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1 Linear System

Fundamental Question: How to solve a linear system?
The fundamental question in Linear Algebra is how to solve the linear sys-

tem Ax⃗= b⃗. In other words,

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
...

...
...

am1x1 + am2x2 + · · · + amnxn = bm

(∗)

Where

Am,n =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 , x⃗ =


x1
x2
...

xn

 , b⃗ =


b1
b2
...

bm


The most fundamental way to solve this linear system is by elementary row

operations, which is also called Gaussian Elimination:
!! Please remember it is the only way for you to solve linear systems in the Linear Algebra course.

1. First, we find the augmented matrix of the linear system (∗) :

A∗
m,n+1 ≜ (A|b) =


a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
. . .

...
...

am1 am2 · · · amn bm


2. Second, we do elementary row operations to reduce the augemented

matrix A∗
m,n+1 into the Reduced Echelon Form. Then based on the reduced

echelon form, we determine the free variables and find the solution(s) (or no
solution). There are several cases:
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I. If m ̸=n (in other words, A is not a sqaure matrix)
Thinking Point: If m ̸=n, the linear system (∗) can not have a unique

solution. Either it has at least 1 free variable, or it is inconsistent.
For Ar

m,n+1(m ̸=n), either the leading entry 1 of every row is not in the per-
fect order to form an upper triangle matrix, or there is even no leading entry 1
for some rows (exist all-zero rows).

In such cases, the linear system turns out to be:
a. Situation of misaligned leading entries

Ar
m,n+1 =


1 ∗ 0 0 0 b

′
1

0 0 1 0 0 b
′
2

...
...

...
. . .

...
...

0 0 0 · · · 1 b
′
m


Thinking Point: Here specifically, m=n-1, and x2 is the free variable.
b. Situation of existing all-zero rows

Ar
m,n+1 =


1 0 · · · 0 b

′
1

0 1 · · · 0 b
′
2

...
...

. . . 1
...

...
0 0 · · · 0 b

′
m


Thinking Point: Here if b

′
m = 0, then xn is the free variable; if b

′
m ̸= 0, then

(∗) is inconsistent.
c. Situation of the mixture

Ar
m,n+1 =


1 ∗ 0 0 0 b

′
1

0 0 1 0 0 b
′
2

...
...

...
. . .

...
...

0 0 0 · · · 0 b
′
m


II. If m=n (in other words, A is a square matrix)
In this situation, Ar

n,n+1 can still have the problem of misalignment, existing
all-zero rows, as well as the mixture.

Thinking Point: For A is square, if one misalignment exists, then at least
one existing all-zero row exists.

However, Ar
n,n+1 is possible to be in this perfect reduced echelon form:

Ar
n,n+1 =


1 0 · · · 0 b

′
1

0 1 · · · 0 b
′
2

...
...

. . .
...

...
0 0 · · · 1 b

′
n


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In this situation, the linear system (∗) is consistent. Moreover, it has a
unique solution:

x⃗ =


x1
x2
...

xn

 =


b
′
1

b
′
2
...

b
′
n


2 Linear Combinations and Spanning

Solving a linear system (∗) has some geometric meanings.
First, let’s rewrite Am,n:

Am,n =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 ≜
[
A⃗1, A⃗2, · · · A⃗n

]

where

A⃗i =


a1i
a2i
...

ani


Then we can rewrite the linear system (∗) as:

span{A⃗1, A⃗2, · · · A⃗n} = A⃗1x1 + A⃗2x2 + · · ·+ A⃗nxn = b⃗

Now we can say:
If b⃗ lies on the span of columns of the coefficient matrix A, then the linear

system (∗) has a solution, in other words, (∗) is consistent.

3 Exercises

1. Solve the following linear systems:

x1 + x2 + x3 = 1
x1 + 2x2 + 3x3 = 2

6x1 + 7x2 + 8x3 = 3
(1)

x1 + 2x2 + x3 = 1
2x1 + 7x2 + 3x3 = 5
3x1 + 5x2 + 6x3 = 0

(2)
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x1 + 2x2 + x3 + x4 = 1
2x1 + 4x2 + 2x3 + 5x4 = 2
3x1 + 5x2 + 6x3 = 3
2x1 + 4x2 + 2x3 + x4 = 2

(3)

x1 + 2x2 + x3 + x4 = 1
2x1 + 4x2 + 2x3 + 2x4 = 3

x1 + 3x2 + 5x3 + 2x4 = 1
(4)

x1 + 2x2 + x3 = 1
2x1 + 4x2 + 3x3 = 5 (5)

2. Determine the values(s) of h such that the matrix is the augmented matrix
of a consistent linear system.

(a)
[

2 3 h
4 6 7

]
(b)

[
1 −4 −3
6 h 9

]
3. Suppose a system is a linear equation has a 3 × 5 augmented matrix

whose fifth column is a pivot column. Is the system consistent? Why (or why
not)?

4. What would you have to know about the pivot columns in an reduced
echelon form in order to know that the linear system is consistent and has a
unique solution?

5. A system of linear equations with fewer equation then unknowns is
sometimes called an underdetermined system.

Suppose that such a system happens to be consistent. Explain, using pivots,
why there must be an infinite number of solutions.

6. A system of linear equations with more equations than unknowns is
sometimes called an overdetermined system. Can such a system be consistent?
Illustrate your answer with a specific system of three equations in two variables
where there is exactly one solution.

p.s. At the end, there is a Youtube video series I would love to recommend
you! It visualizes the linear transformation by a matrix and provides you with
a geometric sense on Linear Algebra. Feel free to check it! Essence of Linear
Algebra
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Midterm Review Session

Yuhan Liu

October 17, 2023

1 The Matrix Equation Ax = b

1.1 Theorem 5.1——How to view the matrix equation?

Implication: Matrix equation = Vector equation (Matrix-vector product) = System of
Linear equations

1.2 Theorem 5.3——How to determine the existence of solutions?

Note: A is a coefficient matrix, not an augmented matrix. If an augmented matrix [A b] has a
pivot position in every row, then the equation Ax = b may or may not be consistent.

Recipe: Row reduce A and use (d) to deduct the conclusions in (a), (b), (c).

1. Could a set of three vectors in R4 span all of R4? Justify. (Lecture 5)

2. Let A =

 3 −4
1 −1
−2 1

 and b =

b1b2
b3

. Show that the equation Ax = b does not have a solution for all

possible b, and describe the set of all b for which Ax = b does have a solution.
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2 Linear Independence

Homogeneous equations always has a trivial solution (x = 0).

2.1 Parametric vector form

Recipe:

1. Write the solution set of the given homogeneous system in parametric vector form. (Lecture 6){
−3x1 + 5x2 + 7x3 = 0

−6x1 + 7x2 + x3 = 0
(1)

2.2 Definitions of linear independence and linear dependence

Note: Equation (2) is called a linear dependence relation among V1, ...,Vp when the weights are not
all zero. An indexed set is linearly dependent if and only if it is not linearly independent.

2.3 Proposition 7.2 ——How to determine?

Recipe:

1. Row reduce the augmented matrix to REF.
2. Identify if there is a free variable.
3. (Yes) At least a nonzero solution; (No) Only a trivial solution of Ax = 0.
4. Use Proposition 7.2.
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2.4 Theorem 7.5

Note: It does not say that every vector in a linearly dependent set is a linear combination of the preceding
vectors. A vector in a linearly dependent set may fail to be a linear combination of the other vectors.

2.5 Theorem 7.6——When columns > rows

1. Determine if the columns of the matrix form a linearly independent set. Justify. (Lecture 7 exercise 3) 1 4 −3 0
−2 −7 5 1
−4 −5 7 5


3 Linear Transformation

3.1 Transformation

A transformation (or function or mapping) T from Rn to Rm is a rule that assigns to each vector x in Rn a
vector T (x) in Rm.

• The set Rn is called the domain of T, and Rm is called the codomain of T.

• The vector T (x) in Rm is called the image of x (under the action of T ).

• The set of all images T (x) is called the range of T.

3.2 Linear Transformation

Definition:

Properties: Proposition 8.1
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Note: Always used to solve proof problems.

1. Suppose vectors v1, . . . ,vp span Rn, and let T : Rn → Rm be a linear transformation. Suppose
T (vi) = 0 for all 1 < i < p. Show that T is the zero transformation. That is, show that if x is any
vector in Rn, then T (x) = 0. (Lecture 8 Exercise 9)

2. Let T : Rn → Rm be a linear transformation, and let {v1, . . . ,v3} be a linearly dependent set in Rn.
Explain why the set {T (v1), T (v2), . . . , T (v3)} is linearly dependent. (Lecture 8 Exercise 13)

3.3 The Matrix of a Linear Transformation

Note: A is the standard matrix of the Linear Transformation.

1. Lecture 8 Exercise 15

3.4 Onto VS One-to-one

Range = Codomain (The equation always has a solution.)

If T(u)=T(v), u = v (The equation has either a unique solution or none.)
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Theorem 8.4:

Implications:
1. (a) - pivots every row(Theorem 5.3); (b) - pivots every column(Proposition 7.2)
2. A is a square matrix and has n pivots to satisfy both onto and one-to-one requirements.

1. Lecture 8 Exercise 18

2. Lecture 8 Exercise 19

4 Matrix Operations

4.1 Matrix Multiplication

Definition:

Row-column Rule:
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Note: The number of columns of A must match the number of rows in B in order for a linear combination
such as Ab to be defined. Also, the definition of AB shows that AB has the same number of rows
as A and the same number of columns as B.

Properties:

4.2 Transpose of a Matrix: exchange (i,j) with (j,i), rows → columns

1. Lecture 9 Exercise 13

5 The Inverse of a Matrix

5.1 Definition

An n× n matrix A is said to be invertible if there is an n× n matrix, denoted by A−1, such that A−1A = I
and AA−1 = I, where I = In is the n× n identity matrix.
Theorem 10.1

Theorem 10.3
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5.2 Finding the Inverse of a Matrix: Theorem 10.5

Note: sometimes determine whether the matrix is invertible first.

1. Find the inverse of the matrix A=

0 1 2
1 0 3
4 −3 8

, if it exists.
2. Find the inverses of the matrices, if they exists. (Practice midterm question 18(e))a a a a

a a a a
a a a a


5.3 Determine a Invertible Matrix: Theorem 10.7

Singular matrix A Non-singular matrix A
Determinant det A = 0 det A ̸= 0
Invertible Matrix Not invertible Invertible
Ax = 0 Many solutions (containing free variables) Only trivial solution
Ax = b Many solutions (containing free variables) Unique solution
If A equivalent to I No, may have an entire row/column equal to 0 Yes
Relationship between A’s column vectors Linearly dependent Linear independent

1. Can a square matrix with 2 identical columns be invertible? Why or why not? (Lecture 10 Exercise
14)

2. Use determinants to decide if the set of vectors is linearly independent. (Practice midterm question 22)

7



6 Determinants

6.1 Definition

Cofactor expansion across the first row of A:
Given A = [aij ], the (i, j)-cofactor of A is the number Cij given by

Cij = (−1)i+j detAij

Then,
detA = a11C11 + a12C12 + . . .+ a1nC1n

6.2 Properties

Theorem 11.2: (Triangular: all entries below the main diagonal is 0.)

Theorem 11.3: ”row” can be replaced by ”column”

Proposition 11.4:

Proposition 11.5:

Theorem 11.6:

Theorem 11.7:
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6.3 Two ways of computing determinant

1) Using cofactor expansion
2) Row reduce to echelon form and use theorem 11.2

6.4 Cramer’s Rule

6.5 Determinants as Area/Volume

Theorem 12.4

1. Lecture 12 Exercise 16

Theorem 12.5/6
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Linear Algebra Final Review (Lec 13-27)

Genghis Luo, Tina Liu

December 8, 2023

1 Vector Space and Subspace

1.1 Vector Space

Definition: A vector space is a nonempty set V of vectors, on which are defined two operations, called
addition and multiplication by scalars, subject to ten axioms.

Example: Polynomial vector space (The set Pn of polynomials of degree at most n):

p(x) = a0 + a1x+ a2x
2 + . . .+ anx

n

1.2 Subspace

Difference between subset and subspace: A subspace not only needs to be a subset of the original vector
space but also must satisfy the ten axioms of a vector space.

Note:
1. Subset is the premise: R2 is not a subspace of R3 because R2 is not even a subset of R3.
2. Every subspace is a vector space.

Describe a subspace: Spanning space and set
Theorem 13.2:
If v1, . . . ,vp are in a vector space V , then Span{v1, . . . ,vp} is a subspace of V .

1.3 Exercises

1. Show that set W is a subspace of the vector space V below.

W = {p ∈ P :
d2p(t)

dt2
= 0}, V = P

2. Let

v1 =

 1
0
−1

 , v2 =

21
3

 , v3 =

42
6

 , w =

31
2


, is w in the subspace spanned by {v1,v2,v3}?
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2 Null Space, Column Space, Row Space

For an m× n matrix A,
The null space is the set of all solutions of the homogeneous equation Ax = 0.
Column/Row space is the span of its columns/rows.

Note:
1. If matrix A represents a function, ColA is the range of the function.
2. Determine whether a linear system has a solution: whether b is in ColA.
3. ColAT = RowA.

2.1 Relations between Concepts

Contrast between NulA and ColA:

2.2 Generalization: Kernel/null space and range of a linear transformation

2.3 Exercises

1. Find an explicit description of Col A and Nul A.

A =

[
2 1 4
0 0 1

]
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2. T : M2×2 → R2, T

([
a b
c d

])
=

[
a d
0 0

]
(a) Show that T is a linear transformation.

(b) Find a 2× 2 matrix A in M2×2 that spans the kernel of T, and describe the range of T.

3 Basis and Dimension

Definition: Let H be a subspace of a vector space V . A set of vectors B in V is a basis for H if:

1. The set is linearly independent.

2. H = SpanB

(Simplified: Let V be a nonzero subspace of Rn, a set of linearly independent vectors that span V is called a basis.)

3.1 Features of Basis

1. A basis is the smallest spanning set.

2. A basis is the largest independent set in the subspace.
Theorem 18.4 The basis theorem:

3. Theorem 18.2

4. The number of vectors in the basis of subspace V is called the dimension of V .

3.2 Basis for NulA, ColA and RowA

Recipes (lecture 16)

Summary: For an m× n matrix A,

Dimension Basis
ColA RankA The pivot columns ofA
NulA Nullity A = n - Rank A The vectors in the parametric form of the solution of Ax = 0
RowA RankA The nonzero rows of the RREF ofA
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Rank = dim Col A = number of pivot columns = number of pivot rows = dim Row A
Nullity = dim Nul A = number of free variables
Rank A + Nullity A = dim V (Theorem 18.5)

Original matrix A VS its RREF U :

For any REF U of a matrix A,
Row U = Row A (because elementary row operations are linear combinations of rows), Col U ̸= Col A

(e.g. elimination results in a row of zeros at the bottom of the matrix, causing the column space to decrease),
and rank remains the same.

3.3 The invertible matrix theorem (continued)

3.4 Exercises

1. Find the basis for the null space of the matrix.1 0 −3 2
0 1 −5 4
3 −2 1 −2


2. Let S = {v1, . . . ,vk} be a set of vectors in Rn, with k < n. Use a theorem from lecture 5 to explain why
S cannot be a basis for Rn.

3. Consider the polynomials p1(t) = 4t − t2, p2(t) = 4 − t2, and p3(t) = 4 − t. Is {p1,p2,p3} a linearly
independent set in P3? Why or why not?

4. Let H be an n-dimensional subspace of an n-dimensional vector space V . Show that H = V .
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4 Coordinate Systems

4.1 Represent Vectors

For a vector space, vectors can be uniquely expressed using the standard basis. (Theorem 17.1 The unique
representation theorem)

B-coordinates of a vector x ([x]B): given a vector space V with basis B = {v1,v2, . . . ,vn}, it represent the
unique set of coefficients such that:

x = x1v1 + x2v2 + . . .+ xnvn

[x]B =


x1

x2

...
xn


Coordinate mapping:

[·]B : V → Rn, x 7→ [x]B

Questions:
1. Find the vector x determined by the given coordinate vector [x]B and the given basis B.
Hint: This vector can be represented as a linear combination of the basis vectors, with the coefficients being
its coordinates.

x = [b1 b2 . . .][x]B = PB[x]B (matrix-vector product)

2. Find the coordinate vector [x]B of x relative to the given basis B.
[x]B = P−1B x.

4.2 Generalization: Change of Basis

PB (PE←B): the change-of-coordinates matrix from B to the standard matrix in Rn.
PC←B: transforms the coordinates from the basis B to C.

Theorem 17.3:

Recipe: Find the change-of-coordinates matrix
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4.3 Exercises

1. Consider the following set of polynomial functions

B = {4 + t+ 2t2, 2t− t2, 1 + 2t3, t3}

(a) Show that these polynomials form a basis of P3.
(b) Let p(t) = 1 + t2. Find the coordinate vector of p relative to B.
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5 Eigenvalues, Eigenvectors and Eigenspaces

5.1 Computation

Step 1: Find the eigenvalues λ

det(A-λI) = 0

Step 2: Find the eigenvectors v⃗ corresponding to each eigenvalue λi

Av⃗ = λiv⃗

Step 3: Find an eigenvector basis {v⃗1, · · · , v⃗k} (k≥1) for each eigenspace Eλi

Eλi ≜ Nul(A-λiI) = span{v⃗1, · · · , v⃗k}
p.s. The eigenspace Eλi

of each eigenvalue λi is the set of all eigenvectors corresponding to λi, denoted as
Nul(A-λiI)

5.2 Key notes [Theorem 20.3]

1. The geometric multiplicity of the eigenvalue λi is the dimension of Eλi
, noted as dim Nul(A-λiI)

2. The algebraic multiplicity of the eigenvalue λi is the power of (λ− λi) in the linear factorization of the
characteristic polynomial

3. The geometric multiplicity of each λi is always smaller or equal to the algebraic multiplicity of each λi

4. For a n×n matrix A, A is diagonalizable if and only if the geometric multiplicity equals the algebraic
multiplicity for every λi, (equivalent to “the sum of geometric multiplicity equals n”).

5. Bi ≜ {v⃗1, · · · , v⃗k} is a (eigenvector) basis of the eigenspace Eλi
. Say λ1, · · · , λp are eigenvalues of A. A

is diagonalizable if and only if the total collection of the (eigenvector) basis for each eigenspace
p⋃

i=1

Bi forms

an eigenvector basis for Rn

5.3 Exercise 5 6 2
0 −1 −8
1 0 −2


1. What are the eigenvalues and corresponding eigenvectors?
2. What are the eigenspaces corresponding to each eigenvalue?
3. What are the algebraic and geometric multiplicity of each eigenvalue?
4. Is this matrix diagonalizable?
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6 Diagonalization

6.1 Diagonalizability

Theorem: For an n×n matrix A, A is diagonalizable if and only if it has n linearly
independent eigenvectors.

p.s. When A has n linearly independent eigenvectors, considering the key note 5 for Theorem 20.3, these
eigenvectors form an eigenvector basis for Rn; considering the key note 4 for Theorem 20.3, the geometric
multiplicity equals to the algebraic multiplicity.

Corollary: Every n×n matrix with n distinct eigenvalues is diagonalizable.

p.s. Every eigenvalue has algebraic multiplicity 1. Since the geometric multiplicity must greater or equal
to 1, and smaller or equal to the algebraic multiplicity, then it is also 1. Then the algebraic multiplicity of
every eigenvalue equals to its geometric multiplicity, equals to 1.

6.2 Computation

If A is diagonalizable, then A = PDP−1, where P = [v1, · · · , vn], D =

λ1

. . .
λn

, and
v1, · · · , vn should be linearly independent eigenvectors corresponding to λ1, · · · , λn

p.s. Be sure to match each eigenvector column in P with each eigenvalue column in D. It is possible that
same eigenvalue appears several times in D, as long as its geometric multiplicity coincides with its algebraic
multiplicity which is given by the diagonalizability.

6.3 Generalization

Question 1: What if we have complex eigenvalues instead of real eigenvalues? In other words, what if the
characteristic polynomial can not be linearly factorized in R?

Example: The characteristic polynomial of A =

[
0 1
−1 0

]
is λ2 +1 = 0, which leads to two complex eigenval-

ues: i and −i. It is not diagonalizable on R, but it is diagonalizable on C. A = PDP−1 where P =

[
−i i
1 1

]
and D =

[
i 0
0 −i

]
Generalization 1 (Lec 22): From real eigenvalues to complex eigenvalues

Remark 1: Not every matrix is diagonalizable. For instance, A =

[
0 1
0 0

]
is not diagonalizable both on R

and C.
Remark 2: For 2×2 real matrix with the complex eigenvalue a−bi and its corresponding complex eigenvector
v⃗ (the other eigenvalue is its conjugation, a+ bi), there exists a real decomposition akin to but not the same

as diagonalization: A = PCP−1, where P=[Rev⃗, Imv⃗], and C=

[
a −b
b a

]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Question 2: Can we learn diagonalizability of linear transformation not only from Rn to Rn (matrices), but
from general vector space to vector space (operators)?

Example: The linear transformation T: P2 → P2 given by T (p⃗) = p⃗(t) + (t + 1)p⃗ ′(t) is diagonalizable since
it has an eigenvector basis {1, 1 + t, (1 + t)2} (Recipe: Lec 21, page 33)

Generalization 2 (Lecture 21): From Rn to general vector space

Remark: [T ]B→C is called the representation matrix of the linear transformation T from V with the basis
B = {b1, · · · , bn} to W with the basis C = {c1, · · · , cm}. [T ]B→C = [[T (b1)]C , · · · , [T (bn)]C ], which should
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be an m × n matrix. [T ]B is the abbreviation of the representation matrix of the linear transformation T
from V to V both with the same basis B = {b1, · · · , bn}, which should be an n× n square matrix.

[T (x)]C = [T ]B→C [x]B

In particular, [T (x)]B = [T ]B [x]B

Thinking point: What are the similarities and differences between representation matrix and the change-
of-coordinates matrix?

6.4 Exercises

1. Diagonalize

 3 0 0
−3 4 9
0 0 3


2. Find an invertible matrix P and a matrix C of the form

[
a −b
b a

]
such that the matrix A=

[
2 2
−1 0

]
has

the form A = PCP−1.

3. Diagonalize the linear transformation T: M2×2 → M2×2, T (

[
a b
c d

]
) =

[
b b
c c

]
4. Suppose that A is a diagonalizable matrix where all the eigenvalues are real. Prove that the rank of A is
the number of nonzero eigenvalues of A, including repetition.
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7 Inner Product, Norm and Orthogonality

7.1 Inner Product

p.s. Inner product needs to be understood as an ”operator” satisfying the four axioms. Dot product is
one of the inner product on Rn.

7.2 Examples for Inner Product (Lec 24)

I. When V=Rn

i. Dot Product: < u⃗, v⃗ > = u⃗ · v⃗ = u⃗⊤v⃗

ii. < u⃗, v⃗ > = au1v1 + bu2v2, for u⃗ =

(
u1

u2

)
, v⃗ =

(
v1
v2

)
II. When V=Pn

i. < p⃗, q⃗ > =
n∑

i=0

p⃗(ti)q⃗(ti) for fixed t0, · · · , tn ∈ R

III. When V=Mm×n

i. < A,B > =
m∑
i=1

n∑
j=1

aijbij

IV . When V = L2 = {f ∈ F :
∫ b

a
f(x)2dx < ∞}, F is the set of all functions f: R → R

i. < f, g > =
∫ b

a
f(x)g(x)dx

V . When V = ℓ2 = {(an)n≥1 :
∞∑

n=1
a2n < ∞}, (an)n≥1 = (a1, a2, a3. · · · ) is an R sequence

i. < (an)n≥1, (bn)n≥1 > =
∞∑

n=1
anbn

10



7.3 Norm

p.s. Norm needs to be understood as a ”function” satisfying the three axioms. The Euclidean magni-
tude/length of the vector on Rn defined by the square root of dot product, is one of the norm on Rn.

7.4 Examples for Norm (Lec 24)

I. When V = R
i. ||x|| = |x|

I. When V = Rn

i. Euclidean Length (ℓ2 norm): ||u⃗|| =
√

n∑
i=1

u2
i =

√
u⃗⊤u⃗ =

√
u⃗ · u⃗

ii. (ℓ1 norm): ||u⃗|| =
n∑

i=1

|ui|

ii. (ℓ∞ norm): ||u⃗|| = max
1≤i≤n

|ui| = max{|u1|, · · · , |un|}

7.5 Relations Between Inner Product Space and Normed Vector Space

Finite Dimensional Vector Space ⊂ Inner Product Space ⊂ Normed Vector Space

Theorem 24.1: Finite Dimensional Vector Space ⊂ Inner Product Space
Every finite dimensional vector space is an inner product space. Moreover, if B is a basis for a vector

space V with dimension n, then an inner product for V is

< u⃗, v⃗ > = [u⃗]B · [v⃗]B

Theorem 24.4: Inner Product Space ⊂ Normed Vector Space
Every inner product space is a normed vector space. Moreover, if V is an inner product space, the

following function

||u⃗|| =
√
< u⃗, u⃗ >

is a norm in V.
Theorem 24.5: Normed Vector Space + Parallelogram Law → Inner Product Space
Let (V, || · ||) be a normed vector space satisfying the following identity: For every u⃗, v⃗ ∈ V,

||u⃗+ v⃗||2 + ||u⃗− v⃗||2 = 2(||u⃗||2 + ||v⃗||2),

11



then there exists an inner product on V such that ||v⃗|| =
√
< v⃗, v⃗ >. Moreover, the function

< u⃗, v⃗ >=
||u⃗+v⃗||2−||u⃗−v⃗||2

4

forms an inner product and satisfies the desired condition.

Two Properties on the Inner Product Space

1. Pythagorean Theorem (Thm 24.2)
Let V be an inner product space and ||u⃗|| =

√
< u⃗, u⃗ > for all u⃗ ∈ V. If u⃗, v⃗ ∈ V is such that < u⃗, v⃗ >= 0,

then

||u⃗+ v⃗||2 = ||u⃗||2 + ||v⃗||2

2. Cauchy-Schwarz Inequality (Thm 24.3)
Let V be an inner product norm and ||u⃗|| =

√
< u⃗, u⃗ > for all u⃗ ∈ V. If u⃗, v⃗ ∈ V, then

| < u⃗, v⃗ > | ≤ ||u⃗|| ||v⃗||

Equality holds if and only if u⃗ and v⃗ are linearly dependent.

7.6 Example of Normed Vector Space but Not Inner Product Space

p.s. We equip R2 with ℓ1 norm that does not satisfy Parallelogram Law, then (R2, || · ||1) is a finite
dimensional normed vector space which is not an inner product space. If we use ℓ2 norm, then (R2, || · ||2) is
an inner product space.

Thinking point: examples of infinite dimensional inner product space; examples of unnormed vector space

7.7 Orthogonality and Orthonormality

• Orthogonality:
We say a set of vectors B = {v⃗1, · · · , v⃗n} is orthogonal in the inner product space V if < v⃗i, v⃗j >= 0 for

every i ̸= j

• Orthonormality:
We say a set of vectors B = {v⃗1, · · · , v⃗n} is orthonormal in the inner product space V if B is orthogonal

and ||vi|| =
√
< v⃗i, v⃗i > = 1 for every i ∈ {1, · · · , n} (An inner product space is a normed vector space)

• Orthogonal/Orthonormal Basis:
A basis that is an orthogonal/orthonormal set

• Orthogonal Complement

12



LetW be a subspace of V. The orthogonal complement of W, denoted by W⊥ = {z⃗ ∈ V : < z⃗, w⃗ > = 0 for all w⃗ ∈ W} ,
is the set of all vectors z⃗ in V that are orthogonal to every vector w⃗ in W.

• Theorem 23.4: Connection Between Row Space, Column Space and Null Space of the Matrix (Rn with dot
product)

Let A be an m× n matrix. Then

(RowA)⊥ = NulA

(ColA)⊥ = NulAT

p.s. The geometric interpretation of row space is the largest subspace that makes A, as a linear transformation,
injective.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
• Theorem 26.1: An m × n matrix U has orthonormal columns (the column vectors form an orthonormal
set) if and only if UTU = In.

• Theorem 26.2: Let U be an m × n matrix with orthonormal columns, and let x⃗ and y⃗ in Rn. Then

1. ||Ux⃗|| = ||x⃗||
2. (Ux⃗) · (Uy⃗) = x⃗ · y⃗

3. (Ux⃗) · (Uy⃗) = 0 if and only if x⃗ · y⃗ = 0

p.s. U is called orthogonal matrix if it is a square matrix, in other words, m=n.

7.8 Exercises

1. Verify all the examples for inner product and examples for norm
2. Prove the Bessel’s inequality: Let V be a finite dimensional inner product space and suppose {⃗b1, · · · , b⃗n}
is an orthonormal basis in V. Then, for every x⃗ ∈ V, we have

n∑
k=1

| < x⃗, b⃗k > |2 ≤ ||x⃗||2

3. Prove Parseval’s identity: Let {u⃗1, · · · , u⃗n} be an orthonormal basis of an inner product space V. Show
that, for every v⃗, w⃗ ∈ V:

< v⃗, w⃗ > =
n∑

i=1

< v⃗, u⃗i >< w⃗, u⃗i >

13



8 Orthogonal Projection and the Gram-Schmidt Process

We only consider Rn with dot product in orthogonal projection as well as the Gram-Schmidt Process in this
course. In fact, all of them can be generalized to inner product space.

8.1 The Orthogonal Projection

The orthogonal projection of y⃗ onto W, a subspace of Rn with an orthogonal basis {u⃗1, · · · , u⃗p}, is denoted
as

projW y⃗ = y⃗·u⃗1

u⃗1·u⃗1
u⃗1 + · · ·+ y⃗·u⃗p

u⃗p·u⃗p
u⃗p

The vector z⃗ = y⃗ − projW y⃗ is called the component of y⃗ orthogonal to W.
Theorem 25.3 (The Orthogonal Decomposition Theorem) guarantees that the projW y⃗ ∈ W and z⃗ ∈ W⊤

are unique.

• Theorem 25.4: The Best Approximation Theorem
Let W be a subspace of Rn, let y⃗ be any vector in Rn, and let projW y⃗ be the orthogonal projection of y⃗

onto W. Then projW y⃗ is the closest point in W to y⃗, in the sense that

||y⃗ − projW y⃗|| < ||y⃗ − v⃗||
for all v⃗ in W distinct from projW y⃗.
p.s. projW y⃗ is the best approximation.
• Theorem 26.3: An Alternative Way to Calculate Orthogonal Projection

p.s. Normalize the orthogonal basis into orthonormal basis

14



8.2 The Gram-Schmidt Process

The goal of the Gram-Schmidt Process is to find an orthogonal (and orthonormal) basis for any nonzero
subspace of Rn. It is generated by a given basis.

8.3 QR Factorization/Decomposition

It is a natural deduction from the Gram-Schmidt Process.

Theorem 26.6
If A is an m × n matrix with linearly independent columns, then A can be factored as A = QR, where Q

is an m × n matrix whose columns form an orthonormal basis for Col A and R is an n × n upper triangular
matrix with positive entries on its diagonal.

Example

A =


1 0 0
1 1 0
1 1 1
1 1 1

 =


1/2 −3/

√
12 0

1/2 1/
√
12 −2/

√
6

1/2 1/
√
12 1/

√
6

1/2 1/
√
12 1/

√
6


2 3/2 1

0 3/
√
12 2/

√
12

0 0 2/
√
6

 = QR
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8.4 Exercises

1. Let y⃗ =

33
3

 and u⃗ =

 1
−1
2

. Write y⃗ as the sum of two orthogonal vectors, one in Span{u⃗} and the other

one orthogonal to u⃗.

2. Find the closest point and the best approximation to y⃗ in the subspace W spanned by v⃗1 and v⃗2.

y⃗ =

42
0

 , v⃗1 =

12
1

 , v⃗2 =

−2
0
2


3. Let u⃗ and v⃗ be vectors in Rn. Show that projspan{v⃗} u⃗ = 0⃗ if and only if u⃗ and v⃗ are orthogonal.
4. The given set is a basis for a subspace W. Use the Gram-Schmidt Process to produce an orthogonal basis
for W. 01

1

 ,

−1
1
0

 ,

13
1


5. Verify the QR-Factorization of

A =


1 0 0
1 1 0
1 1 1
1 1 1


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