = € (V1)1\V, we have

:C:Zass: Z asS + Z asS,

seS sesSnV seS\V

with Zses\v ass # 0, where S is an orthogonal basis as in 1). However,

(@, 2 ses\v @s8) = (Xses\v @sS, D ses\v @s5) > 0, a contradiction to the fact
that z is orthogonal to V4. m

2 Inner products and matrices

For a complex matrix A, xm, its conjugate transpose is the m x n matrix A* =
(@j;), where a;; = a — bi (complex onjugate) if aj; = a + bi,a,b € R. A square
complex matrix A is called Hermitian (or self-adjoint) if A = A*. Note that real
Hermitian matrix is symmetric.

Lemma 12 Let (V,{,)) be an inner product space of dimension n. There is a
Hermitian matriz Apx, such that (z,y) = 2T Ay (or (z,y) = z* Ay when the
ground field is C) for any x,y € V.

Proof. Choose a basis {e1,ea,...,e,}. Let A = ({e;,€;))1<i j<n- For any x =
Smieiy = Nyien, we have (0,y) = N awglenes) = ol Ay (or (v,y) =
> Ty, (e, e;) = *Ay). By the definition of inner products, we have (e;, e;) =
<€j,€i>. ]

In the above lemma, we actually assume that z is the same as its coordinate
vector with respect to the basis. We call the matrix A the representation matrix
of the inner product with respect to the basis {e1, es,...,€,}.

Lemma 13 Let (V =TF",(,)) be an inner product space for F =R or C, with a
representation matriz A (with respect to the standard basis). A set {vi,va,...,vn}
is an orthonormal basis if and only [vy, va, ..., v,|* Alv1, Ve, ..., v,] = A.

When the inner product on C" is the standard one (i.e. A = I,,), we have that
aset {vy,va, ..., U, } is an orthonormal basis if and only if [v1, v, ..., v, ]*[v1, Ve, ..., v,] =
I,,. We call a square complex matrix B unitary if B*B = I,,. Note that a real
unitary matrix is orthogonal.



Theorem 14 Let (V,{,)) be a complex inner product space of dimension n. For
any complex n X n matriz A, there is an orthogonal basis {vi,va,...,v,} of V
such that the representation matriz of A is upper triangular.

Proof. By the Jordan canonical theorem, there is an invertible matrix P and an
upper triangular matrix U such that A = PUP~'. Apply the Gram-Schmidt or-
thogonalization to get a Q R-decomposition P = QR. Then A = QRUR'Q".
Note that RUR™! is upper triangular and the columns of ) are orthogonal. m

Corollary 15 (Schur’s theorem) For any matric Anxn, there is a unitary ma-
triv P such that PAP~' = PAP* is upper triangular. In other words, any
square complexr matriz is conjugate to an upper triangular matrix by a unitary
matriz.

Proof. Counsider the standard inner product (z,y) = z*y on C™ and apply the
previous theorem. m

Lemma 16 (Riesz representation theorem) Let (V,(,)) be an inner product
space over the field F = R or C. Suppose that f : V — F is a linear map (usually
called linear functional). There exists a unique y € V such that f(z) = (x,y)
for any x € V.

Proof. Existence. If f = 0, we just choose y = 0. Otherwise, the complement
(ker f)+ is of dimension one. Choose v to be a unit vector of (ker f)1 and let
y = f(v)v. For any x € V, we have z = z1 + ayv for some x; € ker f and a; € F.
Therefore, f(z) = a1 f(v) = (z, f(v)v).

Uniqueness. If there are two vectors yi,y2 both satisfying (z,y1) = (z,y2)
for any « € V. Then (z,y; — y2) = 0, imply y; = y2 by choosing z =y; —y2. ®

Corollary 17 Let f : V — W be a linear map between two inner product spaces
V, (), W, (,)w). There exits a unique linear map f*: W — V such that

for any x € V,y € W. The function f* is called the adjoint of f.

Proof. Existence. Fix any y € W, the function {f(—),y)w : V — F is a linear
functional. The Riesz representation theorem implies that there is a unique
element z € V satistying (f(—),y)w = (x, z)v. Define f*(y) = z.

Uniqueness. If there is another g* satisfying (f(z),v)w = (z, f*(y))v =
(x,9*(y))v for any z,y, we must have (z, f*(y) — ¢*(y))v = 0 which implies
that f*(y) = g*(y). m

Example 18 Consider the dot product on R™ and the standard inner product
on C". We have the adjoint of a real matriz A is its transpose AT and the

adjoint of a complex matriz A is its conjugate transpose. (hint: in this case,
(Az,y) = 2" A"y = (z, A"y).)



The following is general version of Lemma 10.

Lemma 19 Let f:V — W be a linear map between two inner product spaces.
We have the following:

() =1
2) (ker f)* = Im f*.

3 Inner product spaces and isometries

Definition 20 A linear map f : V. — W between inner product spaces is
distance-preserving (or isometric) if | f(z) ||= || || for any x € V.

Lemma 21 A linear map f : V. — W is distance-preserving if and only if

(f(x), f(y)) = (z,y) for any x,y € V.

Lemma 22 Let V be a vector space together with an inner product defined by
(x,y) = * Py for a matrix P. A linear map f:V — V is isometric if and only
if A*PA = P, where A is the standard representation matriz of f.

Proof. Note that (f(z), f(y)) = (x,y) if and only (Az)*PAy = 2*A*PAy =
x*Py. Choose z,y € {e1, €2, ..., e, }, the standard basis. m

Corollary 23 A complexr matriz A, xn preserves the standard distance on C"
if and only if A*A =1,, i.e. A is unitary.

4 Inner products and norms

Definition 24 A normed vector space is a vector space V- (over R or C) to-
gether with a function (called a norm): || ||: V — R sastisfying
1) Homogeneity: ||awv ||= |al||v || for any for all vectors v and all scalars o;
2) Triangle inequality: ||z +y ||< ||z || +|y || for any z,y € V;
3) positivity: ||z ||> 0 for any vector z, and ||z ||= 0 if and only if x = 0.

It is obvious that an inner product (,) gives a norm ||z ||= y/{(z, z). But not
every norm is from an inner product.

Example 25 Let V =R" or C". For any x € V, define ||z ||p= (|z1|P +|z2/P +
oo @ |P)MP for 1 < p < 0o and ||x ||eo= max{|z;| :i = 1,2,...,n}.

Example 26 Let V = C[0,1] be the vector space of continuous functions on
the closed interval [0,1]. Define ||f |l,= (fo |f|Pdz)Y/P for 1 < p < .

Theorem 27 A norm in a normed space is obtained from some inner product
if and only if it satisfies the Parallelogram Identity

Iz +y 7 +llz =y = 2(l= [I* +lly 17)

for any x,y € V.



Proof. When the norm comes from an inner product, ||z + vy || +|z — v ||*=
(@ +ya+y)+ (@ —yz—y) =2(z > +ly [

Conversely, for real vector spaces we define (z,y) = X(|lz+y ||* ||z —y [|?)
(called Polarization identities). We check the conditions of an inner product. It
is obvious that (z,y) = (y,z), and (z,z) > 0, (z,z) = 0 if and only if z = 0. It
is enough to prove that (z,y) is bilinear. By the parallelogram law we have

20 + 2|7 + 2llyl* =z +y + 2> + |z -y + 2]
Therefore,
lz+y + 2[* = 2]z + 2] + 2|lylI* — |z — y + 2|
=2lly + 2|” + 2]lz|* ~ lly — = + 2|
1 1
lz 4y + 20 = el + lyl* + llo + 217 + lly + 21 = Sllz =y + 2 = Slly — =+ 2|

1 1
lz 4y =2l = lel* + lyl* + llo = 217 + lly = 21* = Sllz —y = 2* = Slly — = — ||

(@+y,2) =2 (lz+y+2l —llz+y -2

N e N

1
(lz+ 201 = llz = 211%) + 5 (ly + 211" = lly = =[%)

—~

,z) + (Y, 2)

Inductively, we have (nz,z) = n{zx,z) for each integer n. Similarly, we have
(z,2) = (ntz,z) = n(iz,2) and (L2,2) = 1(z,2) for each nonzero n. This
actually means for any rational number ¢ = ™ we have (qz,z) = ("x,2) =
1 . . .

q(z, z). Note that t — £(tx,z) € R is continuous on R\{0}. Since every real
number is a limit of a rational sequence, we have that (rz, z) = r(z, z) for every
rational number 7.

For complex vector spaces, define

1 <1rs T
(wy) = JUet+yl*Hliz+y P~ -z+y|* =il -ie+y [*)
13
= 1ZikHikx—i—yHQ.
k=0

It’s obvious that (x,y) = (y, x). A similar argument proves the bilinear property
of the real and imaginary parts. ®

Corollary 28 Forp # 1, the norm ||— ||, does not come from an inner product
since the Parallelogram identity does mot hold. Let eq,es be elements of the
standard basis. We have

2(lle 17 +llez 1) =2 # llex + ez [} +llex — ez 5= 227 + 2%/7.



Lecture 3: Symmetric matrices and quadratic
forms

Shengkui Ye
March 20, 2023

1 Symmetric matrices

A square matrix A is symmetric if A = A”. For example, A = E ﬂ .

Lemma 1.1 If A is symmetric, then any two eigenvectors corresponding to
distinct eigenvalues are orthogonal. In other words, if Axy = M\x1 and Azs =
Aoy with A1 # A9 then x1 0 xo = 0.

Proof. Note that 2l \j2; = 21 (Az;) = 2T ATz; = (Aze)T 21 = Moalz, which
implies 27y = 0 since A\; # \y. =

An n x n matrix A is said to be orthogonal diagonalizable if there is an
orthogonal matrix P (i.e. P~1 = PT) such that P~'AP is diagonal.

Lemma 1.2 Annxn symmetric (real) matriz A has n real eigenvalues, count-
ing multiplicities. For each eigenvalue X, there is a real eigenvector x corre-
sponding to it.

Proof. Suppose that Az = Az for a complex value A and a complex vector x.
Let * be the complex conjugate transpose. Then z*Ax = z* Az = \||z||?, but
z*Az = (Az)*z = (A\x)*z = X\"z*z. This implies A = A" and thus A is real. The
Fundamental Theorem of Algebra proves that A has n eigenvalues and thus the
symmetric matrix A has n real eigenvalues. Since A — Al has determinant zero,
(A — AI)z = 0 has a nonzero solution in R”. m

Theorem 1.3 (Spectral theorem) An n x n matriz A is orthogonal diagonaliz-
able if and only if A is symmetric.

Proof. If there exists orthogonal matrix P and diagonal matrix D such that
P~ 'AP = D, then A= PDP~!' = PDPT is symmetric.

The othe direction can be proved by induction. When n = 1, there is nothing
to prove. Suppose the statement is true for n—1. Let A be a real eigenvalue of A,
with a unit real eigenvector vector x (the existence follows the previous lemma).
Extend = to be a basis B of R™ and apply the Gram-Schmidt process to get an



orthonormal basis B = {1 = x,29,23, - ,2,}. Let P = [21,22,...,2,] and
C = P! AP;. Note that the first column of C' is [, 0,0,---,0]7. Moreover C is
symmetric, since P; is orthogonal. Therefore, the first row of C'is [A,0,0,- - ,0].

Write
A0
o= &l

for a symmetric matrix Cj. The induction step implies that there exists or-
thogonal matrix P, such that P{lc’ng is diagonal. Therefore, we take P =

P, L0 such that P~'AP is diagonal. m
0 P

3 -2 4
Example 1.4 Let A= |—-2 6 2| . Find the orthogonal diagonalization if
4 2 3

exits.

When A is symmetric, there is an orthogonal matrix P such that P~ AP =
D, a diagonal matrix. Suppose that P = [uy, us2, -+ ,u,]. Then AP = PD and
thus [Auy, Aug, - -+, Aup] = [dyuy, dausg, - - , dpuy,] where d; is the i-th diagonal

entry of D. Since Au; = d;u; for each i, we know that d; is an eigenvalue
and w; is the corresponding eigenvector. Moreover, A = PDP~! = PDPT =
[diuy, dotg, - - dpun][ur, ug, -+ un)t = dyugud +dougud +- - -+ dupul’. This

sum is called the spectral decomposition of A.

2 Applications: Quadratic forms

Definition 2.1 A quadratic form Q is function defined on R™ such that Q(z) =
2T Az for a symmetric matriz A. In other words, Q(x) is a degree-two homoge-
nous polynomial.

Example 2.2 Q(x) = 323 + 423 = [11, 23] [3 4} [il} is a quadratic form.
2

Example 2.3 Write Q(x) = x1z2 + 23 as the form xT Az for some symmetric
matriz A.

Example 2.4 Let Q(x) = 7 Ax be a quadratic form. For an invertible matriz
P, let y = P~l2z. Then v = Py and Q(z) = y* PT APy is another quadratic
form of y, which is called a change of variable.

For a general degree-two homogenous polynomial Q(x) = EZL =1 QijTiT;, 18

there a canonical form after change of variables? If there is such one, how to
reduce Q(z) to the canonical form?

Lemma 2.5 Any quadratic form Q(z) = xT Az could be transformed to the
diagonal form. In other words, there exists an orthogonal matriz P such that
x = Py and

Q(z) =y (PTAP)y = a1y} + asys + - + any?



for some real numbers ay,az,- -+ , ap.

Proof. It is enough to note that P7 AP could be diagonal for some orthogonal
matrix P. m

Example 2.6 Let Q(z) = 23 — 8z129 — 523, Reduce Q(x) to be the canonical
form by change of variables.

Definition 2.7 A quadratic form Q(x) = 7 Az (or the coefficient matriz A)
18

a) positive definite if Q(x) > 0 for any x # 0;

b) negative definite if Q(x) < 0 for any x # 0;

¢) indefinite if Q(x) assumes both positive and negative values.

d) positive semi-definite if Q(x) > 0 for any x.

Example 2.8 Suppose that Q(z) = xT Az for a symmetric matriz A. If all
eigenvalues of A are positive, then @Q is positive definite. Similarly, if all the
eigenvalues are negative, then Q) is negative definite.

Corollary 2.9 A symmetric matriz A is positive semi-definite (resp. definite)
if and only if A= RTR for a (resp. invertible) matriz R.

Proof. For any z, we have 27 Az = 2T RTRx = (Rx, Rx) > 0. When R is
invertible, (Rz, Rx) =0 if and only z = 0. m

Lemma 2.10 Let A, x, be a positive definite matriz. Define (z,y) = zT Ay.
Then {(x,y) is an inner product on R™.

Proof. It’s easy to check that (x,y) is symmetric (as A is symmetric) and
bilinear. When A is positive definite, (z,z) > 0 and (z,z) = 0 if and only
z=0. n

3 Applications: Quadratic curves

In high school, we already studied three kinds of curves: ellipse, hyperbola,
parabola. These curves are defined by two-variable degree-two polynomials. It
turns out that these are the only three cases (in a genuine sense).

Definition 3.1 A quadratic curves is a plane curve in R? defined by a degree-
two two-variable polynomial

az? +bxy 4+ cy’ +de +ey+ f =0, (1)
where a,b,c,d, e, f € R.

Theorem 3.2 Any quadratic curve is one of the following:
1) ellipse; 2) hyperbola; 3) parabola; 4) intersecting lines; 5) parallel lines,
or 6) a single point.



Proof. Write
az? + by +cy’ +dr+ey+ f

ol L B

Since {bc/lQ bé 2} is symmetric, there is an orthogonal matrix P such that

[b;bz bﬂ = P! [Cf)l cgg]P

/
for some real numbers dj,ds. Change the variables by letting B,} =P B] .

The equation (1) becames
dix"? + dox”? +d'x’ + €'y + f = 0. (2)

Since the polynomial is still of degree 2, we may assume that d; # 0. If dy # 0,
the previous equation (2) can be written as

dl(.T/ =+ (11)2 =+ dg(y/ + a2)2 + f” =0
for some real coefficients. Change the variables again by letting =’ + a1 =
",y + as = y”. We have
dlx"2 + d2y//2 =g (3)

for some real numbers d, ds, g. After exchanging z”, 4" and the sign of d;, we
can assume that d; > 0.

Case 1) do > 0. If g > 0, the equation (3) gives an ellipse. If g = 0, the equation
(3) gives a point. If g < 0, the equation (**) does not have real solutions
(or imaginary ellipse).

Case 2) dp < 0. 1If g # 0, the equation (3) gives a hyperbola. If g = 0, the equation
(3) gives intersecting of two lines.

Case 3) dz = 0. The equation (2) can be written as
di(z' +a)? +ey + ' =0. (4)

If ¢/ # 0, we have diz"? 4 €'y = 0, for some 2" = 2’ +a’,y" = =" +b",
which gives a parabola. Suppose that ¢/ = 0. If f” < 0, the equation
(4) gives a pair of parrell lines. If f”” > 0, the equation (4) has no real
solutions (or a imaginary circle). If f” = 0, the equation (4) actually is a
single point.

Remark 3.3 Fllipse, hyperbola and parabola are called non-degenerate quadratic
curves, while the intersecting curves, parallel lines, and a single point are called
degenerated quadratic curves.

Example 3.4 Determine the type of the quadratic curve x®+xy+y*+z+1 = 0.



4 Applications: extreme values and singular val-
ues

Theorem 4.1 Let A be a symmetric matriz with an orthogonal diagonalization
A = PDP~', with the diagonal entries of D arranged as A1 > Ay > -+ > Ay,
and P is an orthogonal matriz. Then

A = max zT Az, \, = min z7 Az,
lzl=1 [lx]|=1

with the extreme values are achived when x are the corresponding eigenvectors.

Proof. Let y = (y1, -+ ,yn)? = PT2. When ||z|| = 1, we have ||y|| = 1. Note
that

T Az 2T PDP 12T = (PT2)T"DP e = \y? + Moy + - + M\t
< M@ Hys o) =M

A

The maximum is achived when y = (1,0,---,0)7 and = Py, an eigenvalue
corresponding to A;. Similarly, 7 Az > X\, (y?+y3 +- - -+y2), with the mimumn
is achived when y = (0,---,0,1)T and = = Py, an eigenvalue corresponding to
Ap. H

Definition 4.2 Let A, x, be a matriz. A singular value o; of A is the square

root of an eigenvalue \; of AT A, i.e. o; = \/ (AT A).

Note that AT A is symmetric and positive semi-definite. There is an orthogo-
nal diagonalization AT A = PDP~!. Let P, be a column of P, ie. an eigenvector.
Then PFAT AP, = \; PT P;, which implies that ||AP;| = o;. View A as a linear
map R" — R™, with {P,..., P,} an orthonormal basis of R™. The singular
value o; is the length [|AP;|.

Lemma 4.3 Suppose that the eigenvalues of ATA are A\ > Ay > -+ X\ >
Ak+1 = Agq2 = -+ = 0, with corresponding eigenvectors vy,va, ..., v,. Then
{Avq, Avg, - -+, Aug} is an orthogonal basis of Col(A).

Proof. Note that vy, ve,...,v, form an orthogonal basis of R™. This means
Col(A) is spanned by {Avq, Ava, ..., Av,}. But Avgy1 = 0 = Avggg = -+ =
Av,,. Moreover, Av;oAv; = v] AT Av; = 0, AvioAv; = \;||v;|? for any i # j < k.
Therefore, { Avy, Avg, - -+, Aug} is an orthogonal basis. ®

Theorem 4.4 (singular value decomposition) Let Ay, xn be a matriz of rank r.
There exist a diagonal matriz Dy, (with diagonal entries the singular values
of A) and orthogonal matrices Upxm, Vaxn Such that

_plP o T
A_U[O OLMV.



Proof. Asin the previous lemma, let \; and v; be the eigenvalues and eigenvec-
tors (with [jv;]| = 1) of AT A. Let u; = Hﬁi‘v’j”,i < r. Extend {uq,us,...,u,} to be
an orthonormal basis {uy, ug, ..., Up, Up 41, ..oy U } Of R™. Take U = [ug,ug, -+ , Up)
and V = [vy,vg,- - ,v,]. It can be directly checked that

A[’Ul)v27~.~ )’U'n,] = [A’U17AU27... 7AUn]
= [01u1702u27"' 7Jru7’707"' 70]
D 0
- ol qf

The result is proved by noting that V="' = V7. =
Example 4.5 Find the singular value decomposition (SVD) of A = [é 1} .

1 11
2 2 2
unit vector v € R3 such that ||Av|| is the maximum.

Example 4.6 Let A = viewed as a linear map R® — R2%. Find a



Lecture 4: Symmetric matrices and quadratic
forms

Shengkui Ye
April 17, 2023

1 Self-adjoint operators

Recall that a self-adjoint operator is a linear map f : V' — V on an inner product
space satisfying f = f*, i.e. (f(x),y) = (x, f(y)) for any z,y € V. This is a
generalization of a symmetric matrix. Many properties on symmetric matrices
are still true for self-adjoint operators.

Lemma 1.1 Let f = f* be a self-adjoint operator in an inner product space V .
We have the following:

1) all eigenvalues of f are real;

2) eigenvectors from distinct eigenvalues are orthogonal;

Proof. Suppose that the inner product is represented by A and B is the stan-
dard matrix of f. We have B*A = AB. Suppose that Bx = Az for a com-
plex value A and a complex vector z. Then z*ABx = z*Alz = A||z||?, but
x*ABz = (Bz)*Ax = (A\z)*Axz = XN*z*Az. This implies A = \* and thus X is
real.

Suppose that Bx; = Ajx1, Bro = Aoxo for A\ # Ay and eigenvectors z1, To.
We have (9, Br1) = (v2, \171) = (Bx2,71) = A\a(z2, 71), which implies 21z, =
0 since A\; # A. ®

Theorem 1.2 (spectral theorem)Let f = f* be a self-adjoint operator on a
finite-dimensional inner product space V over a field F =R or C. There exists
an orthonormal basis on which the representation matriz of f is a real diagonal
matriz. In particular, for any Hermitian (or self-adjoint) matriz A, there exist
a unitary matriz U and a real diagonal matriz D such that A= UDU*.

Proof. Consider the characteristic polynomial of f. Over the complex numbers
C, there is an eigenvalue A, which is actually real since f is self-adjoint. Choose
a unit eigenvector vy, i.e. f(vi) = Ajv;. The orthogonal complement (Fvy)+
is invariant under the transformation by f (Vz € (Fv;)*, we have (vy, fo) =
(f*v1,2) = (fvr,2) = M{v1,z) = 0). We repeat the argument to choose
another eigenvector vy € (Fuvy)t. After finitely many steps, we get an orthogonal
basis {v1, ..., v, } on which the representation matrix of f is real diagonal.



The complex case can be proved as following. Schur’s theorem implies that
there is an orthogonal basis on which the representation matrix of f is an up-
per triangular matrix, i.e. f = URU~! for an upper triangular matrix (here
we denote f as its standard representation matrix). Suppose that the inner
product is represented by a matrix A. Note that a self-adjoint upper triangular
matrix must be diagonal with real entries. Actually, we have (fz)*Ay = 2*Afy
and f*A = Af, (U Y)*R*U*A = AURU !, R*U*AU = U*AUR, (noting that
U*AU = I,,), implying R* = R and R must be diagonal. m

Recall that a square real matrix A is orthogonal diagonalizable if and only if
A is symmetric. Can we have a similar result for unitary matrices? We already
know that a self-adjoint matrix is diagonalizable by a unitary matrix. It turns
out that the converse is not true.

Definition 1.3 A linear map (or matriz) N : V. — V on an inner product
space V' is normal, if NN* = N*N.

Example 1.4 A self-adjoint matriz is normal. An orthgonal (or unitary) ma-
trixz is normal. A unitary diagonalizable matrixz is normal. Unitary conjugates
of a normal matriz is normal.

Lemma 1.5 A linear map (or matriz) N : V — V is normal if and only if
| Na||=[| N*z ||, for any x € V.

Proof. If N is normal, we have || Nz ||?= (Nz, Nz) = (z, N*Nz) = (z, NN*z) =
(N*x, N*x) =|| N*z ||? for any x.
Conversely, the Polarization Identities imply for any x,y € V that

* _ IR -k
(N*Nz,y) = (Nm,Ny>—ZZk:01 | Nz +i"Ny ||

1 3, .
= I E NG i) |
1 3, « .
= Y N it |
= (N*z,N*'y) = (NN"z,y)
and thus N*N = NN*. m

Theorem 1.6 Any normal linear map in a complex vector space has an or-
thonormal basis consisting of eigenvectors. In particular, a complex matriz is
unitary diagonalizable if and only if it is normal.

Proof. Schur’s theorem implies that there is an orthogonal basis on which the
representation matrix of f is an upper triangular matrix A. It is enough to
prove that an upper triangular normal matrix must be diagonal. Suppose that

_ a1 *
[ i)



Since AA* = A*A, the (1,1)-th entries are Gy1a11 = a11811 + aj2G12 + - +
Q1n01,- This gives that a1 = a13 = ... = a1, = 0. Repeat this argument to
prove that A is diagonal.

We already know that a unitary diagonalizable matrix is normal. The con-
verse is proved by choosing the standard inner product on C". =

2 Polar and singular decomposition

Definition 2.1 A self-adjoint linear map f : V — V on an inner product space
V' is called positive definite if

(fz,z) >0,V #0.
Sitmilarly, [ is called positive semi-definite if
(fz,z) > 0,Vz € V.

Example 2.2 For any complex matriz By, xn, the product B* B is positive semi-
definite, since (B*Bx,z) = (Bx, Bx) > 0 for any x € C".

Theorem 2.3 For a self-adjoint linear map f, we have the following.

1) f is positive definite if and only if the eigenvalues of f are positive.

2) f is positive semi-definite if and only if the eigenvalues of f are non-
negative.

Proof. By Lemma 1.2, there is an orthonormal basis on which the representa-
tion matrix of f is diagonal. A diagonal matrix is positive definite if and only
if the diagonal entries are positive. m

Remark 2.4 [t is interesting to note that the positive definiteness of a self-
adjoint linear map f depends only on its eigenvalues, independent of the basis
and the inner product.

Corollary 2.5 Let A be a positive semidefinite operator. There exists a unique
positive semi-definite operator B such that A = B?. We denote B = Az = VA.

Proof. Existence. There is a basis S on which A is diagonal with positive
diagonal entries Ay > Ay > ..\, > 0. Define B as the the linear map whose
representation matrix on the basis is VA1 > VA2 > ..v/A, > 0.

Uniqueness. Suppose that A = C? for a self-adjoint positive semi-definite
matrix C. Choose an orthogonal basis S’ on which C' is diagonal with diagonal
entries p; > py > ...p,, > 0. Then A has eigenvalues ,u% > u% > ,u% > 0.
Moreover, Az = Az if and only if Cz = v/ Az. Therefore, Bx = v/ Az for any
eigenvector = of A. This implies B=C. m

Lemma 2.6 For any linear map A :V — V on an inner product space V. We
have

IVA*Az| = || Az||,Vz € V-



Proof. ||[VA*Az|]? = (VA*Ax,/ A* Ax) = (x, A* Ax) = (Az, Az) = ||Az|]>. =

Theorem 2.7 (Polar decomposition) For any linear map A : V. — V on an
inner product space V. There is an unitary operator U such that

A=UVA*A.

Proof. By the previous lemma, we have ker A = ker VA*A = Im(v/A*A)*+ =
Im(v/A* A)* since v/ A* A is self-adjoint. We will define U explicitly by specifying
its image on Im(vA*A)@ker A = V. For any = € Im(v/ A*A), choose y € V
such that v A*Ay = z. Define Uy : Im(vVA*A) — Im A by Uz = Ay. If another
y' has VA*Ay' = x, we have VA*A(y —y') = 0 and y — y’ € ker A. This checks
that U is well-defined on Im(v/A*A). Note that Im A = (ker A*)*. Since the
subspace ker A is isomorphic to ker A* (by the rank theorem), we can choose
an isometry U, : ker A — ker A* = (Im A)L. It can be directly checked that
U=U; ®&U,is unitary and A=UVA*A. =
The following is a general singular value decomposition.

Theorem 2.8 For any linear map A : Vi3 — V5 between inner product spaces
V1, Va. There exists orthonormal base {v1,va, ..., vn} for Vi and {wy, wa, ..., wy}
for Va, such that the representation matriz A is diagonal with diagonal entries
the singular values of A. In other words,

A= [wlv "'7wn]D[Ulvaa B3] wm]

3 Matrix norms

Let A, xm : C™ — C™ be a complex matrix.

Definition 3.1 The real number sup{||Az| : ||z|| < 1} is called the operator
norm of A and denoted as || Al.

Theorem 3.2 Let M,y (C) be the vector space of all n x m matrices. We
have the following.

Lemma 3.3 1) (Myxm(C), || — ) is a normed space;

2) | Az| < [[Allllz]| for any x € C™;

3) [|AB|| < ||A||||B|| if AB can be defined;

3) Al = s1 < ||All2 = trace(A*A) = Y s?, where s;’s are the singular
values.

Proof. 1) The conditions for a normed space can be checked directly. 2)
It’s obvious that ||AO| = 0. For nonzero x, we have ||Az| = HAﬁHzHH =

[Ag izl < [|Allllz]]. 3) Note that sup{[|Az| : [lz|| < 1} = [|Azol| for some

[E]
zo € {z : ||z]] < 1} (a continuous function can achieve its supremum on a

compact set). Suppose that |[AB| = ||ABzl||. By 2), we have ||[ABxz¢| <
lAll[| Bzol| < ||AIIIB]|- 4) follows the theorem of singular value decomposition.
[



4 Canonical forms of orthogonal matrices

Theorem 4.1 Let A be an n X n orthogonal matriz.
1) If det A = 1, then A is orthogonal conjugate to

K
In—2k

_ |cosg; —sing;| . , .
where Ry = {Sin 6 cosd, is the rotation matriz of angle ¢,.

2) If det A = —1, then A is orthgonal conjugate to

Ry,
R¢k
I
-1
Proof. View A as a complex matrix. If Az = Az for a unit vector z, we
have ||Az|| = ||\z|| implying |A\| = 1. Note that Az = Az. If A # £1, write
A=cos¢p+ising and x = x1 + ixs for real vectors x1, x2. It can directly check
that
. cos¢p —sing
Alwy, @] = |21, 2] [sinqb cos ¢ } ‘

Note that A # A, which implies z | Z and thus 27z, = x%xz, 1 L x9.
Moreover, the complement Spang{zi, 22} is invariant under A. If A = £1, we
can choose a real eigenvector x and consider the complement Spang{xy,zo}+.
Note that the number of —1 must be even when det A = 1, while the number is
odd when det A = —1. An inductive argument finishes the proof after reordering
the elements in the basis.



Lecture 5 : Symmetric matrices and quadratic
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Shengkui Ye
May 3, 2023

1 Symmetric bilinear forms

Definition 1.1 A symmetric bilinear form on a real vector space V over a field
F is a function {,) : V xV — F such that

1. (u,v) = (v,u) for any v,u € V;

2. (v,a1u1 + agua) = ar{v,ur) + az(v,us) for any uy,us,v € V and any
ai,as € F;

Example 1.2 Let V = R3. The function

(T,y) = 2191 + T2y2 — T3Y3
is a symmetric bilinear form.

Lemma 1.3 A symmetric bilinear form {(,) : V x V. — F can always be repre-
sented by (x,y) = a1 Ay for some symmetric matriz A.

For a quadratic form q(z) = 27 Az = Zl<i7j<” “x;x;, we already know
that for an orthogonal matrix P the new form ¢(Pxz) = 27 PT APz is a sum
of squares. But for a change of variable y = Sz (for an invertible matrix ),
we may still have ¢(Sz) = 27 ST ASx a sum of squares. In this section, we will
study some invariants of ¢(x) which depend only on A, not on S.

Definition 1.4 Two square real matrices A, B are congruent if there is an in-
vertible matriz S such that B = SAST. Similarly, we call two square complex
matrices A, B congruent if there is an invertible matriz S such that B = SAS*.

Definition 1.5 For a Hermitian matriz A (i.e. A* = A), let ny,n_,ng be the
number of positive, negative, zero eigenvalues, respectively. We can the triple
(ny,m_,ng) the signature of A.

Theorem 1.6 (Sylvester’s law of inertia) Two Hermitian matrices A, B are
congruent if and only if they have the same signature (i.e. they have the same
number of of positive, negative, zero eigenvalues.)



Proof. Since A, B are Hermitian, there exist unitary matrices @1, Q2 such that
Q1AQT = D1,Q2BQ% = Dy are both real diagonal matrices. After permutation
of diagonal elements and changing the absolute values, we see that D, Dy are
congruent, which implies that A, B are congruent.

Suppose that B = SAS* for an invertible matrix S. Since A is Hermitian,
there is a unitary matrix U such that A = UDU* for a real diagonal matrix
D. Then B = SUDU*S*. We claim that ny(B) = max{dimV : V < F" is a
subspace on which B is positive definite}. Actually, B = V. D'V* for a unitary
matrix V' and a real diagonal matrix D’. Let V be the subspace spanned by
the eigenvectors corresponding to the positive eigenvalues of D’ (and B). We
see that B is positive definite o V. If W is a subspace on which B is positive
definite with the maximal dim W, we know that the orthogonal complement
W+ is B-invariant (for any = € W,y € W=, we have (z, By) = (B*x,y) = 0).
Since B has positive eigenvalues on W, this shows dimW < n,. Note that
n4(B) = ny (D) = ny(A). Similarly, we have n_(B) = n_(A4),ne(B) = ng(4).
]

Corollary 1.7 The maximal dimension of a positive definite subspace for quadratic
form q(z) = 2T Az is n .

2 Dual space
The following is a generalization of orthogonal complement.

Definition 2.1 Let V be a vector over a field F. Its dual space is V* = {f | f :
V — F is linear}.

Exercise 2.2 Check that V* is a vector space over F.

Example 2.3 Let V = C[0, 1] be the vector space of continuous functions. The
integration fol is a linear functional, i.e. a linear map from V to R.

Lemma 2.4 Let V be a vector space. We have V = (V*)*, i.e. the dual of the
dual of V' is isomorphic to V.

Definition 2.5 A bilinear form T Ay is non-degenerated if A is invertible.

Lemma 2.6 Let (,): V xV — F be a symmetric bilinear form. The following
are equivalent.

1) {,) is non-degenerated.

2) The map V — V*,

zr— (=)

is isomorphic of vector spacs. Here (—, x) is a linear function y — (y,z) for
anyy € V.



