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1 Linear System

Fundamental Question: How to solve a linear system?
The fundamental question in Linear Algebra is how to solve the linear sys-
tem AX=b. In other words,

anxy+ apxo+ -+ apxy = by
ap1x1 + apxy + -+ + axyxy = by

A1 X1 + Ay X2 + -+ AnXy = by

Where
ap a4 - ai X1 by
a1 axp e Ay . X2 - by
Am,n - . . . . 7 X = . 7 b - .
Apl  Am2 - Amn Xn b

The most fundamental way to solve this linear system is by elementary row
operations, which is also called Gaussian Elimination:

!! Please remember it is the only way for you to solve linear systems in the Linear Algebra course.

1. First, we find the augmented matrix of the linear system (x) :

ann a4 - a4y | b
ayy axp -+ ay | b
* A —
mmn+1 — (A|b) - . .
Ayl A2 - Gmn | bm

2. Second, we do elementary row operations to reduce the augemented
matrix A, ; into the Reduced Echelon Form. Then based on the reduced
echelon form, we determine the free variables and find the solution(s) (or no

solution). There are several cases:



L. If m#n (in other words, A is not a sqaure matrix)

Thinking Point: If m#n, the linear system (x) can not have a unique
solution. Either it has at least 1 free variable, or it is inconsistent.

For A} . (m#n), either the leading entry 1 of every row is not in the per-

fect order to form an upper triangle matrix, or there is even no leading entry 1
for some rows (exist all-zero rows).

In such cases, the linear system turns out to be:

a. Situation of misaligned leading entries

1 % 0 b,
A= 01 0 0]
mmn+1 — . . .
000 --- 1]|b),

Thinking Point: Here specifically, m=n-1, and x; is the free variable
b. Situation of existing all-zero rows

1 v,
b/
A%,n+1 = .2
S :
!
o0 --- 0 bm

Thinking Point: Here if b;n =0, then x,, is the free variable; if b;n =0, then
(*) is inconsistent.

c. Situation of the mixture

1 % 0 0 .
0 0 0 i

A:n,n-&-l: . . g
00 0 0|b

II. If m=n (in other words, A is a square matrix)

In this situation, A] , . ; canstill have the problem of misalignment, existing
all-zero rows, as well as the mixture.

Thinking Point: For A is square, if one misalignment exists, then at least
one existing all-zero row exists.

However, A] |, is possible to be in this perfect reduced echelon form:

A

r _
nn+l —



In this situation, the linear system () is consistent. Moreover, it has a
unique solution:

X1 by
N b,
X = . = .

Xn b’

2 Linear Combinations and Spanning

Solving a linear system (*) has some geometric meanings.
First, let’s rewrite Ay, ,:

a1 412 A1n
a1 a2 @Dn | o - -
Appn = : £ [A;, A, Ayl
Aml  Am2 Amn
where
ay;
o ay;
A= .
Api

Then we can rewrite the linear system () as:
span{ffl,ffz, Ay = Avxy + Ao -+ Agxy = b

Now we can say:

If b lies on the span of columns of the coefficient matrix A, then the linear
system (x) has a solution, in other words, (*) is consistent.

3 Exercises
1. Solve the following linear systems:

X1+ x4+ x3=1
X1 —|—2x2+3x3 =2 (1)
6x1+7x2 +8x3 =3

X1 +2x0+ x3=1
2x1+7x2 4+ 3x3 =5 (2)
3x1+5x2 +6x3 =0



X1+2x0+ x34+ x4=1
2x1 +4xy +2x3 +5x4 =2 3)
3x1 4 5xp + 6x3 =3
2x1+4xp +2x3+ x4 =2

X1 4+2x+ x3+ x4=1
2x1 +4xy +2x3+2x4 =3 (4)
X1 +3x+5x3+2x4 =1

x1+2x+ x3=1 (5)
2x1+4xp +3x3 =5

2. Determine the values(s) of h such that the matrix is the augmented matrix
of a consistent linear system.

@l ¢ 7
ol W)

3. Suppose a system is a linear equation has a 3 x 5 augmented matrix
whose fifth column is a pivot column. Is the system consistent? Why (or why
not)?

4. What would you have to know about the pivot columns in an reduced
echelon form in order to know that the linear system is consistent and has a
unique solution?

5. A system of linear equations with fewer equation then unknowns is
sometimes called an underdetermined system.

Suppose that such a system happens to be consistent. Explain, using pivots,
why there must be an infinite number of solutions.

6. A system of linear equations with more equations than unknowns is
sometimes called an overdetermined system. Can such a system be consistent?
Mlustrate your answer with a specific system of three equations in two variables
where there is exactly one solution.

p-s. At the end, there is a Youtube video series I would love to recommend
you! It visualizes the linear transformation by a matrix and provides you with
a geometric sense on Linear Algebra. Feel free to check it! Essence of Linear
Algebra


https://www.youtube.com/watch?v=fNk_zzaMoSs&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab
https://www.youtube.com/watch?v=fNk_zzaMoSs&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab

Midterm Review Session

Yuhan Liu
October 17, 2023

1 The Matrix Equation Ax =b

1.1 Theorem 5.1——How to view the matrix equation?
If A is an m x n matrix, with columns ay, ..., a,, and if b is in R™, the matrix
equation
Ax=b 4)

has the same solution set as the vector equation
xja; +xa, +---+x,a, =b )

which, in turn, has the same solution set as the system of linear equations whose
augmented matrix is

[a1 a» --- a, b] 6)
Implication: Matrix equation = Vector equation (Matrix-vector product) = System of
Linear equations
1.2 Theorem 5.3——How to determine the existence of solutions?

Let A be an m x n matrix. Then the following statements are logically equivalent.
That 1s, for a particular A, either they are all true statements or they are all false.
a. Foreach b in R™, the equation Ax = b has a solution.

b. Each b in R™ is a linear combination of the columns of A.

c. The columns of A4 span R™.
d

. A has a pivot position in every row.

Note: A is a coefficient matrix, not an augmented matrix. If an augmented matrix [A b] has a
pivot position in every row, then the equation Ax = b may or may not be consistent.
Recipe: Row reduce A and use (d) to deduct the conclusions in (a), (b), (c).

1. Could a set of three vectors in R* span all of R*? Justify. (Lecture 5)

3 —4 b1
2. Let A= |1 —1| and b = [be|. Show that the equation Ax = b does not have a solution for all
-2 1 b3

possible b, and describe the set of all b for which Ax = b does have a solution.



2 Linear Independence

Homogeneous equations always has a trivial solution (x = 0).

2.1 Parametric vector form

Recipe:

WRITING A SOLUTION SET (OF A CONSISTENT SYSTEM)
IN PARAMETRIC VECTOR FORM

1. Row reduce the augmented matrix to reduced echelon form.

2. Express each basic variable in terms of any free variables appearing in an
equation.

3. Write a typical solution x as a vector whose entries depend on the free
variables, if any.

4. Decompose X into a linear combination of vectors (with numeric entries) using
the free variables as parameters.

1. Write the solution set of the given homogeneous system in parametric vector form. (Lecture 6)

—3x1 4+ 522+ T3 =0
—6£C1 + 7(E2 +x3 = 0

2.2 Definitions of linear independence and linear dependence

An indexed set of vectors {vi,...,v,}in R" is said to be linearly independent if
the vector equation

XiVi + XV + -+ xp,v, =0

has only the trivial solution. The set {v;.....V,} is said to be linearly dependent
if there exist weights ¢y, ..., ¢, not all zero, such that
Vi + vy 4o+ v, =0 (2)

Note: Equation (2) is called a linear dependence relation among Vi, ..., V, when the weights are not
all zero. An indexed set is linearly dependent if and only if it is not linearly independent.

2.3 Proposition 7.2 ——How to determine?

The columns of a matrix A are linearly independent if and only if the equation
Ax = 0 has only the trivial solution. (3)

Recipe:

1. Row reduce the augmented matrix to REF.

2. Identify if there is a free variable.

3. (Yes) At least a nonzero solution; (No) Only a trivial solution of Ax = 0.
4. Use Proposition 7.2.



2.4 Theorem 7.5

Characterization of Linearly Dependent Sets

An indexed set S = {vi,...,Vv,} of two or more vectors is linearly dependent if
and only if at least one of the vectors in S is a linear combination of the others. In
fact, if S is linearly dependent and v, # 0, then some v; (with j > 1) is a linear
combination of the preceding vectors, vi,...,v;_i.

Note: It does not say that every vector in a linearly dependent set is a linear combination of the preceding
vectors. A vector in a linearly dependent set may fail to be a linear combination of the other vectors.

2.5 Theorem 7.6——When columns > rows

If a set contains more vectors than there are entries in each vector, then the set
is linearly dependent. That is, any set {v;,...,v,} in R" is linearly dependent if
p > n.

1. Determine if the columns of the matrix form a linearly independent set. Justify. (Lecture 7 exercise 3)

1 4 -3 0
-2 -7 5 1
-4 -5 7 5

3 Linear Transformation

3.1 Transformation

A transformation (or function or mapping) 7' from R™ to R™ is a rule that assigns to each vector x in R" a
vector T'(x) in R™.

e The set R™ is called the domain of T, and R™ is called the codomain of T.
e The vector T(x) in R™ is called the image of x (under the action of T).

e The set of all images T'(x) is called the range of T.

Domain Codomain

FIGURE 2 Domain, codomain, and range of
T:R"— R"™.
3.2 Linear Transformation

A transformation (or mapping) 7 is linear if
Definition:  (§) T(u 4 v) = T(u) + T(v) forall u,v in the domain of T;
(i) T(cu) = ¢T(u) for all scalars ¢ and all u in the domain of T'.

Properties: Proposition 8.1



If T is a linear transformation, then
TO)=0 (3)
and
T(cu+dv)=cT()+dT(v) 4

for all vectors u, v in the domain of 7" and all scalars ¢, d.

Note: Always used to solve proof problems.

1. Suppose vectors vi,...,v, span R”, and let 7' : R™ — R™ be a linear transformation. Suppose
T(v;) =0 for all 1 < i < p. Show that T is the zero transformation. That is, show that if x is any
vector in R", then T'(x) = 0. (Lecture 8 Exercise 9)

2. Let T : R™ — R™ be a linear transformation, and let {vy,...,v3} be a linearly dependent set in R".
Explain why the set {T'(v1),T(v2),...,T(vs)} is linearly dependent. (Lecture 8 Exercise 13)

3.3 The Matrix of a Linear Transformation

Let T : R"” — R"™ be a linear transformation. Then there exists a unique matrix 4
such that

T(x) = Ax forallxinR"

In fact, A is the m x n matrix whose jth column is the vector 7'(e;), where e; is
the jth column of the identity matrix in R":

A=[T() - T(e)] (3)

PROOF Writex = ,x =[e; --- €,]x = xie] +--- + X,€,, and use the linearity
of T to compute

T(x)=T(xier + -+ xpe5) = x17(e1) + --- + x,T'(ey)

X1
=[T() - T()]| : |=A4x
Xn

The uniqueness of A is treated in Exercise 41. |

Note: A is the standard matrix of the Linear Transformation.

1. Lecture 8 Exercise 15

3.4 Onto VS One-to-one

A mapping T : R" — R"™ is said to be onto R™ if each b in R™ is the image of at
least one x in R".

Range = Codomain (The equation always has a solution.)

A mapping T : R" — R™ is said to be one-to-one if each b in R™ is the image of
at most one X in R”.

If T(uw)=T(v), u = v (The equation has either a unique solution or none.)




® Y b Y

B b

B "B

o [

In] D

f:8->7 T =N f:R->R f:R->R
f: R->7 N
onto one-to-one one-to-one jyonto neither not a function

surjection injection bijection

Theorem 8.4:

Let T : R” — R™ be a linear transformation, and let A be the standard matrix for
T. Then:

a. T maps R" onto R™ if and only if the columns of A span R™;

b. T is one-to-one if and only if the columns of A are linearly independent.

Implications:

1. (a) - pivots every row(Theorem 5.3); (b) - pivots every column(Proposition 7.2)
2. A is a square matrix and has n pivots to satisfy both onto and one-to-one requirements.

1. Lecture 8 Exercise 18

2. Lecture 8 Exercise 19

4 Matrix Operations

4.1 Matrix Multiplication

If A is an m x n matrix, and if B is an# x p matrix with columns by, . .., b, then
Definition: the product AB is the m x p matrix whose columns are Ab,..... Ab,. That is,
AB =A[b; by -+ b,]=[Ab; Ab, --- Ab,]

ROW-COLUMN RULE FOR COMPUTING AB

If the product AB is defined, then the entry in row 7 and column j of AB is the
R 1 Rule: sum of the products of corresponding entries from row / of 4 and column j of
ow-column hule: B.1f (AB);; denotes the (i, j)-entry in AB. and if A is an m x n matrix, then

(AB)ij = ajbij + aizbaj + -+ + dinby;

EXAMPLE 6 Find the entries in the second row of AB, where
-5
j 3 72 4 -6
A= ’ R B=1|7 1
6 -8 -7 3 9
-3 0 9 N

SOLUTION By the row—column rule, the entries of the second row of AB come from
row 2 of A (and the columns of B):

2 -5 0 i é_

—~| =1 3 4| ’1

6 -8 7153

-3 0 9 -
O O 0 O

| —4+21-12 6+3-8| |5 1 -

- O O “lo O
O O |0 O



Note: The number of columns of A must match the number of rows in B in order for a linear combination
such as Ab to be defined. Also, the definition of AB shows that AB has the same number of rows
as A and the same number of columns as B.

Let A be an m x n matrix, and let B and C have sizes for which the indicated
sums and products are defined.

a. A(BC) = (4B)C (associative law of multiplication)

b. A(B+C)=AB + AC (left distributive law)

c. (B+C)A=BA+CA (right distributive law)

r(AB) = (rA)B = A(rB)

for any scalar r

Properties:

=

e. [,A=A=A4I, (identity for matrix multiplication)
4.2 Transpose of a Matrix: exchange (i,j) with (j,i), rows — columns

Let A and B denote matrices whose sizes are appropriate for the following sums
and products.

a. (AN =4

b. (A+B)" =47 + BT

c. Forany scalar r, (rd)T = rA”
d. (AB)T = BTAT

1. Lecture 9 Exercise 13

5 The Inverse of a Matrix

5.1 Definition

An n x n matrix A is said to be invertible if there is an n x n matrix, denoted by A~!, such that A=1A =1
and AA~! = I, where I = I,, is the n x n identity matrix.
Theorem 10.1

Let A = I:c; b ] If ad — bc # 0, then A is invertible and

d
_ 1 d —b
AT =
ad—bcl:*ﬂ' a]

If ad — bc = 0, then A is not invertible.

Theorem 10.3

a. If A is an invertible matrix, then A" is invertible and
AahH'=4

b. If A and B are n x n invertible matrices, then so is AB, and the inverse of AB
is the product of the inverses of A and B in the reverse order. That is,

(ABy ' =B 14!

c. If Ais an invertible matrix, then sois A7, and the inverse of A7 is the transpose
of A~!. That is,
(AT)fl — (Afl)T



5.2 Finding the Inverse of a Matrix: Theorem 10.5

An n x n matrix A is invertible if and only if A is row equivalent to [,, and in
this case, any sequence of elementary row operations that reduces A4 to [, also
transforms /,, into A,

Note: sometimes determine whether the matrix is invertible first.

0o 1 2
1. Find the inverse of the matrix A= [1 0 3|, if it exists.
4 -3 8

2. Find the inverses of the matrices, if they exists. (Practice midterm question 18(e))
a a a a

a a a a
a a a a
5.3 Determine a Invertible Matrix: Theorem 10.7

The Invertible Matrix Theorem

Let A be asquare n x n matrix. Then the following statements are equivalent. That
is, for a given A, the statements are either all true or all false.

A is an invertible matrix.

A is row equivalent to the n x n identity matrix.

A has n pivot positions.

The equation Ax = 0 has only the trivial solution.

The columns of A form a linearly independent set.

The linear transformation x — AX is one-to-one.

The equation Ax = b has at least one solution for each b in R”.

F R =0 &80 o p

The columns of A span R”.

[

The linear transformation x > Ax maps R” onto R”.
There is an n x n matrix C suchthat CA = I.
. There is an n x n matrix D such that AD = I.

e

1. AT is an invertible matrix.

Singular matrix A Non-singular matrix A
Determinant det A=0 det A #£0
Invertible Matrix Not invertible Invertible
Az =0 Many solutions (containing free variables) Only trivial solution
Az =b Many solutions (containing free variables) Unique solution
If A equivalent to I No, may have an entire row/column equal to 0 Yes
Relationship between A’s column vectors Linearly dependent Linear independent

1. Can a square matrix with 2 identical columns be invertible? Why or why not? (Lecture 10 Exercise
14)

2. Use determinants to decide if the set of vectors is linearly independent. (Practice midterm question 22)



6 Determinants

6.1 Definition

For n > 2, the determinant of an n x n matrix A = [a;;] is the sum of n terms
of the form £a; det A,;, with plus and minus signs alternating, where the entries
aii.di, ... ,di, are from the first row of A. In symbols,

detA = ayydetAyy —apdetAp +--- + (—1)1"'"511,, det Ay,

n
=Y (-D'"ay; det Ay,
j=l1

Cofactor expansion across the first row of A:
Given A = [a;;], the (i, j)-cofactor of A is the number C;; given by

Ci‘ = (—1)i+j det Aij
Then,
det A =a11C11 +a12C12 + ... + a1,C1n

6.2 Properties

Theorem 11.2: (Triangular: all entries below the main diagonal is 0.)

If A is a triangular matrix, then det A is the product of the entries on the main
diagonal of A.

Theorem 11.3: ”row” can be replaced by ”column”

Row Operations

Let A be a square matrix.

a. If a multiple of one row of A is added to another row to produce a matrix B,
then det B = det A.

b. If two rows of A are interchanged to produce B, then det B = —det A.

c. If one row of A is multiplied by k to produce B, then det B = k det A.

product of

=D
Proposition 11.4: detd = pivots in U
0 when A is not invertible

) when A is invertible

Proposition 11.5: A square matrix A is invertible if and only if det 4 # 0.
Theorem 11.6: If A is an n X n matrix, then det AT = det A.

Multiplicative Property

Theorem 11.7: If A and B are n x n matrices, then det AB = (det A)(det B).



2 -8 6 8
EXAMPLE 2 Compute det A, where A = _; 78 i _1(2)
1 -4 0 6

SOLUTION To simplity the arithmetic, we want a 1 in the upper-left corner. We could
interchange rows 1 and 4. Instead, we factor out 2 from the top row, and then proceed
with row replacements in the first column:

1 -4 3 4 1 -4 3 4
3.9 5 10 0 3 -4 -2
detA=2_ 3 o 1 —2/=2%0 -12 10 10
1 -4 0 6 0 0 -3 2

Next, we could factor out another 2 from row 3 or use the 3 in the second column as a
pivot. We choose the latter operation, adding 4 times row 2 to row 3:

1 —4 3 4
0 3 —4 —2
detd=2{1 o o
0 0 -3 2

Finally, adding —1/2 times row 3 to row 4, and computing the “triangular” determinant,
we find that

4
2l =200@)=6)1) = -36 n
1

6.3 Two ways of computing determinant

1) Using cofactor expansion
2) Row reduce to echelon form and use theorem 11.2

6.4 Cramer’s Rule

Cramer’s Rule

Let A be an invertible n x n matrix. For any b in R”, the unique solution x of
Ax = b has entries given by

_ detd;(b)

i=1,2,..., 1
det A ! " M

i

6.5 Determinants as Area/Volume

Theorem 12.4

If A is a2 x 2 matrix, the area of the parallelogram determined by the columns of
Ais |det A|. If A is a 3 x 3 matrix, the volume of the parallelepiped determined
by the columns of A is |det A|.

1. Lecture 12 Exercise 16

Theorem 12.5/6



The conclusions of Theorem 10 hold whenever S is a region in R? with finite area
or a region in R? with finite volume.

References

10



Linear Algebra Final Review (Lec 13-27)

Genghis Luo, Tina Liu
December 8, 2023

1 Vector Space and Subspace

1.1 Vector Space

Definition: A vector space is a nonempty set V of vectors, on which are defined two operations, called
addition and multiplication by scalars, subject to ten axioms.

Example: Polynomial vector space (The set P, of polynomials of degree at most n):

p(x) = ao + a1x + axx® + ...+ a,a”

1.2 Subspace

Difference between subset and subspace: A subspace not only needs to be a subset of the original vector
space but also must satisfy the ten axioms of a vector space.

A subspace of R” is any set H in R" that has three properties:

a. The zero vectoris in H.
b. Foreachuand vin A, the sumu + visin H.
c. Foreachuin H and each scalar ¢, the vector cu is in H.

Note:
1. Subset is the premise: R? is not a subspace of R? because R? is not even a subset of R3.
2. Every subspace is a vector space.

Describe a subspace: Spanning space and set
Theorem 13.2:
If vq,...,Vvp are in a vector space V, then Span{vy,...,v,} is a subspace of V.

1.3 Exercises

1. Show that set W is a subspace of the vector space V' below.

d*p(t)

W = P =0 V=P
{pe 2 h
2. Let
1 2 4 3
V] = 0 s Vo = 1 y V3 = 2 y w= |1
-1 3 6 2

, is w in the subspace spanned by {v1,va,vs}?



2 Null Space, Column Space, Row Space

For an m x n matrix A,
The null space is the set of all solutions of the homogeneous equation Ax = 0.
Column/Row space is the span of its columns/rows.

Note:
1. If matrix A represents a function, ColA is the range of the function.

2. Determine whether a linear system has a solution: whether b is in ColA.
3. ColA” = RowA.

2.1 Relations between Concepts

Contrast between Nul4 and ColA:

NulA

Col A

. Nul A4 is a subspace of R”.

. Nul A is implicitly defined; that is, you are
given only a condition (Ax = 0) that vec-
tors in Nul A must satisfy.

. It takes time to find vectors in Nul A. Row

operations on [ A 0] are required.

. There is no obvious relation between Nul A

and the entries in A.

. A typical vector v in Nul A has the property
that Av = 0.

. Given a specific vector v, it is easy to tell if
visin Nul A. Just compute Av.

. Nul A = {0} if and only if the equation
Ax = 0 has only the trivial solution.

. Nul A = {0} if and only if the linear trans-

. Col A is a subspace of R™.
. Col A is explicitly defined; that is, you are

told how to build vectors in Col A.

. It is easy to find vectors in Col A. The

columns of A are displayed; others are
formed from them.

. There is an obvious relation between Col A

and the entries in A, since each column of
A 1s in Col A.

. A typical vector v in Col A has the property

that the equation Ax = v is consistent.

. Given a specific vector v, it may take time

to tell if v is in Col A. Row operations on
[ A v]are required.

. Col A = R™ if and only if the equation

Ax = b has a solution for every b in R™.

. Col A = R™ if and only if the linear trans-

formation X > AXx is one-to-one. formation x — Ax maps R” onto R™.

2.2 Generalization: Kernel/null space and range of a linear transformation

Kernel is a
subspace of V

Range is a
subspace of W

FIGURE 2 Subspaces associated with
a linear transformation.

2.3 Exercises

1. Find an explicit description of Col A and Nul A.

2 1 4
A:[OOI]



) 2 a b\ |a d
2 o, o[ 1) =[o

(a) Show that T is a linear transformation.
(b) Find a 2 x 2 matrix A in Msxo that spans the kernel of T, and describe the range of T.

3 Basis and Dimension

Definition: Let H be a subspace of a vector space V. A set of vectors B in V is a basis for H if:
1. The set is linearly independent.
2. H = SpanB

(Simplified: Let V' be a nonzero subspace of R", a set of linearly independent vectors that span V is called a basis.)

3.1 Features of Basis

1. A basis is the smallest spanning set.

2. A basis is the largest independent set in the subspace.
Theorem 18.4 The basis theorem:

The Basis Theorem

Let H be a p-dimensional subspace of R". Any linearly independent set of exactly
p elements in H is automatically a basis for H. Also, any set of p elements of H
that spans H is automatically a basis for H.

3. Theorem 18.2

If a vector space V' has a basis of n vectors, then every basis of V' must consist of
exactly n vectors.

4. The number of vectors in the basis of subspace V is called the dimension of V.

3.2 Basis for NulA, ColA and RowA
Recipes (lecture 16)

Summary: For an m x n matrix A,

Dimension Basis
ColA RankA The pivot columns of A
NulA | Nullity A =n - Rank A | The vectors in the parametric form of the solution of Ax =0
RowA RankA The nonzero rows of the RREF ofA




Rank = dim Col A = number of pivot columns = number of pivot rows = dim Row A
Nullity = dim Nul A = number of free variables
Rank A + Nullity A = dim V (Theorem 18.5)

Original matrix A VS its RREF U:

For any REF U of a matrix A,
Row U = Row A (because elementary row operations are linear combinations of rows), Col U # Col A

(e.g. elimination results in a row of zeros at the bottom of the matrix, causing the column space to decrease),
and rank remains the same.

3.3 The invertible matrix theorem (continued)

The Invertible Matrix Theorem (continued)

Let A be an n x n matrix. Then the following statements are each equivalent to
the statement that A is an invertible matrix.

m. The columns of A form a basis of R”.

n. ColA =R"

0. rank A =n

p- dimNul4 =0
q. Nul A = {0}

3.4 Exercises

1. Find the basis for the null space of the matrix.

1 0 -3 2
0 1 -5 4
3 -2 1 =2

2. Let S ={vy,...,vi} be a set of vectors in R", with k¥ < n. Use a theorem from lecture 5 to explain why
S cannot be a basis for R"™.

3. Consider the polynomials py(t) = 4t — t2, po(t) = 4 — t2, and p3(t) = 4 — t. Is {p1, P2, p3} a linearly
independent set in P37 Why or why not?

4. Let H be an n-dimensional subspace of an n-dimensional vector space V. Show that H = V.



4 Coordinate Systems

3b

(a) (b)

FIGURE 1 Two coordinate systems for the same vector space.

4.1 Represent Vectors

For a vector space, vectors can be uniquely expressed using the standard basis. (Theorem 17.1 The unique
representation theorem)

B-coordinates of a vector x ([x]z): given a vector space V with basis B = {v1,va,...,Vv,}, it represent the
unique set of coefficients such that:

X =21V]y +2X2Vy + ... +2T,Vp

T
T
(x| =

Tn

Coordinate mapping:

[']B:V%Rn, X'—)[X]B

Questions:
1. Find the vector x determined by the given coordinate vector [x]z and the given basis B.

Hint: This vector can be represented as a linear combination of the basis vectors, with the coefficients being

its coordinates.
x = [bybe ...][x]g = Pg[x]p (matrix-vector product)

2. Find the coordinate vector [x]p of x relative to the given basis 5.

[x]p = Pglx.

4.2 Generalization: Change of Basis

Py (Pgp): the change-of-coordinates matrix from B to the standard matrix in R”.
Po . p: transforms the coordinates from the basis B to C.

Theorem 17.3:

Let B={by,...,b,} and C = {ci,..., ¢, } be bases of a vector space V. Then

there is a unique n X 1 matrix C£B such that

[x], = Lslx]y, “)

The columns of £3 are the C-coordinate vectors of the vectors in the basis B.
That is,
Lu=[bie [l - [be] (6)]

Recipe: Find the change-of-coordinates matrix



Recipe
Algorithm to find the matrix Pz, 5 from basis

i BT Gl G EIST O PR e ] L
1. Write the augmented matrix

{E’l Eadas: E)I‘bl bir}

2. Find the RREF. We must reach
UH|PC~;—BJ

3. The matrix on the right of the augmented matrix is
the matrix Peo 3.

4.3 Exercises

1. Consider the following set of polynomial functions
B={4+t+2% 2t —t* 1+ 263 13}

(a) Show that these polynomials form a basis of Ps.
(b) Let p(t) = 1 +t2. Find the coordinate vector of p relative to B.



5 Eigenvalues, Eigenvectors and Eigenspaces

5.1 Computation
Step 1: Find the eigenvalues A

det(A-AD) = 0
Step 2: Find the eigenvectors ¢ corresponding to each eigenvalue \;
Av = \U
Step 3: Find an eigenvector basis {v7,--- ,v;} (k>1) for each eigenspace Fj,

E\, 2 Nul(A-)\1) = span{v, - - -, i}

p.s. The eigenspace E, of each eigenvalue A; is the set of all eigenvectors corresponding to A;, denoted as
Nul(A-\D)

5.2 Key notes [Theorem 20.3]
1. The geometric multiplicity of the eigenvalue A; is the dimension of E},, noted as dim Nul(A-A,I)

2. The algebraic multiplicity of the eigenvalue \; is the power of (A — A;) in the linear factorization of the
characteristic polynomial

3. The geometric multiplicity of each \; is always smaller or equal to the algebraic multiplicity of each \;

4. For a nxn matrix A, A is diagonalizable if and only if the geometric multiplicity equals the algebraic
multiplicity for every A;, (equivalent to “the sum of geometric multiplicity equals n”).

5. B; = {vi, -+ ,vL} is a (eigenvector) basis of the eigenspace E,. Say A1, -+, A, are eigenvalues of A. A
p
is diagonalizable if and only if the total collection of the (eigenvector) basis for each eigenspace |J B; forms

i=1
an eigenvector basis for R™

5.3 Exercise

5 6 2
0 -1 -8
1 0 =2

1. What are the eigenvalues and corresponding eigenvectors?

2. What are the eigenspaces corresponding to each eigenvalue?

3. What are the algebraic and geometric multiplicity of each eigenvalue?
4. Is this matrix diagonalizable?



6 Diagonalization

6.1 Diagonalizability

Theorem: For an nxn matrix A, A is diagonalizable if and only if it has n linearly
independent eigenvectors.

p-s. When A has n linearly independent eigenvectors, considering the key note 5 for Theorem 20.3, these
eigenvectors form an eigenvector basis for R"; considering the key note 4 for Theorem 20.3, the geometric
multiplicity equals to the algebraic multiplicity.

Corollary: Every nxn matrix with n distinct eigenvalues is diagonalizable.

p.s. Every eigenvalue has algebraic multiplicity 1. Since the geometric multiplicity must greater or equal
to 1, and smaller or equal to the algebraic multiplicity, then it is also 1. Then the algebraic multiplicity of
every eigenvalue equals to its geometric multiplicity, equals to 1.

6.2 Computation
A1
If A is diagonalizable, then A = PDP™!, where P = [v1, - ,v,], D = , and
An

vy, -+, U, should be linearly independent eigenvectors corresponding to Ay, -+, A\,

p-s. Be sure to match each eigenvector column in P with each eigenvalue column in D. It is possible that
same eigenvalue appears several times in D, as long as its geometric multiplicity coincides with its algebraic
multiplicity which is given by the diagonalizability.

6.3 Generalization

Question 1: What if we have complex eigenvalues instead of real eigenvalues? In other words, what if the
characteristic polynomial can not be linearly factorized in R?

0 1} is A2 41 = 0, which leads to two complex eigenval-

Example: The characteristic polynomial of A = {_1 0

ues: i and —i. It is not diagonalizable on R, but it is diagonalizable on C. A = PDP~! where P = [_12 ﬂ
i 0

and D = [O —z}

Generalization 1 (Lec 22): From real eigenvalues to complex eigenvalues

8 (1)] is not diagonalizable both on R

Remark 1: Not every matrix is diagonalizable. For instance, A = {

and C.
Remark 2: For 2 x 2 real matrix with the complex eigenvalue a — bi and its corresponding complex eigenvector
¥ (the other eigenvalue is its conjugation, a + bi), there exists a real decomposition akin to but not the same

as diagonalization: A = PCP~!, where P=[Re?, Im&], and C= {Z _ab]

Question 2: Can we learn diagonalizability of linear transformation not only from R™ to R™ (matrices), but
from general vector space to vector space (operators)?

Example: The linear transformation T: Po — Py given by T'(p) = p(t) + (¢ + 1)p’(¢) is diagonalizable since
it has an eigenvector basis {1,1+t, (1 +t)?} (Recipe: Lec 21, page 33)

Generalization 2 (Lecture 21): From R™ to general vector space

Remark: [T]p_,¢ is called the representation matrix of the linear transformation T from V with the basis
B = {b1, -+ ,by} to W with the basis C' = {c1, -+ ,em}. [Tl=c = [[T(b1)]c, -+, [T(by)]c], which should




be an m x n matrix. [T]p is the abbreviation of the representation matrix of the linear transformation T
from V to V both with the same basis B = {b1,--- ,b,}, which should be an n x n square matrix.

[T(2)lc = [T]p-clz]s
In particular, [T'(z)]s = [T]s[z]5

Thinking point: What are the similarities and differences between representation matrix and the change-
of-coordinates matrix?

6.4 Exercises

3 00
1. Diagonalize (-3 4 9
0 0 3
2. Find an invertible matrix P and a matrix C of the form {Z _ab} such that the matrix A= {_21 (2)} has

the form A = PCP~1,

3. Diagonalize the linear transformation T: Mayxo — Maxa, T'( [CCL Z]) = {lc) lc)]

4. Suppose that A is a diagonalizable matrix where all the eigenvalues are real. Prove that the rank of A is
the number of nonzero eigenvalues of A, including repetition.



7 Inner Product, Norm and Orthogonality

7.1 Inner Product

The Inner Product

An on a vector space V over R is a function

(-,+) : VX V — R that, for each pair of vectors i and 7 in V,
associates a real number (i, 7) and satisfies the following axioms,
for all 7, ¥, and @ and all scalars ¢ € IR:

) = (i

3
4, Y > 0and (iZ,it) =0 if and only if i =0
A vector space with an inner product is called an

p.s. Inner product needs to be understood as an ”operator” satisfying the four axioms. Dot product is
one of the inner product on R".

7.2 Examples for Inner Product (Lec 24)
I. When V=R"
1. Dot Product: <@, 0> =4-v=4'7
1. < U,V > = auivi + busvs, for ¥ = <u1> , U= <U1>
U2 U2
II. When V=P,

i. <p,qd> = p(t;)q(t;) for fixed tg, -+ ,t, €R
i=0

III. When V=M, x»,
1. <A,B > = E Z aijbij

i=1j=1

IV. When V=L? = {f€F: f; f(x)?%dx < oo}, F is the set of all functions f: R — R
‘ b
i. <fi9>= [, f@)g(z)dz

o0
V. When V = 2 = {(an)n>1: Y, a2 < 0}, (an)n>1 = (a1,a2,a3.---) is an R sequence
n=1

T -

<L

o0

i < (an)nZIa (bn)nzl > = Z anbn

n=1

10



7.3 Norm

Norm of a vector space

Let V be a vector space. A |I-]| of V is a function
¥+ ||7]| € R satisfying the following axioms:

1. Forevery i[,7 € V,
iz

il + 7| < ||| + |7

2. Foreveryii € Vandc € R,

[led]| = |e]l|]]

3. Foreveryii € V,
il >0

and ||if|| = 0 if and only if i = 0.
A vector space with a norm is called a

p.s. Norm needs to be understood as a ”function” satisfying the three axioms. The Euclidean magni-
tude/length of the vector on R™ defined by the square root of dot product, is one of the norm on R™.

7.4 Examples for Norm (Lec 24)
I. When V=R

i ||z = |z
I. When V=R"

n
i. Euclidean Length (¢2 norm): ||i]| = /Y w? =Vi'd = Vi u
\/ i=1

(2

n
ii. (¢* norm): ||i]| = 231 i
1=

ii. (€°° norm): ||d]| = max |u;| = max{|ui|, -+, |un|}
1<i<n

7.5 Relations Between Inner Product Space and Normed Vector Space

Finite Dimensional Vector Space C Inner Product Space C Normed Vector Space

Theorem 24.1: Finite Dimensional Vector Space C Inner Product Space
Every finite dimensional vector space is an inner product space. Moreover, if B is a basis for a vector
space V with dimension n, then an inner product for V is

<ﬁ,17> = [ﬂ’}B[’l_f]B

Theorem 24.4: Inner Product Space C Normed Vector Space
Every inner product space is a normed vector space. Moreover, if V is an inner product space, the
following function

is a norm in V.
Theorem 24.5: Normed Vector Space + Parallelogram Law — Inner Product Space
Let (V, || - ||) be a normed vector space satisfying the following identity: For every 4,7 € V,

||+ 9% + [|@ — a1|* = 2(||a]|* + ||7]]%),

11



then there exists an inner product on V such that ||7|| = /< ¥, ¥ >. Moreover, the function

||+~ |la—3]|2

<@,F>= -

forms an inner product and satisfies the desired condition.

Two Properties on the Inner Product Space

1. Pythagorean Theorem (Thm 24.2)
Let V be an inner product space and ||4]| = /< 4, o > for all ¥ € V. If @, ¥ € V is such that < @, 7 >= 0,
then

|l + 31 = [|]]* + [|2]]*

2. Cauchy-Schwarz Inequality (Thm 24.3)
Let V be an inner product norm and ||@|| = /< @,u > for all @ € V. If 4,7 € V, then

| <@, > [ < |lall]|7]]

Equality holds if and only if ¥ and v are linearly dependent.

7.6 Example of Normed Vector Space but Not Inner Product Space

Norm of a vector space

Example: Consider the following norm in R?: For all 7 = {ﬂ

and
—112 —112) OB D
2(||#]1 + I17]l7) = 2(2° +2%) = 16

Since 16 # 20, by , there does not exist any inner
product in IR? such that ||7]|; = \/(5,7).

p.s. We equip R? with ¢! norm that does not satisfy Parallelogram Law, then (R2, || - ||;) is a finite
dimensional normed vector space which is not an inner product space. If we use ¢2 norm, then (R?, || - ||2) is
an inner product space.

Thinking point: examples of infinite dimensional inner product space; examples of unnormed vector space

7.7 Orthogonality and Orthonormality
e Orthogonality:

We say a set of vectors B = {v1,--- ,v;,} is orthogonal in the inner product space V if < 0;,v; >= 0 for
every i # j
e Orthonormality:

We say a set of vectors B = {v1, -+ , 9} is orthonormal in the inner product space V if B is orthogonal

and ||v;|| = V< v;,0; > =1 for every i € {1,--- ,n} (An inner product space is a normed vector space)

e Orthogonal/Orthonormal Basis:
A Dasis that is an orthogonal /orthonormal set

e Orthogonal Complement

12



Let W be a subspace of V. The orthogonal complement of W, denoted by W+ ={Ze€ V : <z, > =0 forall 4 € W} ,
is the set of all vectors 2’ in V that are orthogonal to every vector & in W.

e Theorem 23.4: Connection Between Row Space, Column Space and Null Space of the Matrix (R™ with dot
product)
Let A be an m x n matrix. Then

(RowA)* = NulA
(ColA)t = NulAT

p-s- The geometric interpretation of row space is the largest subspace that makes A, as a linear transformation,
injective.

e Theorem 26.1: An m x n matrix U has orthonormal columns (the column vectors form an orthonormal
set) if and only if UTU = I,.

e Theorem 26.2: Let U be an m x n matrix with orthonormal columns, and let Z and ¢ in R™. Then
1. |_!U:i"’|| = ||:1?|L )
2. (U)- (Uf) =77
3. (UZ)-(Uy)=0ifand only if -5 =0

p-s. U is called orthogonal matrix if it is a square matrix, in other words, m=n.

7.8 Exercises

1. Verify all the examples for inner product and examples for norm
2. Prove the Bessel’s inequality: Let V be a finite dimensional inner product space and suppose {by,- - ,b,}
is an orthonormal basis in V. Then, for every & € V, we have

n -
X< &by > P < )
k=1

3. Prove Parseval’s identity: Let {y,---,u,} be an orthonormal basis of an inner product space V. Show
that, for every ¢, w € V:

n
<V W>= )Y, <0, >< W, u; >
=1

13



8 Orthogonal Projection and the Gram-Schmidt Process

We only consider R™ with dot product in orthogonal projection as well as the Gram-Schmidt Process in this
course. In fact, all of them can be generalized to inner product space.

8.1 The Orthogonal Projection

The orthogonal projection of § onto W, a subspace of R” with an orthogonal basis {1, - - , 4}, is denoted
as

D o gy~ iy
projwy = g ur + -+ 25Uy

The vector Z = § — projy is called the component of ¢ orthogonal to W.
Theorem 25.3 (The Orthogonal Decomposition Theorem) guarantees that the proj,, 4 € W and 7€ W T
are unique.

An Orthogonal Projection

Recipe &
Find the orthogonal | of i/ onto W and the component of
i orthogonal to W.

1. Find an orthog sis {if1,...,1p} for W (next lecture.)

. Compute i - if; and ;- ii; for all 1 < i < p.
i -
. Compute 5—
i
. The orthogo ojection of i onto W is
RSN LT
OXO] U = il
PrOJw ¢ ,Z; TIRRTE

. The component of ij orthogonal to W is Z = i/ — proj,, ¥/.

e Theorem 25.4: The Best Approximation Theorem
Let W be a subspace of R”, let ¢ be any vector in R"™, and let projy;;4 be the orthogonal projection of ¥
onto W. Then projy, ¥ is the closest point in W to ¥, in the sense that

|17 = projw i/l < |77 — |
for all ¥ in W distinct from projy, 4.

p-s. projy ¥ is the best approximation.
e Theorem 26.3: An Alternative Way to Calculate Orthogonal Projection

Orthonormal Sets

Theorem 26.3

If {if,...,ip} is an orthonormal basis for a subspace W of
R", then

projy i = (¥ - th)ily + (¥ - tha)tho + ... + (§ - i)l

Ifll:[it'l iy - ﬁp],then

-

projy ¥ = UU'y

for all i in R™.

p-s. Normalize the orthogonal basis into orthonormal basis

14



8.2 The Gram-Schmidt Process

The goal of the Gram-Schmidt Process is to find an orthogonal (and orthonormal) basis for any nonzero
subspace of R™. It is generated by a given basis.

The Gram-Schmidt Process

Theorem 26.4 — The Gram-Schmidt Process

Given a basis {X},...,%,} for a nonzero subspace W of R",
define

1

k—1 ..
=%- Y. =g forall2<k<p
&5,

77
Then {7,...,Tp} is an orthogonal basis for W. In addition
Span{dy, ..., 0} = Span{¥y,..., %}
for 1 <k <p.

8.3 QR Factorization/Decomposition

It is a natural deduction from the Gram-Schmidt Process.

Theorem 26.6

If A is an m X n matrix with linearly independent columns, then A can be factored as A = QR, where Q
is an m X n matrix whose columns form an orthonormal basis for Col A and R is an n X n upper triangular
matrix with positive entries on its diagonal.

The QR Factorization

Recipe i
To find a OR of A.
0. The column vectors of A must be
apply the factorization.

ze the column vectors of A by using the
. Let {if iy} be the
orthonormalized vectors.

(0 gl sy SRSk eREs 7 on oS

. Compute R = QTA
AR

Example

/2 -3/v/12 0

e v | 2R ]
=112 vz /G 0 3/vV12 2/V/12| =QR

/2 1/V/12  1/v6 0 0 2/V6

b

Il
— == =
e e)
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8.4 Exercises

3 1
1. Let ¥ = |3| and @ = |—1|. Write ¥ as the sum of two orthogonal vectors, one in Span{#} and the other
3 2

one orthogonal to u.
2. Find the closest point and the best approximation to ¢ in the subspace W spanned by v; and ¥s.
4 1 -2
g= 2,01 =|2|,0o=1]0
0 1 2

3. Let @ and ¥ be vectors in R". Show that projy,an s @ = 0 if and only if @ and 7 are orthogonal.
4. The given set is a basis for a subspace W. Use the Gram-Schmidt Process to produce an orthogonal basis
for W.

0 -1 1
13
1] Lo 1
5. Verify the QR-Factorization of
[1 0 0
1 10
A= 1 1 1
111

16



	Linear System
	Linear Combinations and Spanning
	Exercises
	The Matrix Equation Ax=b
	Theorem 5.1——How to view the matrix equation?
	Theorem 5.3——How to determine the existence of solutions?

	Linear Independence
	Parametric vector form
	Definitions of linear independence and linear dependence
	Proposition 7.2 ——How to determine?
	Theorem 7.5
	Theorem 7.6——When columns > rows

	Linear Transformation
	Transformation
	Linear Transformation
	The Matrix of a Linear Transformation
	Onto VS One-to-one

	Matrix Operations
	Matrix Multiplication
	Transpose of a Matrix: exchange (i,j) with (j,i), rows → columns

	The Inverse of a Matrix
	Definition
	Finding the Inverse of a Matrix: Theorem 10.5
	Determine a Invertible Matrix: Theorem 10.7

	Determinants
	Definition
	Properties
	Two ways of computing determinant
	Cramer's Rule
	Determinants as Area/Volume


