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Convexity

m Definition: X CR" is said to be convex if for any
two points z,y € X the segment|z,y] lies in X:

{fax+ (1 —-—a)y,0<a <1} CX.

B Definition: let X be a convex set.A functionf: X —R
is said to be convex if for all z,yc X and a €0, 1],

flax+ (1 - a)y) < af(z) + (1 - a)f(y).
With a strict inequality, fis said to be strictly convex.

fis saic

N

to be concave when —fis convex.

/R
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Properties of Convex Functions

® Theorem:let f be a differentiable function.Then, f
is convex iff dom(f) is convex and

vz,y € dom(f), f(y) — f(z) = Vf(z) (y— ).

- M f@)
flz) +Vi(z)(y — ).

® Theorem:let f be a twice differentiable function.
Then, f is convex iff its Hessian is positive semi-

definite:
Vz € dom(f), V2f(z) = 0.
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Constrained Optimization Problem

B Problem:LetX CRMandf,g;: X —=R,ic[l,m].A
constrained optimization problem has the form:

min f(x)

xeX
subject to: g;(x) < 0,7 € [1,m].

B Definition: The Lagrange function or Lagrangian
associated to this problem is the function defined

by:
\V/XEX\V/(X>O L(XO& ‘|‘Zazgz

;s are called Lagrange or dual varlables
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Sufficient Condition

(Lagrange, 1797)

B Theorem:Let P be a constrained optimization
problem over X =R If (x*, a*)is a saddle point,
that is vx € RY Va > 0, L(x*, o) < L(x*,a*) < L(x, a*),
then it is a solution of P.

® Proof: By the first inequality,

Va>0,L(x",a) < Lx",a") = Va>0,a - g(x") <a” - g(x")
(use @ — 400 then @ — 0) ={g(x") <0Aa™ - g(x™) = 0.
® |n view of that, the second inequality gives

Vx, L(x*, ") < L(x,a™) = Vx, f(x*) < f(x) + a™ - g(x).

Thus, for all z such thatg(z) <0, f(x*) < f(x).
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Constraint Qualification

B Definition: Assume that int X # (). Then, the following
is the strong constraint qualification or Slater’s
condition:

1X € int X: g(X) < 0.

B Definition: Assume that int X #(). Then, the following
is the weak constraint qualification or Slater’s
condition:

3% € intX: Vi € [1,m], (¢;(X) <0) V (g:(X) = 0 A g; affine).

Mehryar Mohri - Foundations of Machine Learning page 7



Necessary Conditions

B Theorem:Assume that fand g; ,i €

11, m],are

convex functions and that Slater’s condition holds.
If x is a solution of the constrained optimization
problem, then there exists a>0 such that (x,a)is a

saddle point of the Lagrangian.

B Theorem:Assume that fandg; ,i €
convex differentiable functions and
Slater’s condition holds. If x is a so
constrained optimization problem,

1, m|,are
that the weak

ution of the
then there

exists a>0 such that (x, ) is a saddle point of the

Lagrangian.
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Kuhn-Tucker’s Theorem
(Karush 1939; Kuhn-Tucker, 1951)
B Theorem:Assume that f,g;: X —R,i€[1, m] are
convex and differentiable and that the constraints
are qualified. ThenXis a solution of the constrained
program iff there exist @>0 such that:

ViL(Z, @) = Vi f(X) + & Vig(T) = 0
VoL(X, @) = g(X) <0 KKT

a-g(X) =) @gi(x)=0.
1=1
B Note: Last two conditions equivalent to
(9(%) <0) A (Vi € [1,m], aigi(X) =0).

v

complementary conditions
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® Since the constraints are qualified, if X is solution,
then there exists o such that (X, @) is a saddle
point. In that case, the three conditions are
verified (for the 3rd condition see proof of
sufficient condition slide).

® Conversely,assume that the conditions are
verified. Then, for any xsuch that g(x) <0,

Fx) — () > Vuf(®) - (x — ) (convexity of f)
= — Z a;Vxgi(X) - (x —X) (first condition)
> — ZEZ- 1g:(x) — g:(X)] (convexity of g;s)

- — Zai gi(x) >0, (third condition)
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Primal and Dual Problems

B Primal problem:

min - f(x)

subject to: g(x) < 0.

B Dual problem:

max inf L(x,«)
a xeX

subject to: a > 0.

Equivalent problems when constraints qualified.
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Logistics

B Prerequisites: basics in linear algebra, probability, and
analysis of algorithms.

B Workload: about 3-4 homework assignments + project.

B Mailing list: join as soon as possible.
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Course Material

B Textbook B Slides: course web page.

https://cs.nyu.edu/~mohri/mli24/

Foundations of
MaChine Learning second edition

Mehryar Mohri,
Afshin Rostamizadeh,
and Ameet Talwalkar

———*
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This Lecture

B Basic definitions and concepts.
B |ntroduction to the problem of learning.

® Probability tools.
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Machine Learning

B Definition: computational methods using experience to
improve performance.

B Experience: == data-driven task, thus statistics,
probability, and optimization.

B Computer science: learning algorithms, analysis of
complexity, theoretical guarantees.

B Example: use document word counts to predict its topic.
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Examples of Learning Tasks

B Text: document classification, spam detection.

B Language: NLP tasks (e.g., morphological analysis, POS
tagging, context-free parsing, dependency parsing).

B Speech: recognition, synthesis, verification.

B [mage: annotation, face recognition, OCR, handwriting
recognition.

B Games (e.g., chess, backgammon, go).
B Unassisted control of vehicles (robots, car).

B Medical diagnosis, fraud detection, network intrusion.
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Some Broad ML Tasks

B (lassification: assign a category to each item (e.g.,
document classification).

B Regression: predict a real value for each item (prediction of
stock values, economic variables).

B Ranking: order items according to some criterion (relevant
web pages returned by a search engine).

B (Clustering: partition data into ‘homogenous’ regions
(analysis of very large data sets).

B Dimensionality reduction: find lower-dimensional manifold
preserving some properties of the data.
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General Objectives of ML

B Theoretical questions:
e what can be learned, under what conditions?
e are there learning guarantees?

e analysis of learning algorithms.

B Algorithms:
e more efficient and more accurate algorithms.
e deal with large-scale problems.

* handle a variety of different learning problems.
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This Course

B Theoretical foundations:
* J|earning guarantees.

® analysis of algorithms.

B Algorithms:
* main mathematically well-studied algorithms.

e discussion of their extensions.

B Applications:

e jllustration of their use.
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Topics

B Probability tools, concentration inequalities.

B PAC learning model, Rademacher complexity, VC-dimension,
generalization bounds.

B Support vector machines (SVMs), margin bounds, kernel methods.
B Ensemble methods, boosting.
B | ogistic regression and conditional maximum entropy models.

B On-line learning, weighted majority algorithm, Perceptron algorithm,
mistake bounds.

B Regression, generalization, algorithms.
B Ranking, generalization, algorithms.

B Reinforcement learning, MDPs, bandit problems and algorithm.
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Definitions and Terminology

B Example: item, instance of the data used.

B Features: attributes associated to an item, often
represented as a vector (e.g., word counts).

B [abels: category (classification) or real value (regression)
associated to an item.

B Data:
* training data (typically labeled).
e test data (labeled but labels not seen).

e validation data (labeled, for tuning parameters).
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General Learning Scenarios

B Settings:

e Dbatch: learner receives full (training) sample, which he
uses to make predictions for unseen points.

* on-line: learner receives one sample at a time and makes
a prediction for that sample.
B Queries:
e active: the learner can request the label of a point.

® passive: the learner receives labeled points.
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Standard Batch Scenarios

B Unsupervised learning: no labeled data.

B Supervised learning: uses labeled data for prediction on
unseen points.

B Semi-supervised learning: uses labeled and unlabeled data
for prediction on unseen points.

B Transduction: uses labeled and unlabeled data for
prediction on seen points.
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Example - SPAM Detection

B Problem: classify each e-mail message as SPAM or non-
SPAM (binary classification problem).

B Potential data: large collection of SPAM and non-SPAM
messages (labeled examples).
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Learning Stages

labeled data algorithm prior knowledge
training sample .4— features

parameter
selection

validation data

test sample ,
evaluation
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This Lecture

B Basic definitions and concepts.
B |ntroduction to the problem of learning.

® Probability tools.

Foundations of Machine Learning page 16



Definitions

B Spaces: input space X, output space.

B [ossfunction:L: Y xY —R.
* [L(y,y): costof predicting y instead of y.
* binary classification: 0-1 loss, L(y,y") =1,
o regression’Y CR,I(y,y)=(y —y)°
®m Hypothesis set: H CY, subset of functions out of which
the learner selects his hypothesis.
* depends on features.

* represents prior knowledge about task.
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Supervised Learning Set-Up

B Training data: sample S of size mdrawn i.i.d. from X xY
according to distribution D:

S = ((xlayl)v SO (xmaym))'

B Problem: find hypothesis h € Hwith small generalization
error.

e deterministic case: output label deterministic function of
input,y=f(z).
e stochastic case: output probabilistic function of input.
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Errors = T(/l€2 (e essemia[/%

p(o babili ties
B Generalization error: for he H, it is defined by

R(h)= E [L(h(x).y). e eror

(z,y)~D ,
(we ot have access o D)

B Empirical error: for he Hand sample S, it is

R(E) = — 3" L(h(wi), i)

@ Bayes error:
R*= inf R(h). The absolute best emor

h measurable

e in deterministic case, R*=0.
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Noise

B Noise:
® in binary classification, for any z € X,
/> prob.
noise(x) = min{Pr[1|z], Pr[0|x]}.
\

 observe thatE[noise(z)] = R*. ot fou Suffer wyw%

oS 30% will - pick e max
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Learning # Fitting

Notion of simplicity/complexity.
—3 How do we define complexity?
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Generalization

(Heart)
B Observations:

* the best hypothesis on the sample may not be the best
overall.

* generalization is not memorization.

e complex rules (very complex separation surfaces) can be
poor predictors.

e trade-off: complexity of hypothesis set vs sample size
(underfitting/overfitting).
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Model Selection

® General equality: for any he H, /best in class H

R(h) — R* = [R(h) — R(h*)] + [R(h*) — R].

J \ .
~ ~

estimation approximation

B Approximation: not a random variable, only depends on H.
B Estimation: only term we can hope to bound.

® How should we choose H?
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Empirical Risk Minimization

B Select hypothesis set H.

® Find hypothesis h € H minimizing empirical error:

h = argmin R(h).
he H

* but Hmay be too complex.

® the sample size may not be large enough.
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Generalization Bounds

m Definition: upper bound on Pr | sup |R(h) — R(h)| > e] .
heH

® Bound on estimation error for hypothesishggiven by ERM:

R(ho) — R(h*) = R(ho) — R(ho) + R(ho) — R(h")
< R(hg) — é(ho) + é(h ) — R(h™)
< 2sup [R(A) =R i et o g

W et o
for infinite Aataset | ho could
-3 How should we choose H? (model selection problem)pe I*
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Model Selection

mocﬂ()/( (VVL;V\ D}r“ o\rwﬁe , Wl’n\(lh S
esti. + mpl)mx.)

error

- estimation
= approximation
- upper bound

H=JH,.
ver
\
how complex My js (e, 0(@5(@6)

Foundations of Machine Learning page 26



Structural Risk Minimization

(Vapnik, 1995)
B Principle: consider an infinite sequence of hypothesis sets
ordered for inclusion,

H CHyC---CH,C-- |
sqmt)lﬁ S2€e

h = argmin R(h) + penalty(H,,m).

heH, ,neN . .
" POLVT\‘CM[oM) reaulc«/.zal‘.om
e strong theoretical guarantees.

e typically computationally hard.
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General Algorithm Families

B Empirical risk minimization (ERM):

h = argmin R(h).
he H

B Structural risk minimization (SRM): H,, CH,, 11,
/:/P@IOLII‘Z.{/L Tl'le LOM})’MZL

h = argmin R(h) + penalty(H,,,m).
heH, ,neN

B Regularization-based algorithms: A >0,

h:argminﬁ(h)—i—)\HhHQ. (can. be viewed as a
et smopth  verson of SRM)
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This Lecture

B Basic definitions and concepts.
B |ntroduction to the problem of learning.

B Probability tools.

Foundations of Machine Learning page 29



Basic Properties

® Union bound:Pr|AV B] < Pr|A] + Pr[B].

2
B Inversion: if Pr[X > ¢] < f(e), then, for any § >0, with

probability at least 1—§, X < f1(9).

m Jensen’s inequality: if f is convex, f(E[X]) <E[f(X)].
+o0
B Expectation:if X >0, E[X]:/ Pr|X > t|dt.
0
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Basic Inequalities

B Markov's inequality: if X >0and ¢>0, then

Pr[X >e] < EEL

€

B Chebyshev's inequality: for any e>0, O]

o\

>

Pr|X — E[X]| > ¢ < %
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Hoeffding's Inequality

® Theorem: Let X4,...,X,, beindep. rand. variables with the
same expectation pand X; € |a, b], (a <b). Then, for any e >0,
the following inequalities hold:

1 — 2me?
Pr [,u— EZX’L > e] < exp (_(b—a)2>

1=1

i 2o (525)

Hope 0 /M@ s e same Size m s Zaﬁe MOWL

we Chn  eStmate  Hhe exi)ecmt'on <o .
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McDiarmid’s Inequality

(McDiarmid, 1989)

B Theorem:let X4,...,X,, beindependent random variables
taking values in Uand f: U™ — R a function verifying for

allie[1,m], st Crc
-
sup |f(z1,. s Ty ooy o) —f (X1, e xy )| L (W, W)
$1,---75Bm,90;; N ‘ Y we  would [ike it
LfPsc}\th_ condli tion  be dporclent ot
Then, for all e>0, i its it
Haﬂo(/ng/s thm.
2€?
Pr“f(Xl,...,Xm)—E[f(Xl,...,Xm)]’>e}§2€Xp<—zm 02)
i=1

R'Y\k. Ho{'fa{fn s t#m. s the Sf)ecfct[ @(aln})/e Jor /\/\CD/\qmiOl/g lnez,
ba TQK["& 5 o be the a\/?f/age Function
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Appendix
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Markov's Inequality

B Theorem: let X be a non-negative random variable
with E[ X ]| <o, then, for all £>0,

Pr[X > tE[X]] < %

@ Proof:
Pr[X > tE[X]]= ) Pr[X =a]
r>tE[X]
< Y Prx =4 ETX]
x>t B[ X]
<N " PrX = x]tEaEX]

Foundations of Machine Learning
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Chebyshev's Inequality

B Theorem:let X be a random variable with Var| X ] < oo, then,
for all t>0,
1

Pr(|X — E[X]| > tox] < .

B Proof: Observe that
Pr[|X — E[X]| > tox] = Pr[(X — E[X])* > t?0%].

The result follows Markov's inequality.
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Weak Law of Large Numbers

B Theorem:let (X,,)neny be a sequence of independent

random variables with the same mean © and variance o?<oo

andlet X, =1 3" X, then, forany ¢>0,
lim Pr[| X, — u| > ¢ =0.
n—oo

B Proof: Since the variables are independent,

Var ZV&I[ ]:%:U—.

n n

B Thus, by Chebyshev's inequality,

- 0'2
Pr(|X, — u| > € < —.
(X0 =l > <

Foundations of Machine Learning
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Concentration Inequalities

B Some general tools for error analysis and bounds:
e Hoeffding's inequality (additive).
® Chernoff bounds (multiplicative).

e McDiarmid’'s inequality (more general).
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Hoeffding's Inequality

B Corollary: for any e>0, any distribution D and any
hypothesis h: X — {0, 1}, the following inequalities hold:

Pr[R(h) — R(h) > €] < e 2™
Pr[R(h) — R(h) < —¢] < e~ 2m€"
® Proof: follows directly Hoeffding's theorem.

B Combining these one-sided inequalities yields

Pr [\E(h) ~ R(h)| > e] < 9¢2me”,
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Chernoff’s Inequality

B Theorem: for any e>0, any distribution D and any
hypothesis h: X —+{0, 1}, the following inequalities hold:

B Proof: proof based on Chernoff's bounding technique.

Pr[R(h) > (14 €)R(h)] < e~ ™ EH) €2/3
Pr[ﬁ(h) < (1 — €)R<h)] < e—mR(h) 62/2.
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McDiarmid’s Inequality

(McDiarmid, 1989)

B Theorem:let X4,...,X,, beindependent random variables
taking values in Uand f: U™ — R a function verifying for

allie[1,m],
sup |f(z1,. . @iy oo ) —f (X1, Xy )] < .
T1,enns Lo L,

Then, for all e>0,

E2
Pr[yf(Xl,...,Xm)—E[f(Xl,...,Xm)]]>e]§2exp<—zi CQ).
1=1 "1
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B Comments:

* Proof: uses Hoeffding's lemma.
e Hoeffding's inequality is a special case of McDiarmid’s
with

1 ™m
e ) = — i and P =
flxy, ..., Tm) m;:1x c

b; — ay|
.
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Jensen’'s Inequality

B Theorem:let X be a random variable and fa measurable
convex function. Then,

f(E[X]) < E[f(X)].

B Proof: definition of convexity, continuity of convex
functions, and density of finite distributions.

4

tf(x)f (I-01)
) “““““““““““““““““““ :

e x+(1-1)y)

fx) 5

x  ix+(I-0)y y
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Motivation

B Some computational learning questions
® What can be learned efficiently?
® What is inherently hard to learn!?

® A general model of learning?

® Complexity
® Computational complexity: time and space.

® Sample complexity: amount of training data
needed to learn successfully.

® Mistake bounds: number of mistakes before
learning successfully.

Mehryar Mohri - Foundations of Machine Learning page 2



a2 PAC Model

® Sample comp

® Sample comp

This lecture

exity, finite

exity, finite

Mehryar Mohri - Foundations of Machine Learning

, consistent case

, Inconsistent case
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Definitions and Notation

B X:set of all possible instances or examples, e.g.,
the set of all men and women characterized by

their height and weight.
S we stark with  bina clog Jy] Contind

B c: X —{0,1}:the target concept to learn; can be

identified with its support{re X:c(z)=1}.
£0)

B (':concept class, a set of target concepts c.

@ D:target distribution, a fixed probability
distribution over X.Training and test examples are
drawn according to D.
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Definitions and Notation

B S:training sample.

B H:set of concept hypotheses, e.g., the set of all
linear classifiers.

® The learning algorithm receives sample S and
selects a hypothesis hs from H approximating c.
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Errors

® True error or generalization error of i with
respect to the target concept c and distribution D

R(h) = Prlh(z) #c(z)] = E [n)te):
B Empirical error:average error of h on the training
sample S drawn according to distribution D,

Rg(h) = Pr [h(z) # c(z)] = E [1h(m)7éc(m) Z L (z)e(as)-

x~D €T

| V\evnpificctl distiibwtiont

m Note: R(h) = JE [ﬁs(h)]
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PAC Model
(Valiant, 1984)

B PAC learning: Probably Approximately Correct

learning. { £~ eflof
§—> pProb.
| Definition: concept class C' is PAC-learnable if there

exists a learning algorithm L such that:

@ forallce C,e>0,5>0, and all distributions D,

Dis indep. OJC L B ( vely strcl on L
P Sr\}J)ll;m[R(hS) = 6] = 5’ as U f‘fSGUC IS
inotep. )

® for samples Sof size m=poly(1/e,1/6) for a
fixed polynomial.
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Remarks

Concept class C is known to the algorithm.
Distribution-free model: no assumption onD.

Both training and test examples drawn ~ D.

(w\ag e not the

Probably: confidence1—4.
came D)

Approximately correct: accuracyl —e.

Efficient PAC-learning: Lruns in timepoly(1/e,1/9).

What about the cost of the representation of ce C?

Mehryar Mohri - Foundations of Machine Learning page 8
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PAC Model - New Definition

® Computational representation:
® costforzreXinO(n).

® cost forceCinO(size(c)).

B Extension: running time.
O(poly(1/€,1/6)) — O(poly(1/e,1/4,n, size(c))).
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Example - Rectangle Learning

B Problem:learn unknown axis-aligned rectangle R
using as small a labeled sample as possible.

4 ® ® false | pas-
7 concept  that
® " o ° > | selets ont
3 e
O Lolse ney . R — twe OOVLC@j)t
® Lee(,ranj\e)
—

B Hypothesis: rectangle R'. In general, there may be
false positive and false negative points.

Mehryar Mohri - Foundations of Machine Learning page 10



Example - Rectangle Learning

® Simple method: choose tightest consistent
rectangle R’ for a large enough sample. How large
a sample!? Is this class PAC-learnable?
@

A @
o @

@ “0 o )
o ~ IR
® —>

® What is the probability that R(R’") >¢?

Mehryar Mohri - Foundations of Machine Learning page | |



Example - Rectangle Learning

B Fixe>(0and assume %r[R] > ¢ (otherwise the result
is trivial).

|m Letry,ro, 73,74 be four smallest rectangles along
the sides of R such that}l’)r[ri] > <.

A ® ®
"1
o ® R=[l,r]x[b,1]
@ T4 ". o T 7“4i.[l,S4].>< [b,t] 6
- sa=inf{s: Pr[[l, s]x [b,t]| > <}
© T3 R Pr 1, sa[x[b,]] < <
@
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Example - Rectangle Learning

® Errors can only occur inR—R’. Thus (geometry),
R(R")>e = R'misses at least one regionr;.

B Therefore, Pr[R(R) > ¢] < Pr[U’_,{R’ misses r;}]

< Z Pr[{R" misses r;}]

o 1=1 e
A O §4(1—§)m§46 7
1
® ® e ®
T4 " ' 7“2
<
@
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Example - Rectangle Learning

® Set § >0 to match the upper bound:

me

de” 4 <0 & mZ%log%.

® Then, for m>2log =, with probability at least 14,

R(R") <e.
A ® ()
1 °
o e e
T4 " ' 7“2
= -
@
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Notes

| [nfinite hypothesis set, but simple proof.

® Does this proof readily apply to other similar
concepts classes!?

B Geometric properties:
® key in this proof.

® in general non-trivial to extend to other classes,
e.g., hon-concentric circles (see HW2,2006).

—> Need for more general proof and results.
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2 PAC Model

@ Sample comp

® Sample comp

This lecture

exity, finite H, consistent case

exity, finite
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Learning Bound for Finite H -
Consistent Case

B Theorem:let H be a finite set of functions from X
to {0,1}and L an algorithm that for any target
concept c€ Hand sample Sreturns a consistent

hypothesisg: Rg(hg)=0.Then, for any(5>0 with
probability at least1—4,

Geredliation.  Boundls

R(hg) < L(log|H|+1log3).
@ B MO I\OIK’J\f\\COL(
b ve g0, I [Rbs)se]= 15 ol if ! {Z{% of the
/Jg (,&ZM] + JOJ—J;) \@LM‘DIQ &)M}Jle&itﬁ Bouy o{§

)
2 = JNMO@IH) t foj )
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Learning Bound for Finite H - »_; .

Consistent Case  Plwtan)>¢

G Agad g ""“-7%:,(11? 1 hX)£c
® Proof:for anye > 0,define H. = {h € H: R(h) > e}.We )

want to prove that, with high probability, if sis

consistent, then it has low error:
_ he ERM afoithin -
P{Rs(hs) — 0= R(hg) < e} >1- 8§ «P|Rg(hs) = 0 A R(hg) > e} <5

“ \/ _J R
the ineccuqlmj we want < P|Rs(hs) =0Ahg € He} <.
) —— ‘\/@/ D)
©<P|3he H: Rg(h) =0Ah e H} wstewd of iy geclic
=P|3h € H,: Rs(h) = 0] e b on vk st R (h =0
- o Rihy=
=P|Rs(h1) =0V ...V Rg(hy,|) = 0} E«\K.x Ig(hu&)#cm))% mewns  the
< Z P{ﬁs(h) :0} sum  of Prob. of pick wtk
N heH. MQKQS {'aISG Pfedl.CT\IOﬂ AS afeafef than e :

—m _\m —me herce P . (=0 < t-¢)"m  (misrg al nconsishs
= Z (1—€e)" < |H|(1—€)™ < |Hle ' helt[%stjw m  pomt> fom D Pt

heH. -V where ‘ sze M
rake it as § € isa squle of
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(we have a wu‘f o boundl. a(haljy‘

Remarks (ue wy o dose 1)

Isalution for ERPM =0

® The algorithm can be ERM if problem realizable.
o~ T ——

1

B Error bound linear in -- and only logarithmic in <

| log, |H|is the number of bits used for the
representation of H.

® Bound is loose for large |H|.

® Uninformative for infinite|H|.

Mehryar Mohri - Foundations of Machine Learning page |9



Conjunctions of Boolean Literals

® Example forn=6.

® Algorithm: start withz; AZ; A--- Az, AT, and rule
out literals incompatible with positive examples.

+
| § +

0
0
0
0

= L1 N\ T2 N\ T5 N\ Tg.

Mehryar Mohri - Foundations of Machine Learning

page 20



TnlefseChions

Conjunctions of Boolean Literals

® Problem: learning class C, of conjunctions of
boolean literals with at most n variables (e.g.,
forn=3, z1 AT A x3).

® Algorithm: choose h consistent with S.
® Since|H|=|C,|=3", sample complexity:
m > =((log 3)n + log 3).
§=.02,e=.1,n=10,m>149.

® Computational complexity: polynomial, since
algorithmic cost per training example is

inO(n).
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2 PAC Model

® Sample comp

® Sample comp

This lecture

© defeminshc . 3! s x>y (@ % has pob 1
re/a:ﬁ% TO _fabe| Si )

' . 3 -
D consistent - 3he H ot K=o @ s Stricter

exity, finite H, consistent case twa: © «
even if oleferministic,
we st m‘7ht not echiap

exity, finite H, inconsistent case sty
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Inconsistent Case

® Nohe His a consistent hypothesis.

B The typical case in practice: difficult problems,
complex concept class.

B But, inconsistent hypotheses with a small number
of errors on the training set can be useful.

® Need a more powerful tool: Hoeffding’s inequality.
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Hoeffding’s Inequality

® Corollary: for any e >0and any hypothesish: X —{0, 1}
the following inequalities holds:

—2me?

Pr[R(h) — R(h) > €] < ¢
Pr[R(h) — R(h) > €

B Combining these one-sided inequalities yields

—2me?

€

A IA

Pr[|R(h) — R(h)| > €] < 2¢72m¢

Mehryar Mohri - Foundations of Machine Learning page 24



Application to Learning Algorithm?

® Can we apply that bound to the hypothesis hg
returned by our learning algorithm when training
on sample 57

B No, because hg is not a fixed hypothesis, it depends

AN

on the training sample. Note also that E[R(hg)]
is not a simple quantity such as R(hg). « rv. dgendny n S

B [nstead, we need a bound that holds simultaneously
for all hypotheses h € H, a uniform convergence
bound.

Mehryar Mohri - Foundations of Machine Learning page 25



Generalization Bound - Finite H

B Theorem:let H be a finite hypothesis set, then, for
any ¢ >0, with probability at least 14,

log |H| + log =

2m

Vh € H, R(h) < Rs(h) + \/
® Proof: By the union bound, We il denve a  tmion

~ d .
Pr [%neaé( |R(h) — Rg(h)| >€] oou

= Pr |[R(h) = Bs(h)| >V ...V [R(hjm) = Bs(hjm)| > ]
< Z Pr [‘R(h) — }A%S(h)‘ >e]

heH
<2|H|exp(—2me?).
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Remarks

B Thus, for a finite hypothesis set, whp,

Vh € H,R(h) < Rs(h) +0<\/1°g‘H>.

m

® Error bound inO(—=) (quadratically worse).

| log, |H|can be interpreted as the number of bits
needed to encode H.

B Occam’s Razor principle (theologian William of
Occam):“plurality should not be posited without

necessity”. ¥\) Thee is o Tade of  lbetween Vedww?
}/Q\(lq) O(VW( (‘ﬁﬂﬂ@“in i,
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Occam’s Razor

® Principle formulated by controversial theologian
William of Occam:“plurality should not be posited
without necessity”, rephrased as “the simplest
explanation is best’”’;

® invoked in a variety of contexts, e.g., syntax.
Kolmogorov complexity can be viewed as the
corresponding framework in information theory.

® here, to minimize true error, choose the most

parsimonious explanation (smallest |H ). chze smplest
o hUPO'HBIS <ot

® we will see later other applications of this
principle.
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Lecture Summary

m Cis PAC-learnable if 3L,Vce C, Ve,6 >0, m=P (2,

JPr [R(hs) <> 1-36.

| [earning bound, finite H consistent case:
R(h) < . (log |H| +log 5).

| [earning bound, finite H inconsistent case:

R(h) < RS )+ \/10gIH|+log iy

® How do we deal with infinite hypothesis sets!?
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Appendix



Universal Concept Class

® Problem: each x € Xdefined by n boolean features.
Let C be the set of all subsets of X.

B Question:is C PAC-learnable?
B Sample complexity: H must contain C. Thus,
H|>|C|=2%"),

The bound givesm = %((log 2) 2™ + log %).

| [t can be proved that C'is not PAC-learnable, it
requires an exponential sample size.
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k-Term DNF Formulae

® Definition: expressions of the form 71 v - - - v T} with
each term T; conjunctions of boolean literals with
at most n variables.

® Problem:learning k-term DNF formulae.
® Sample complexity:|H|=|C|=3"%. Thus, polynomial
sample complexity 1((log 3) nk + log 1).

® Time complexity:intractable if RP+# N P: the class
is then not efficiently PAC-learnable (proof by
reduction from graph 3-coloring). But, a strictly
larger class is!
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k-CNF Expressions

B Definition: expressions 77 A --- AT; of arbitrary

length j with each termT; a disjunction of at mostk
boolean attributes.

® Algorithm: reduce problem to that of learning
conjunctions of boolean literals.(2n)"new variables:

(w1, uk) = Yug,uy -

® the transformation is a bijection;

® cffect of the transformation on the distribution
is not an issue: PAC-learning allows any
distribution D.
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k-Term DNF Terms and
k-CNF Expressions

B Observation: any k-term DNF formula can be
written as a k-CNF expression. By associativity,

k
V wign A A, = A Ui,y VooV Uk g
=1 '

® Example: (u1 N\ Uo N ’LL3) V (’Ul N\ Uy N ’Ug) = /\?,j=1 (Uz V Uj).

® But, in general converting a k-CNF (equiv. to a
k-term DNF) to a k-term DNF is intractable.

B Key aspects of PAC-learning definition:
® cost of representation of conceptc.

® choice of hypothesis set H.
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Foundations of Machine Learning
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Courant Institute and Google Research
mohri@cims.nyu.edu


mailto:mohri@cims.nyu.edu

Motivation

B With an infinite hypothesis set H, the error bounds
of the previous lecture are not informative.

| |[s efficient learning from a finite sample possible
when H is infinite!?

B Our example of axis-aligned rectangles shows that
it is possible.

B Can we reduce the infinite case to a finite set!
Project over finite samples?

& Are there useful measures of complexity for
infinite hypothesis sets!?
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This lecture

B Rademacher complexity
® Growth Function

#@ VC dimension

® Lower bound
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Empirical Rademacher Complexity

® Definition:
® G family of functions mapping from set Z toa, b).
® sample S=(z1,...,2m)-

® 0;s (Rademacher variables): independent uniform
random variables taking values in{—1, +1}.

1 [on g9(#1)
Rs(G) = E |sup —[][ ”-E[sup—Zazgzz].
7 QEGm Tm g(zm) T LgeGg M
N -’

T~

correlation with random noise
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Rademacher Complexity

® Definitions: let G be a family of functions mapping
from Z to|a, b].

® Empirical Rademacher complexity of G:

Rs(G) = |:SUP_ZO'1,9 Z;)

eG M
where ;s are independent unlform random variables
taking values in{—1, +1}andS=(z1,...,2m).

)

® Rademacher complexity of G:

R (G) = SN%m[‘%S(G)]-

Mehryar Mohri - Foundations of Machine Learning page 5



Rademacher Complexity Bound
(Koltchinskii and Panchenko, 2002)
B Theorem: Let G be a family of functions mapping
from Z to [0, 1]. Then, for any 6 > 0, with probability
at least 16, the following holds for all g G:

Blg(2)] < — D" 9(z1) + 200 () + ||
] — - log%
Elg(2)] < — 3 g(z) + 2Rs(C) + 31~

1=1

® Proof: Apply McDiarmid’s inequality to

2(S) = sup Elg] - Eslg).

Mehryar Mohri - Foundations of Machine Learning page 6



® Changing one point of S changes ©(S) by at most =

(') — @(S) = sup{E[g] — Es'[g]} — sup{E[g] — Es[g]}

gelG geG

< sup{{Blg] - Es/[g]} — {Elg] — Eslg]}}

= sup{Es[g] — Es/[g]} = sup 2 (g(zm) — g(z},)) < =
geG geqG

® Thus, by McDiarmid’s inequality, with probability at

least 1 — 3
log 2
o() < B[o(9)] + k.

® We are left with bounding the expectation.
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® Series of observations:

E[2(S)] = E :sggE[g] —Es(g)]
=E :Slelg E[Es (9) — Es(g)]
(sub-add. of sup) < E [Slelg Es (9) — Es(g)]
= B Lap 2 (0t~ ot

1 m
i )= E — i(9(2;) — g(z
(swap zyand ;) = E_ [ sup E 1 0i(9(z;) — 9(z))]

geG M “—
(sub-additiv. of sup) < E [sup 1 v az-g(z,g)] + E [supi . —aig(zz)}
o,S’ geqG m 1 o,S geG m 1
1 m
=2 E |sup — 0:9(2;)| = 2R (G
E s 3 oig(a)] = 290n(G)
page 8
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e Now, changing one point of Smakes s (G)vary by
at most - . Thus, again by McDiarmid’s inequality,
with probability at least 1 — 3,

log %

2m

® Thus, by the union bound, with probability at

least 1—90,

N log 2
B(S) < 2Rs(G) + 3] =22

2m

Mehryar Mohri - Foundations of Machine Learning page 9



Loss Functions - Hypothesis Set

® Proposition: Let H be a family of functions taking
values in{—1,+1}, G the family of zero-one loss

functions of H: G={(z,y) — 1p)2,: h € H}.Then,

S,oLpegm — 2 '

1 1 — 1 1 —
:—E[Sup— 0}+—E[sup— —Jyhaz]
2 S0 heHm; 2 S0 heHm; ( )
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Generalization Bounds - Rademacher

B Corollary: Let H be a family of functions taking
values in{—1, +1}.Then, for any § >0, with
probability at least 14, for anyhe H,

~ log
R(h) < R(h) + R,.(H) 2m5 .
~ log %

R(h) < R(h) + Re(H) + 3 .

2m
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Remarks

® First bound distribution-dependent, second data-
dependent bound, which makes them attractive.

B But, how do we compute the empirical Rademacher
complexity!?

B ComputingE,[sup,cy = Y vy 0:h(z;)] requires
solving ERM problems, typically computationally
hard.

B Relation with combinatorial measures easier to
compute!
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This lecture

B Rademacher complexity
® Growth Function

#@ VC dimension

® Lower bound
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Growth Function

® Definition: the growth functionIly: N— Nfor a
hypothesis set H is defined by

vmeN, lg(m)=  max ‘{(h(:r;l), o h(z)): b€ H}‘.

{33‘1 ..... zr;m}gX

B Thus,IIg(m)is the maximum number of ways m
points can be classified using H.
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Massart’s Lemma

(Massart, 2000)

B Theorem:Let A C R™be a finite set, withR= tax 2|2,
then, the following holds:

m

1
—sup Y 07
M zeAiy

Ry/2 log]A\

E

o

(Jensen’s ineq.)

B Proof: exp (tg

sup T;%; <E|exp |tsup T;%;
a:EAZ ]) o ( [ ZCEAZ

(Hoeffding’s ineq.) < (exp [
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® Taking the log yields:

i log |A| tR2
E{Sungiﬂ%} < Ogt’ ‘ | 5

® Minimizing the bound by choosing ¢ = y/2log |41

. R
gives

E |:SU.pZO'Z'ZIZZ’] < R+/2log|A|

o)
TeA =1

Mehryar Mohri - Foundations of Machine Learning page 16



Growth Function Bound on Rad. Complexity

B Corollary: Let G be a family of functions taking
values in{—1, +1}, then the following holds:

%, (G) < \/QIOgﬂg(m).

m
& Proof:
o@ =B [mp [ 1] [7F]]
L V2 logl{(g(m);?-l- 290m) 9 € G \cart's Lemma)

< Vvmy/2log g (m) _ \/ZIOgH(;(m).

m m

Mehryar Mohri - Foundations of Machine Learning page |7



Generalization Bound - Growth Function

B Corollary: Let H be a family of functions taking
values in{—1, +1}.Then, for any § >0, with
probability at least 14, for anyhe H,

R(h) < R(h) + \/210g I (m) ] log 5

m om

B But, how do we compute the growth function?
Relationship with the VC-dimension (Vapnik-
Chervonenkis dimension).

Mehryar Mohri - Foundations of Machine Learning page 18



This lecture

B Rademacher complexity
® Growth Function

B VC dimension

® Lower bound
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VC Dimension

(Vapnik & Chervonenkis, 1968-1971;Vapnik, 1982, 1995, 1998)

B Definition: the VC-dimension of a hypothesis set H
is defined by

VCdim(H) = max{m: llg(m) =2}

B Thus, the VC-dimension is the size of the largest set
that can be fully shattered by H.

® Purely combinatorial notion.
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Examples

& [n the following, we determine the VC dimension
for several hypothesis sets.

B To give a lower boundd for VCdim(H), it suffices
to show that a set Sof cardinality d can be
shattered by H.

B To give an upper bound, we need to prove that no
set S of cardinality d+1can be shattered by H,
which is typically more difficult.
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Intervals of The Real Line

A Observations:

® Any set of two points can be shattered by four

intervals - - + - -+
—_— — e

@ @—
+ +
ﬁ

® No set of three points can be shattered since
the following dichotomy “+ - +” is not realizable
(by definition of intervals):

+ oo+
.- o °

® Thus,VCdim(intervalsin R)=2.
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Hyperplanes

B Observations:

® Any three non-collinear points can be shattered:

+
+

® Unrealizable dichotomies for four points:
+ +

+ + o+
® Thus,VCdim(hyperplanesin R%)=d+1.
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Axis-Aligned Rectangles in the Plane

B Observations:
® The following four points can be shattered:

+ + + +
_ _ + - - - - +
+ + _ _

® No set of five points can be shattered: label
negatively the point that is not near the sides.

+
T
+

® Thus,VCdim(axis-aligned rectangles) =4 .
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Convex Polygons in the Plane

B Observations:

® 2dJ-+1points on a circle can be shattered by a d-gon:

=

= -
|positive points| < |negative points| |positive points| > |negative points|
® |t can be shown that choosing the points on the
circle maximizes the number of possible
dichotomies. Thus,VCdim(convex d-gons) =2d+1.
Also,VCdim(convex polygons) =—+o0.
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Sine Functions

B Observations:

® Any finite set of points on the real line can be
shattered by {¢t—sin(wt): w € R}.

® Thus,VCdim(sine functions) =+oo.

AR AR

0.5

}30.0—]% opblol | bkd | lob]| ko

LUV

0.0 0.z 04 0.6 0.8 1.0
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Sauer’s Lemma

(Vapnik & Chervonenkis, 1968-1971; Sauer, 1972)

B Theorem:let H be a hypothesis set withVCdim(H)=d
then, for all meN,

Iy (m) < ng% (T)

® Proof: the proof is by induction on m+d.The
statement clearly holds form=1and d=0ord=1.
Assume that it holds for(m—1,d—1)and (m—1,d).

® FixasetS={xy,...,2,}withIly(m)dichotomies
and let G=H,s be the set of concepts H induces
by restriction to S.
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® Consider the following families over S’ ={z1,..., 2,1}

Gi=Gisr Go={9'CS": (¢ €eG)AN(¢g U{zn} € G)}.

L1 N L2 |+ Tm—1f Lm
L [ o 19 o
T 0| o I~ |
0o | | | 1\ |
N1 [ oo 1/ o
™~ o |0 0|1

® Observe that|G| + |G| = |G|.
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® SinceVCdim(G1)<d, by the induction hypothesis,

G| <Tlg,(m —1) <Z< )

® By definition of G, if a setZ C.S’is shattered by Gb,
then the set ZU{z,, } is shattered by G.Thus,

VCdim(G,) < VCdim(G) —1=d —1

and by the induction hypothesis,

Go| <Tlg,(m —1) <Z< >

® Thus, |G| < Zf:o ( i 1) T Z?:ol ( i 1)
=Y (") + (7)) =2 (7).
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Sauer’s Lemma - Consequence

@ Corollary: let H be a hypothesis set withVCdim(H)=d
then, for all m>d,

—
=z
2
[

—
2|

h
o
X
O
O
o

1M~

R
ST
SN—
VA

VAN
TR
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Remarks

B Remarkable property of growth function:
® either VCdim(H)=d< 400 and Iy (m)=0(m?)
® or VCdim(H)=+oc andIlg(m)=2".
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Generalization Bound - VC Dimension

B Corollary: Let H be a family of functions taking
values in {—1, +1} with VC dimension ¢ .Then, for
any § >0, with probability at least1—¢, for any hc H,

2d log = log

R(h) < R(h) + \/ | %.

m 2m

® Proof: Corollary combined with Sauer’s lemma.

B Note: The general form of the result is

R(h) < R(h) + O ( 105%@) |
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Comparison - Standard VC Bound

(Vapnik & Chervonenkis, 197 I;Vapnik, 1982)
B Theorem: Let H be a family of functions taking
values in {—1, +1} with VC dimension ¢ .Then, for
any § > 0, with probability at least1—4, for any hc H,

~ 8dlog 22 4 8log %
R(h)gR(h)+\/ %674 TSO85

m

® Proof: Derived from growth function bound

me

Pr [ R(h) — f%(h)| > e] < 4115 (2m) exp (—2) .

8
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This lecture

B Rademacher complexity
® Growth Function

#@ VC dimension

& Lower bound
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VCDim Lower Bound - Realizable Case

(Ehrenfeucht et al., 1988)

B Theorem:let H be a hypothesis set with VC-
dimensiond >1.Then, for any learning algorithm L,

d—1]
1D, 4 H, P Rp(h —— | >1/100.
? fe ) SNDrm - D( S?f)> 32m- — /

B Proof: choose D such that Lcan do no better than
tossing a coin for some points.

® letX={xg,x1,...,24_1}be a set fully shattered.
For any € >0, define D with support X by
8¢
d—1

%r[:co] =1—8¢ and Vie|[l,d— 1],%1"[%] =
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® We can assume without loss of generality that L
makes no error on zy.

e For a sample 9, let Sdenote the set of its elements

falling in Xy ={x1,...,24_1} and let S be the set of
samples of size m with at most (d — 1) /2 points in X.

® Fix a sampleS€S. Using| X — S|>(d—1)/2,

fEU [Bp(hs, f)] Z Z Lh(z)£f(x) Prz| Prf]

f xzeX

> Y L) s () Prlz] Prf]

=3 (Y Loy () Prlf]) Prla]

rdS
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® Since the inequality holds for all S¢S, it also holds in
expectation:Es ;. [Rp(hs, f)] > 2¢. This implies that
there exists a labeling fysuch that Es[Rp(hs, fo)] > 2e.

® Since Prp[X — {z0}] <8¢ We also have Rp(hs, fo) <8 Thus,

2e < %[RD(hSa fo)] < 8e bi%[RD(hsa fo) > €+ (1— Sf;%[RD(hS, fo) > €])e.

® Collecting terms inSP%[RD(hS,fO) > ¢] , we obtain:
S
1 1
PrlRp(hs, fo) 2 €] 2 —(2e —€) = —.
® Thus, the probability over all samples.S (not
necessarily in S) can be lower bounded as

Pr(Rp(hs, fo) > | > Pr[Rp(hs, fo) > d Pr[S] > - Pr(s].
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® This leads us to seeking a lower bound for Pr[S].
The probability that more than(d — 1)/2 points be
drawn in a sample of size m verifies the Chernoff
bound for any~ > 0:

2

1 — Pr[S] = Pr[S,, > 8em(1+~)] < e 8mF .
® Thus,fore=(d—1)/(32m)and~y=1,
Pr[S,, > %] < o—(d—1)/12 < o—1/12 <1-—76,
fors < .01.Thus, Pr[S] > 7§ and

P;I‘[Rp(hs, f()) > 6] > ).
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Agnostic PAC Model

B Definition: concept class C' is PAC-learnable if there
exists a learning algorithm L such that:

e forallce C,e>0,6>0, and all distributions D,

o < el >1
SEIb R(hg) égjf{ R(h) <e| >1-04,

® for samples S of sizem=poly(1/e,1/6) for a fixed
polynomial.
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VCDim Lower Bound - Non-Realizable Case

(Anthony and Bartlett, 1999)

B Theorem:let H be a hypothesis set withVC
dimensiond > 1.Then, for any learning algorithmZ,

1D over X x {0, 1},

(g [Roth) — ot Fo) >

d
320m

| Equivalently, for any learning algorithm, the sample
complexity verifies

[ = 1/61

d
m > .
— 320€2
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Binary Classification Problem

® Training data: sample drawn i.i.d. from set X CRY
according to some distribution D,

S = ((5131, yl), Ceey (lem, ym)) c X X {—1, —|—1}.
® Problem:find hypothesis h: X +—{—1,4+1} in H
(classifier) with small generalization error R(h).

® choice of hypothesis set H : learning guarantees
of previous lecture.

—>» linear classification (hyperplanes) if
dimension N is not too large.
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This Lecture

B SupportVector Machines - separable case
® SupportVector Machines - non-separable case

B Margin guarantees
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Linear Separation

® geometric margin: p = min;gq ) |.

® which separating hyperplane!?
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Optimal Hyperplane: Max. Margin

(Vapnik and Chervonenkis, 1965)

P = max min
w,b:y; (w-x;+b)>0 i€[1l,m] HWH
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Maximum Margin

. |lwex; 4 b
p = max min
w,b: y;(w-x;+b)>0 i€[1l,m] ”WH
. |wex; + b o
— max min (scale-invariance)
w,b: y; (w-x;4+b)>0 1€[1,m] HWH
min;e(1,m] |W-x;+b|=1
1

= 1M ax —
w,b: y; (w-x;+b)>0 HW”
ming ey, m) |[W-x;+b|=1

1

— max —. (min. reached)
w,b: y; (w-x;4+b)>1 HWH
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Optimization Problem

B Constrained optimization:
1

min —HWH2
w,b

subject to y;(w-x; +b) > 1,1 € [1,m].

B Properties:
® Convex optimization.

® Unique solution for linearly separable sample.
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Optimal Hyperplane Equations
® [agrangian:for allw,b, a; >0,

1 m
L(w,b,a) = §HWHZ - ZO@[?J@(W -x; +0) —1].
i=1
B KKT conditions:
Vwl =w — Z ;X =0 <=|w = Z oYX
i=1

va:—Zaiyi:O @Zazyz—O

1=1

Vi e [1,m], a;ly;i(w-x; +b) —1] =0.

Mehryar Mohri - Foundations of Machine Learning page 8



Support Vectors

® Complementarity conditions:
a;ly;(w-x;+b) —1]=0 = a; =0V y(w-x;+b) =1.
| Support vectors: vectors x; such that

a; #0ANy;(w-x; +b) =1.

® Note: support vectors are not unique.
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Moving to The Dual

B Plugging in the expression of win L gives:

Z ;05 YiY; (X - X5) Zazyzb—kZaZ.

1,7=1

™

O

—3 D1 @0 Yy (X X;)

® Thus,

L = Zaz - = Z Oézajyzyj )

,7=1
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Equivalent Dual Opt. Problem

® Constrained optimization:

zyl

subject to: a; > 0 A Zaiyi = 0,7 € [1,m)].
i=1
B Solution:

T) = Sgn(zaiyi(xi -X) +b),

m =1
with b=y; — Y ajy;(x; - x;) for any SV x;.
=1
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Leave-One-Out Error

B Definition: let hg be the hypothesis output by
learning algorithm L after receiving sample Sof
sizem. Then, the leave-one-out error of L over S
IS:

. 1 «—
RIOO(L) — E Z 1hS—{xi}($i)#f(xi).
1=1

® Property: unbiased estimate of expected error of
hypothesis trained on sample of size m—1,

= 1
B [Rioo(L)]=— Zl Ellhg (o) @02 s @] =Elns_ o) ()24()

= kL E |1 = E |R(hg)|.
S’NDm_l[a?ND[ hS’(x)#f(x)H S/NDm_l[ ( S )]
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Leave-One-Out Analysis

B Theorem:let hs be the optimal hyperplane for a
sample Sand let Nsy (S) be the number of support
vectors defining hs. Then,

Nsv(S)
Sw%m[R(hS)] = S~gm+1 { fniJr 1 ] |

B Proof:Let S~ D™ be a sample linearly separable

and let z€ 5. If hg_y,y misclassifies x, then z must
be a SV forhg.Thus,

Nsv(S5)
m-+1

f{loo (opt.-hyp.) <
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Notes

® Bound on expectation of error only, not the
probability of error.

® Argument based on sparsity (number of support
vectors).We will see later other arguments in
support of the optimal hyperplanes based on the
concept of margin.
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This Lecture

® SupportVector Machines - separable case
B Support Vector Machines - non-separable case

B Margin guarantees
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Support Vector Machines
(Cortes and Vapnik, 1995)
® Problem: data often not linearly separable in
practice. For any hyperplane, there exists x; such

that
Y |[W-x; +b] 2 1.

B |dea: relax constraints using slack variables & >0
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Soft- Margln Hyperplanes

w-X+b=0

W-x+b=—1

| Support vectors: points along the margin or outliers.

® Soft margin:p =1/||w]||.

Mehryar Mohri - Foundations of Machine Learning page |7



Optimization Problem
(Cortes and Vapnik, 1995)
® Constrained optimization:

1, . i
3 _ C ?:
Inin 5 W™+ ;—16
subject to y;(w-x; +b)>1—-& A & >0,i¢€ [1,m].

B Properties:
® (' >0trade-off parameter.
® Convex optimization.

® Unique solution.
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Notes

B Parameter C':trade-off between maximizing margin
and minimizing training error. How do we
determine C'!

B The general problem of determining a hyperplane
minimizing the error on the training set is NP-
complete (as a function of the dimension).

B Other convex functions of the slack variables
could be used: this choice and a similar one with
squared slack variables lead to a convenient
formulation and solution.
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SVM - Equivalent Problem
® Optimization:

1 -
min  |w| +ci_zl(1—yz-<w.xz-+b>)+.

A | oss functions:

® hinge loss:

L(h(x),y) = (1 = yh(x))+.
® quadratic hinge loss:

L(h(x),y) = (1 — yh(x))3 .
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Hinge Loss

¢ . 9 Ls 2
Quadratic’ hinge loss &
4 -

Hinge loss gl 3

cost
M
1

0/l loss function 1 -
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SVMs Equations
® [agrangian:for allw,b, a; >0, 5; >0,

L(w,b,& a,B) = —||w||2+OZ£Z Zazyzwxﬁb—lm Z%.

1=1 1=1

a KKT condigons:
Vol =w — Z O YiX; = 0 <—|w= Zozzy,,,xz

1=1
VbL:—ZOéiinO e Zazyz—o
1=1
v§iL:C—()&i—ﬁi:O <:>Oéi‘|‘57;:

Vie[l,m], a;jlys(w-x; +b) —14+&] =0

Bi& = 0.

Mehryar Mohri - Foundations of Machine Learning

page 22



Support Vectors

® Complementarity conditions:

ailyi(w-x;,+b) —1+&]=0 = a; =0V y(w-x;+b)=1-¢,.

| Support vectors: vectors X; such that
Q; 7£O/\yz(wxz—|—b) =1-¢,.

® Note: support vectors are not unique.
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Moving to The Dual

B Plugging in the expression of w in L gives:

Zaiyixz Z szajyzyj X5 Xg Z@zyzb"i_zafz-
1=1

,Jl
1 m

2 1,]= 1aa3y@y3(x’b XJ)

B Thus,

L = Zaz -3 Z @z@jyzyj )

1,7=1

® The condition 3; >0 is equivalent to o; <C.
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Dual Optimization Problem

® Constrained optimization:

1,7=1

subject to: 0 < ;| < C|A Z&iyi = 0,7 € [1,m)].

1=1

A Solution:

— Sgh Z azyz Xq - ‘|‘ b)

m 1=1
with b=y; — Y a;y;(x; - x;) for any x; with
j=1 0<oyl<C.
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This Lecture

® SupportVector Machines - separable case
® SupportVector Machines - non-separable case

B Margin guarantees
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High-Dimension

® [ earning guarantees: for hyperplanes in dimension N
with probability at least1 — ¢,

2(N +1)log 34 | log 5

m om

R(h) < R(h) + \/

® bound is uninformative for N > m.

® but SVMs have been remarkably successful in
nigh-dimension.

® can we provide a theoretical justification?

® analysis of underlying scoring function.
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Confidence Margin

B Definition: the confidence margin of a real-valued
function hat (z,y) € X x Y is pn(z,y) = yh(z).

® interpreted as the hypothesis’ confidence in
prediction.

® if correctly classified coincides with |r(z)].

® relationship with geometric margin for linear
functionsh: x — w-x + b: for z in the sample,

o0 (7, y)| 2 pgeom|| W[
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Confidence Margin Loss

& Definition: for any confidence margin parameterp>0
the p-margin loss function @, is defined by

D, (yh())

1
rey

B >yh(x)

® For a sample S=(z4,...,z,,)and real-valued
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General Margin Bound

B Theorem:Let H be a set of real-valued functions.
Fix p> 0. For any 6 >0, with probability at least 1—9,
the following holds for all h € H:

~ 2 log +

h) < R,(h) + =R, (H 0
R()_Rp()+p9% (H) + >
log%

. 9
< — H .
R(h) < R,(h) + pi)%s( )+ 31 5=

B Proof:Let H = {z=(z,y)—yh(z): he H}. Consider
the family of functions taking values in [0, 1]:

ﬁ:{q)pof:féﬁ]}.
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® By the theorem of Lecture 3, with probability at
least 1 -9, for allge'H,

Elg(2)] < — 3 g() + 2R (H) +
e Thus, B
E[®,(yh(z))] < Ry(h) + 2%y (D, 0 H) +

log %

2m

log %

2m

® Since®, is % - Lipschitz, by Talagrand’s lemma,

1~ 1
%m(@poH)gg?ﬁm(H):p—maEs[sggzmyz xz}—;% (H)

® Sincel,z)<0 < ®,(yh(z)), this shows the first
statement, and similarly the second one.
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Rademacher Complexity of Linear Hypotheses

B Theorem:Let SC{z:|x||<R} be a sample of size m
and let H ={x — w-x: ||w||<A}.Then,
~ R2A\2

~ 1 d 1 =
Rs(H) = —E | sup Zaiw-xi] :—E[ sup W-ZO'Z'XZ']
i=1

m o | w|<A =] Mg | |w[ <A

A T A m 0-11/2
] T/Qm[E x|
A = AVmR? R2A2
B[ ]| < B
1=1

VAN

m

m
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Margin Bound - Linear Classifiers

B Corollary: Letp>0and H ={x — w-x: ||w| <A}.
Assume that X C {x: ||x||< R}.Then, for anyé >0,
with probability at least1—4, for any he H,

R R2A2/p2 loo 2
R(h)gRP(h)JrQ\/ /P75 ;if.

m

| Proof: Follows directly general margin bound and
bound onfRs(H) for linear classifiers.

® Finer relative deviation margin bounds (Cortes, MM,
Suresh; ICML 2021).
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High-Dimensional Feature Space

A Observations:

® generalization bound does not depend on the
dimension but on the margin.

® this suggests seeking a large-margin hyperplane
in a higher-dimensional feature space.

B Computational problems:

® taking dot products in a high-dimensional feature
space can be very costly.

® solution based on kernels (next lecture).
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Saddle Point

B Let(wW*, 0", a") be the saddle point of the Langrangian. Multiplying
both sides of the equation giving b* by o) y; and taking the sum leads

to: m m
Za;‘yib: Za Z o oYy (X - Xj).
i=1 i=1

,7=1

| Usingy?=1,> ", afy;=0,andw*=>""_ afy;x; yields

m
0=> af —w"|*
i=1

B Thus, the margin is also given by:
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Talagrand’s Contraction Lemma
(Ledoux and Talagrand, 1991; pp. | 12-114)

B Theorem:Let®:R—Rbe an L-Lipschitz function.
Then, for any hypothesis set H of real-valued

functions,
Rs(Po H) < LRg(H).
B Proof:fix sample S=(x1,...,z,). By definition,
1 ™m
Rs(Po H) = — 1(57) [EEBZUZ (P o h)(ajz)}
_1 g B [ sup i (h) + 00 (@ 0 1) ()] |
m o1,-..., Om—1 Lom LpecHg

with um_l(h)zmz— O'Z((I) O h)(.ﬁljz)
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Talagrand’s Contraction Lemma

® Now, assuming that the suprema are reached,
there exist i1, ho € H such that

E { SUp Um—1(h) + om (P o h)@m)”

— %[um_l(m) + (P o hy)(xm)] + %[um—l(f@) — (@ o h2)(xm)]
< %[um_l(hl) + 1 (h2) + SL(h1(zm) — ha(zm))]

= Dt () 5L ()] + 5 [t 1 (h2) — 5L (@)

<E {222 w1 (h) + amLh(:cm)},

where s = sgn(hi(z;) — ha(zm)).
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Talagrand’s Contraction Lemma

® When the suprema are not reached, the same can
be shown moduloe, followed by e —0.

B Proceeding similarly for othero;s directly leads to
the result.
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VC Dimension of Canonical Hyperplanes

B Theorem:Let SC{x:||x||<R}.Then,theVC
dimension d of the set of canonical hyperplanes
{z +— sgn(w - x): IIlelgl 'w - x| =1A||lwl| <A} verifies

d < R*A°.

B Proof:Let{xi,...,x4} be a set fully shattered.Then,
for ally € {—1,+1}% there exists w such

Vi e [1,d],1 <y;(w-x;).
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® Summing up the inequalities gives

d d d
d<w Sy < w0yl < A il
1=1 1=1 1=1

® Taking the expectation over y ~U (uniform) yields

y~U
d

= A[ Y Blyayl(xi - x;)]
z,ézl

— A (xi-x)]"? < A[dR?)? = ARV

1=1

® Thus,vVd < AR.

d d
1/2
d<A B 1Y il < AL _E (1D yiil*l]gensen's ineq)
1=1 1=1
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Motivation

| Efficient computation of inner products in high
dimension.

® Non-linear decision boundary.
® Non-vectorial inputs.

B Flexible selection of more complex features.
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This Lecture

Kernels
Kernel-based algorithms
Closure properties

Sequence Kernels

Negative kernels
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Non-Linear Separation

B Linear separation impossible in most problems.

® Non-linear mapping from input space to high-
dimensional feature space: ¢: X — F.

B Generalization ability: independent of dim(F),
depends only on margin and sample size.
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Kernel Methods

B |dea:
® DefineK: X x X —R, called kernel, such that:
D(x) - B(y) = K(2,y).
® K often interpreted as a similarity measure.

B Benefits:

e Efficiency: K is often more efficient to compute
than & and the dot product.

® Flexibility: K can be chosen arbitrarily so long as
the existence of ® is guaranteed (PDS condition
or Mercer’s condition).

Mehryar Mohri - Foundations of Machine Learning page 5



PDS Condition

B Definition: a kernel K: X x X —R is positive definite
symmetric (PDS) if for any{z1,..., 2z, } C X, the
matrix K = K (z;,2;)];; € R™*™ is symmetric
positive semi-definite (SPSD).

B K SPSD if symmetric and one of the 2 equiv. cond’s:

® its eigenvalues are non-negative.
m
® forany ccR™!, ¢c'Kc = Z cic;K(xi,z;) > 0.
i,j=1
B Terminology: PDS for kernels, SPSD for kernel
matrices (see (Berg et al., 1984)).
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Example - Polynomial Kernels

B Definition:
Ve, y € RY, K(x,y) = (z-y+c)% ¢>0.
B Example:for N=2and d=2,

K(z,y) = (x1y1 + T2y2 + 0)2

L7 Y
2 2

L9 Ya
\/551315132 \/§y1y2
B \/276513‘1 | \/Q_Cyl
\/276332 \/2_692

C

C
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XOR Problem

B Use second-degree polynomial kernel with ¢ = 1:
\/533133‘2

X2¢
CL1) o (1D
X
@ @
(-1,-1) (1,-1)

Linearly non-separable

Mehryar Mohri - Foundations of Machine Learning
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(1,1, +v2, =2, —v/2,1) t
()

(1, 1,.+¢§, +v2,4+v2,1)

@
(1,1, =v2,—v2,+v2,1)

» /21

O
(1,1, ~v2, +v/2, /2, 1)

Linearly separable by

L1X9 — 0.
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Normalized Kernels

B Definition: the normalized kernel K’ associated to a
kernel K is defined by

0 if (K(x,x)=0)V (K(2',2")=0)
Vo,o'e X, K'(z,2") = K(z.2)
\/K(az,m)K(x’,x’)

otherwise.

e |f Kis PDS, then K’ is PDS:

i cici K (x;, ;) Z C@Cj i), ®(x;)) i c;i®P(x;) 0.
i,j=1 \/K($i7xi>K(xj7wj i =1 || ”H H(I)(ZUJ)HH i—1 H(I)(wz)HH IHI_

® By definition, for all x with K (z, z) #0,
K'(z,z)=1.
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Other Standard PDS Kernels

B Gaussian kernels:

T — 2
K(z,y) = exp (—H il ) o # 0.

202

® Normalized kernel of (x,x’) — exp (X’Q‘)

(o)

B Sigmoid Kernels:

K(x,y) = tanh(a(x -y) +b), a,b> 0.
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Reproducing Kernel Hilbert Space
(Aronszajn, 1950)

B Theorem:Let K{: X x X —R be a PDS kernel.Then,

there exists a Hilbert space H and a mapping
from X to H such that

Ve,y e X, K(z,y) = ®(x) - P(y).

B Proof: For any z € X, define®(x): X —R~*as follows:
Vy € X, @(z)(y) = K(z,y).
o LetHy= { Y ®(x;): a; € R,y € X, card(]) <oo}.

icl
® We are going to define an inner product{-,-)on H,.
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e Definition:for anyf=>"._; a;®(z;),9 = ijq)(yj),

jEJ

<fag> — Z azb K 377,7:% Zb f y] Zazg(azz)

iel.jed jeJ €l
® (.,-)does not depend on representations of fandg.
O

(,)is bilinear and symmetric.

® (-,-)is positive semi-definite since K'is PDS: for any f,

(f, f) = Z aia;j K (x;,xj) > 0.

i,jel
® note:forany fi1,..., fmand ci,...,cm,
™m
Z CiCy fzafj <Zczfuzcjf]> -
1,7=1

—> (-, -)is a PDS kernel on Hj.
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e (-, -)is definite:

® first, Cauchy-Schwarz inequality for PDS kernels.

f icis PDS, M= ( ") K(*%) ) is SPSD for allz, y€ X

In particular, the product of its eigenvalues, det(IM)
IS hon-negative:

det(M) = K (z,2)K (y,y) — K(z,y)* > 0.
® since(-,-)is a PDS kernel, for any f € Hy andz € X,

(f,@())* < (f, [){®(2), 2(x)),
® observe the reproducing property of (-, -):

\V/f S HOa\v/CU < X7 f(CU) — ZCLZK(ZEMCE) — <f7(I)(,CL’)>
o Thus,|f(z)2<(f. f)K (2, 2) for all z€ X, which
shows the definiteness of (-, -).
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® Thus, (-, -)defines an inner product on H,, which
thereby becomes a pre-Hilbert space.

® Hycan be completed to form a Hilbert space H in
which it is dense.

B Notes:

® [1is called the reproducing kernel Hilbert space
(RKHS) associated to K.

® A Hilbert space such that there exists ®: X — H
with K (z,y)=®(z)-®(y) for allz,y € X is also
called a feature space associated toK. ® is called
a feature mapping.

® Feature spaces associated to K are in general not
unique.

Mehryar Mohri - Foundations of Machine Learning page 14
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SVMs with PDS Kernels

(Boser, Guyon, and Vapnik, 1992)

B Constrained optimization:
O(zi) ()

max Zaz — — Z aza]yzy]

1,7=1

subject to: 0 < a; < C'A Zoziyi = 0,7 € [1,m)].

i=1
B Solution:
T) = Sgn( Z oziyiJr b),

withb = y; — Z ozjyj for any x; with

j=1 O<a;<C.
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Rad. Complexity of Kernel-Based Hypotheses

B Theorem:LetK: X xX —R be a PDS kernel and
let : X —H be a feature mapping associated to K.
Let SC{z: K(x,7) < R*}be a sample of size m,and
let H={x— w-®(x): |w|g<A}.Then,

. 1 m A _ m -
B Proof: Rg(H)= —E| sup w o;®(z;)| < —E H 0;P(z;)
m o [nwng ; J< ol ; !
AT 0-71/2 A m 11/2
< ineq) < A B(a, < B Nk
(Jensensmeq)_m_]g) H;a S (x;) H _m[E;@(mﬂ }
_ATL -iK( | _)} V2 AVTK] _ (RPN
B m_a | 4 Ly N ™m o m
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Generalization: Representer Theorem
(Kimeldorf and Wahba, 1971)
B Theorem:LetK: X x X —R be a PDS kernel with H
the corresponding RKHS. Then, for any non-

decreasing functionG: R—Rand any L: R™ - RU{+o00}
problem

argmin F'(h) = argmin G(||h||g) + L(h(z1), ..., h(@m))
heH he H

admits a solution of the formh™ = Z a; K (x;,)

If G is further assumed to be i mcreasmg, then any
solution has this form.
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® Proof:let H; =span({K(x;,-):i€[1,m]}).Anyhe H
admits the decompositionh="h; + h~ according
toH=H{ & HlJ_
® Since G is non-decreasing,

G(llmll) < G(\/IInal + 18413, ) =GR ).
® By the reproducing property, for alli € |1, m|,
h(wz;) = (h, K(xi,-)) = (h1, K(x4,)) = ha(z;).
® ThUS,L(h(SBl), Ceey h(:lj‘m)) :L(hl(ﬂjl), Ceey hq (ZIZm))
® |f Gis increasing, then F'(h;) < F(h) when h™ # 0

and any solution of the optimization problem
must be in H;.
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Kernel-Based Algorithms

B PDS kernels used to extend a variety of algorithms
in classification and other areas:

® regression.

® ranking.

® dimensionality reduction.
o

clustering.

B But, how do we define PDS kernels!?
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Closure Properties of PDS Kernels

B Theorem: Positive definite symmetric (PDS)
kernels are closed under:

® sum,
product,
tensor product,

pointwise limit,

composition with a power series with non-
negative coefficients.

Mehryar Mohri - Foundations of Machine Learning page 22



Closure Properties - Proof

B Proof: closure under sum:
c' Kc>0Ac'Ke>0=c'(K+K')c>0.

® closure under product: K = MM ',

> cici(KyKi) = > CichZMiijk}K;j)

,J=1 ,J=1 k=1
m m
— S S MM K
= ) [ D Czchszngz]]
k=1 -,7=1
-

ClMlk ClMlk

_CmMmk_ _CmMmk_

I
NE
W,
-

-
I
o
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® Closure under tensor product:

® definition: for all z1, 22, y1,y2 € X,
(K1 @ K2)(21,y1, 22, y2) = K1(21, x2) Ka(y1, y2).
® thus, PDS kernel as product of the kernels
(1,91, 2, Y2) = Ki(z1,22) (21,91, 22, y2) — Ka(y1,92).
® Closure under pointwise limit:if for all x, y € X,
lim Ky (z,y) = K(z,9),

Then, (Vn,c'K,,c>0) = lim ¢'K,c=c'Kc>0.

n—oo
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® Closure under composition with power series:

® assumptions: K PDS kernel with|K(x,y)|<p for
allz, ye Xand f(z)=>_"", anx™, a, >0power
series with radius of convergencep.

® foKis aPDS kernel since K™is PDS by closure
under product,>"_ a, K" is PDS by closure
under sum, and closure under pointwise limit.

B Example: for any PDS kernel K, exp(K)is PDS.
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Sequence Kernels

B Definition: Kernels defined over pairs of strings.

® Motivation: computational biology, text and
speech classification.

® |dea: two sequences are related when they share
some common substrings or subsequences.

® Example: bigram kernel;

K(x,y) = Z count, (u) X count, (u).

bigram u
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Weighted Transducers

b:a/0.6

b:a/0.2 A

a:b/0.1 ‘ ) b:a/0.3
° a:b/0.5

T(x,y) = Sum of the weights of all accepting
paths with input x and output .

T(abb,baa) =.1x .2x.3x.14+.5x.3x.6x.1
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Rational Kernels over Strings
(Cortes et al,, 2004)

B Definition:a kernel K : Y* xX* —Ris rational if K =T
for some weighted transducer 7.

B Definition:letT}: X*x A*—-RandT>: A*xQ*—R be
two weighted transducers. Then, the composition
of T1and Tsis defined for all re X", y € Q* by

(TyoTo)(z,y) = Yy Ti(x,z) Ta(z,y).
ZEA*

B Definition: the inverse of a transducer7:Y* x A* —R
is the transducer 77 ': A* x X* - R obtained fromT
by swapping input and output labels.
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PDS Rational Kernels
General Construction

B Theorem:for any weighted transducer7:¥* x¥* — R,
the function K =ToT ' is a PDS rational kernel.

B Proof: by definition, for all z,y € X7,
ry)= > Te,)T(y,2)

® Kis pointwise limit of( n)n>0 defined by

Yo,y € 0¥, Z T(xz,2)T(y, 2).
|z| <n
e K, is PDS since for any sample (z1, ..., zm),

K, =AA" with A = (K, (2:,%}))icq.m]-
jel1,N]
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PDS Sequence Kernels

B PDS sequences kernels in computational biology,
text classification, other applications:

® special instances of PDS rational kernels.
® PDS rational kernels easy to define and modify.

® single general algorithm for their computation:
composition + shortest-distance computation.

® no need for a specific ‘dynamic-programming’
algorithm and proof for each kernel instance.

® general sub-family: based on counting
transducers.
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Counting Transducers

b:e/1 b:e/1 X _ ab
a.e/l
% Z = bbabaabba
0 X:X/l» / \
ccabeeeee  egegeeeabee

® X may be a string or an automaton
representing a regular expression.

T'x

B Counts of Zin X: sum of the weights of
accepting paths of Z o T'x.
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Transducer Counting Bigrams

b:g/l b:S/l

Tbi gram

Counts of Zgiven by Z o Tiigram © ab.
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Transducer Counting Gappy Bigrams

b:e/l b:e/A b:e/1

Tgappy bigram

Counts of Zgiven by Z o Tyuppy bigram © ab,
gap penaltyA<(0,1).
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Composition

B Theorem:the composition of two weighted
transducer is also a weighted transducer.

B Proof: constructive proof based on composition
algorithm.
® states identified with pairs.
® c-free case: transitions defined by

b= v {((qh(ﬁ)aaaca wy X wa, (%#]é)) }

(ql ,CL,b,’UJl )qQ)EEl
/ /
(Q1 7b7C7w2)QQ)€E2

® general case: use of intermediate e-filter.
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Composition Algorithm
€-Free Case

a:a/0.6

‘

a:a/.02
@ a:b/.0 Q b:a/.Og a:a/0 !l Q o
a
b:a/.08

Complexity: O(|T1| |T2|) in general, linear in some cases.
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Redundant €-Paths Problem

(MM, Pereira, and Riley, 1996; Pereira and Riley, 1997)
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Kernels for Other Discrete Structures

| Similarly, PDS kernels can be defined on other
discrete structures:

® |mages,

® graphs,

® parse trees,
® automata,

® weighted automata.
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Questions

®m Gaussian kernels have the form exp(—d?)whered is
a metric.

e for what other functions d does exp(—d?) define a
PDS kernel?

® what other PDS kernels can we construct from a
metric in a Hilbert space?
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Negative Definite Kernels
(Schoenberg, 1938)

B Definition:A function K: X x X —R is said to be a
negative definite symmetric (NDS) kernel if it is
symmetric and if for all{z1,...,2,,} C Xand ce R"*!

withl'c=0,
c'Ke<0.

B Clearly, if K is PDS, then— K is NDS, but the
converse does not hold in general.
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Examples

® The squared distance||z — y||?in a Hilbert space H
defines an NDS kernel. If>".”; ¢;=0,

> acllxi—xilP = Y eici(xi —x5) - (3 — x5)

i,j=1 i,7=1
m
= 5 cies ([l + 1517 = 2% - %)
i,j=1
m ™m m

= aici([xill® + 1% = 2) exi- Y ¢ix;
. i=1 j=1

1,7=1

cicj (|l + [1%1|)

M

7 1

<
I

m m m

& (D allxil?) + 3 e (D eslixil?) =o.

1 1=1 1=1 7=1

M

J
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NDS Kernels - Property
(Schoenberg, 1938)
B Theorem:LetK: X x X —R be an NDS kernel such
that for allz, y€ X, K(x,y)=0iff vt = y .Then, there
exists a Hilbert space H and a mapping ®: X — H
such that

Vr,y € X, K(z,y) = | 2(z) — 2(y)|I*.

Thus, under the hypothesis of the theorem,V K
defines a metric.
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PDS and NDS Kernels

(Schoenberg, 1938)
B Theorem:let K: X x X — R be a symmetric kernel,
then:

® Kis NDS iff exp(—tK)is a PDS kernel for all t >0.
® |Let K'be defined for any zy by
K'(z,y) = K(z,20) + K(y,20) — K(2,y) — K(z0, o)
for all x, y € X. Then,K is NDS iff K’ is PDS.
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Example

B The kernel defined by K (z,y) = exp(—t||z — y||*)
is PDS for all ¢t>0 since||z — y||*is NDS.

B The kernel exp(—|z — y|?)is not PDS for p>2.

Otherwise, for any ¢t >0,{z1,...,z,,} C Xand ce R™*!
_ . |P _|+1/P._41/D . P
Z cic;e tla;—x; [P _ Z cicie L A S 1)
1,7=1 1,7=1

® This would imply that |z — y|? is NDS for p> 2, but
that cannot be (see past homework assignments).
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Conclusion

B PDS kernels:

rich mathematical theory and foundation.

general idea for extending many linear
algorithms to non-linear prediction.

flexible method: any PDS kernel can be used.

widely used in modern algorithms and
applications.

can we further learn a PDS kernel and a
hypothesis based on that kernel from labeled
data? (see tutorial: http://www.cs.nyu.edu/~mohri/icml201 | -
tutorial/).
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Appendix



Mercer’s Condition
(Mercer, 1909)

B Theorem:Let X x X be a compact subset of R and
let K: X x X —R be in L, (X x X)and symmetric.
Then, Kadmits a uniformly convergent expansion

@)

K(z,y) = Z an®n(T)Pn(y), With a, >0,

n=0

iff for any function c in Lo (X),

/—/XXX c(x)e(y) K (z,y)dxdy > 0.
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SVMs with PDS Kernels

B Constrained optimization: Hadamard product

max 21 'a— (aoy) K(ady)

subject to: 0 < a < CAa'y = 0.

A Solution:

= Sgn(z o yi K (x5, ) + b)

with b = y; — (a oy)'Ke; for any z;with
O<a;<C.
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Weak Learning
(Kearns and Valiant, 1994)
B Definition: concept class C' is weakly PAC-learnable
if there exists a (weak) learning algorithm Land~ >0
such that:
e for all >0, for all ¢ € C and all distributions D,
1

<l _~l>1-
JLr | filhs) < 3 7 0;

® for samples S of size m=poly(1/6)for a fixed
polynomial.
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Boosting ldeas

® Finding simple relatively accurate base classifiers
often not hard «— weak learner.

B Main ideas:
® use weak learner to create a strong learner.

® combine base classifiers returned by weak learner
(ensemble method).

B But, how should the base classifiers be combined?
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AdaBoost

Freund and Schapire, 1997
HC{—1,+1}*. ( P )
ADABOOST(S=((z1,Y1),- -+ (Tm,Ym)))

1 for i1+ 1tomdo
2 Dy (i) « +

3 fort<+1to 1 do
4 h; < base classifier in H with small error ¢,= Pr [hs(x;) F#y;]
5 Qp — %log 12—;5’5
6 Zy < 2[e (1 — et)]% > normalization factor
7 for i1 < 1 to m do
8 Dt-l—l(i) y Dy (4) exp(—Zoztyiht(aci))
9 ft < Zizl Oéshs
10 return h = sgn(fr)
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Notes

| Distributions D;over training sample:
® originally uniform.

® at each round, the weight of a misclassified
example is increased.

® observation: D, (i)= £,

s=1

since

—Yi Zi=1 ashs (xz)

Dt(i)e—atfyz’ht(fﬁi) B Dt_l(i)e—at_ﬂhht_l(:Ei)e—atyiht(xi)

le
Zy L1124 m

D11 (i) =

[Tee1 25
B Weight assigned to base classifier h; : a; directly
depends on the accuracy of h; at round ¢.
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lllustration
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Bound on Empirical Error
(Freund and Schapire, 1997)

B Theorem:The empirical error of the classifier
output by AdaBoost verifies:

R <o -23 (3-)]

e If further for all t<[1, T, ”y<(%— t), then
°T).

AN

R(h) < exp(—2

® v does not need to be known in advance:
adaptive boosting.
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. : —y; fe(zq)
® Proof: Since, as we saw, Dt+1( ): c o,

s=1

— Z Ly, fzi)<o < — Zexp(—yif(ilfz'))

1=1

< —Z {mHZt}DT—I—l HZt

® Now, since Zt is a normalization factor,

7, = iDt(Z‘)e_atyiht(xi)
1=1
> Di(i)e™ ™+ Y Dy(i)e™

iyzht(a:z)>0 i:yihe(x;)<0
(1 — €z)e™ ¥t + e

R(h)

=(1—¢ \/7 EzZ\/et(l—et).

Mehryar Mohri - Foundations of Machine Learning page 10



O Thus

<

~
I : |ﬂ|l
—
><
j®)
| —
I
(\W)
N\
N |—
I
™M
~
~——7" ||
N =
1
@D
P4
o)
 —
I
DO
N\
N —
I
AN
~
N
\)
1

® Notes:
® «; minimizer of ar— (1—¢€;)e” “+ee”
® since (1—e;)e™ “ =¢e™t, at each round, AdaBoost

assigns the same probability mass to correctly
classified and misclassified instances.

® for base classifiersz+—[—1,4+1], a: can be
similarly chosen to minimize Z;.
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AdaBoost = Coordinate Descent

® Objective Function: convex and differentiable.

m m

1 1 _
F(&) p— E Z e_yif(wi) — E Z e—yi Zj-vzl ah; (x4) .
i=1 i—1

0—1 loss
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® Direction: unit vector e, with best directional

derivative:

Flay_ — Flay_
F'(a;_1,ex) = lim (i1 + nex) Gl 1).

77—>O n
® Since F(a;_1 + ne;) E e Py e () =itk (21)
1=1
1 N
F, X+ = —— Zh i —Yi Zj:l O‘t—l,jhj(xi)
(-1, €r) mZy k(xi)e

1=1

1 « -5
= —— Zyzhk(:cz)D i)Z
M=

Thus, direction corresponding to base classifier with smallest error.
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® Step size: nchosen to minimize F(a:—1 + nex);

dF(o—1 + neg)

— 0 — Z yihi(z;)e ™Y Yo iey Grnjhg (i) g —nyiha (i) —

dn i=1
& — Zyzhk x;)D Z e~ Mvibk(zi) — ()
& — zm:yihk(xi)l_?t(i)e_"yihk(xi) =0
i=1
= [(1 — & p)e " — Et,ke”} =0
Sn = %log ! ;Ztk

N\

Thus, step size matches base classifier weight of AdaBoost.
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Alternative Loss Functions

square loss

10 4 boosting loss
(1 —2)% 1<y

rr—e *

g - logistic loss
rplogs (1 4+e™ %)

loss function

hinge loss
r—max(l —x,0)\

zero-one loss
0 x'_>1513<0
| | | | |

-4 -2 0 2 4
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Standard Use in Practice

B Base learners: decision trees, quite often just
decision stumps (trees of depth one).
B Boosting stumps:

e data inRY, e.g.,,N =2, (height(x), weight(x)).
associate a stump to each component.
pre-sort each component:O(Nm logm).
at each round, find best component and threshold.
total complexity: O((mlogm)N +mNT).

stumps not weak learners: think XOR example!
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Overfitting?

B Assume thatVCdim(H)=d and for a fixed T', define

T
fT: {Sgn(Zatht—b):Ozt,bGR,htGH}.
t=1

® 77 can form a very rich family of classifiers. It can
be shown (Freund and Schapire, 1997) that:

VCdim(Fr) <2(d+ 1)(T + 1) log,((T + 1)e).

B This suggests that AdaBoost could overfit for large
values of T, and that is in fact observed in some
cases, but in various others it is not!
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Empirical Observations

| Several empirical observations (not all): AdaBoost
does not seem to overfit, furthermore:

/ test error

training error _
10 100 1000
# rounds

C4.5 decision trees (Schapire et al., 1998).
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Rademacher Complexity of Convex Hulls

B Theorem: Let H be a set of functions mapping
from X to R. Let the convex hull of H be defined as

conv (
k=1

Then, for any sample S, Rg(conv(H))

B Proof: %s(conv(H)) =

Mehryar Mohri - Foundations of Machine Learning

p p
H) = {Zﬂkhkipzlaﬂkzoaz,ukﬁlahk c H}.
k=

1

= Rs(H)
m p
sup op Mkhk(xz)]
| hi,€H,p>0,[|p|[1 <1 5254 ;
sup sup Mk;( X hk: )]
| hy €H p>0, ||u|1<1/; Z
sup max oih(x; )]
hke%ké[lp <Z +(0)
su oh(x s(H).
hegZ )| = Rstan

page |9



Margin Bound - Ensemble Methods
(Koltchinskii and Panchenko, 2002)
@ Corollary: Let H be a set of real-valued functions.
Fix p> 0. For any 6 >0, with probability at least 1—9,
the following holds for all h e conv(H):

~ 2 log%

h) < h —R,, (H
R()_Rp()+p9% (H) + o
~ 2 ~ log 2
h) < R,(h o
R()_Rp()+p9%s( ) + 3 o

| Proof: Direct consequence of margin bound of
Lecture 4 and R (conv(H))=Rs(H).
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Margin Bound - Ensemble Methods
(Koltchinskii and Panchenko, 2002); see also (Schapire et al., 1998)
B Corollary: Let H be a family of functions taking
values in {—1, +1} with VC dimension d. Fixp>0.
For anyé >0, with probability at least1—4, the
following holds for all h € conv(H):

2 [2dlog <2 log 5

R(h) < Ry(h) + —\/ =

0 m 2m

® Proof: Follows directly previous corollary andVC
dimension bound on Rademacher complexity (see
lecture 3).
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Notes

® All of these bounds can be generalized to hold
uniformly for allp< (0, 1), at the cost of an additional

term \/log logs 2 and other minor constant factor
™m
Changes (Koltchinskii and Panchenko, 2002).

® For AdaBoost, the bound applies to the functions

Cfe) Y auly()

el el

€Z |

€ conv(H).

B Note that T'does not appear in the bound.

Mehryar Mohri - Foundations of Machine Learning page 22



Margin Distribution

B Theorem: For anyp>0, the following holds:

T
[t ] s -
t=1

e~ Yif(x4)
T
t=1 Zt ’

B Proof: Using the identity D, 1(i)=

m Z Lyir@o—llalip<o = — ZGXP —yi f(x;) + ||| 1p)

1=1
= = Z lell1p [mH Zt] Dri1(3)

_GHCXHWHZIS_QTH[F} Jald =,
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Notes

m Ifforallte[1,7],7 < (35 —ét) then the upper bound
can be bounded by

Pr{yf( x)

e

T/2

< p} (1 29) 7 (1 + 29)1+7

Forp<~, (1—-2v)'=?(14+2v)*? <1and the bound
decreases exponentially inT'.

B For the bound to be convergent: p > O(1/y/m),
thus v > O(1/+/m) is roughly the condition on the
edge value.
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LI-Geometric Margin

B Definition: the Li-margin py(z) of a linear
function f = >/, ayh; Witha #0 at a pointz € X is
defined by

or(z) = M@ _ [ Zmaddu(@)] _ |e-h()]

e el lee]ls

® ther,-margin of f over a sample S = (z1,...,2.,) IS
its minimum margin at points in that sample:

/ i€[1,m] f( ) ic[l,m]  |loe|q
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SVM vs AdaBoost

h,l.(x)

features or B (x) — [ 5 ] h(z) — [ . ]
base hypotheses ®y(z) h ()

r— w-P(x) r — o - h(r)
’W”'V;I)”(;H — dy(® (), hyperpl.) |O‘”°;”(:3)’ — 4. (h(z), hyperpl.)
y(w - @(z)) y(a-h(z))

w2 lex]l: (L1-AB)
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Maximum-Margin Solutions

O‘ ®
! | 0.0 %
........... U
o
o
o
>
Norm | - |- Norm || - ||
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But, Does AdaBoost Maximize the Margin!?

B No:AdaBoost may converge to a margin that is
significantly below the maximum margin (Rudin et al,
2004) (e.g., |/3 instead of 3/8)!

B [ower bound:AdaBoost can achieve asymptotically
a margin that is at least 2max if the data is separable
and some conditions on the base learners hold
(Ratsch and Warmuth, 2002).

B Several boosting-type margin-maximization
algorithms: but, performance in practice not clear
or not reported.
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AdaBoost’s Weak Learning Condition

B Definition: the edge of a base classifier i; for a
distribution D over the training sample is

() =5 -—a=3 Zyz‘ht(%)D(’i)-

B Condition: there exists v >0 for any distribution D
over the training sample and any base classifier

v(t) = 7.
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Zero-Sum Games

B Definition:
® payoff matrix M = (M;;) e R"™*".
® mpossible actions (pure strategy) for row player.
® p, possible actions for column player.

® M;; payoff for row player (=loss for column
player) when row plays i, column plays;.

B Example:

rock scissors

paper

rock

0

paper

0

SCisSsors

0

Mehryar Mohri - Foundations of Machine Learning

page 30



Mixed Strategies
(von Neumann, 1928)
® Definition: player row selects a distributionp over
the rows, player column a distribution q over
columns. The expected payoff for row is

m n
E M| = > ) piMyjq; =p'Mq.
j,f; i=1 j=1

B von Neumann’s minimax theorem:

max minp' Mq = minmaxp ' Mq.
P q a p

® equivalent form:

max min pTMej = min max e,iTMq.
P j€[l,n] a :€[l,m]
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John von Neumann (1903 - 1957)

‘ John von Neumann
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AdaBoost and Game Theory

& Game:
® Player A:selects point z;,i€[1, m].
® Player B: selects base hypothesis h;,t |1, T].
® Payoff matrix M c {—1, +1}™*%: My, =y;he ().
® von Neumann’s theorem: assume finite H.

m T
*

: : : Oétht(xi)
7" = minm: giﬂ (4)yif(z;) = max min y ;:1 p
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Consequences

B Weak learning condition = non-zero margin.
® thus, possible to search for non-zero margin.

® AdaBoost = (suboptimal) search for

corresponding o; achieves at least half of the
maximum margin.

B Weak learning =strong condition:

® the condition implies linear separability with
margin 2™ > 0.

Mehryar Mohri - Foundations of Machine Learning page 34



Linear Programming Problem

B Maximizing the margin:
(a y Xi)

p = max min vy, :
o Ge[l,m] ||
| This is equivalent to the following convex
optimization LP problem:

max p
(84

subject to : y;(a - x;) > p

lafl = 1.
B Note that:

= ||x — H||so, with H ={x: a-x = 0}.
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Advantages of AdaBoost

| Simple: straightforward implementation.

| Efficient: complexity O(mNT) for stumps:
® when Nand T are not too large, the algorithm is
quite fast.
B Theoretical guarantees: but still many questions.
® AdaBoost not designed to maximize margin.

® regularized versions of AdaBoost.
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Qutliers

B AdaBoost assigns larger weights to harder
examples.

| Application:
® Detecting mislabeled examples.

® Dealing with noisy data: regularization based on
the average weight assigned to a point (soft
margin idea for boosting) (Meir and Ritsch, 2003).

Mehryar Mohri - Foundations of Machine Learning page 37



Weaker Aspects

B Parameters:

® need to determine 7T, the number of rounds of
boosting: stopping criterion.

® need to determine base learners: risk of
overfitting or low margins.

B Noise: severely damages the accuracy of Adaboost
(Dietterich, 2000).
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Other Boosting Algorithms

B arc-gv (Breiman, 1996): designed to maximize the
margin, but outperformed by AdaBoost in
experiments (Reyzin and Schapire, 2006).

B L|-regularized AdaBoost (Raetsch et al., 2001):

outperfoms AdaBoost in experiments (Cortes et al,
2014).

B DeepBoost (Cortes et al,, 2014): more favorable
learning guarantees, outperforms both AdaBoost
and L1-regularized AdaBoost in experiments.
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Motivation

B Probabilistic models:
® density estimation.

e classification.
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This Lecture

Notions of information theory.
[htroduction to density estimation.

Maxent models.

Conditional Maxent models.
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Entropy

(Shannon, 1948)

B Definition: the entropy of a discrete random variableX with
probability mass distribution p(z) = Pr[X = z]is

H(X)=—E[logp(X)] = — Y p(z)logp(x
reX
@ Properties:

e H(X)>0.
® measure of uncertainty of X.

e maximal for uniform distribution. For a finite support, by
Jensen's inequality:

H(X) = E[log p&)] < 1ogE[$] _Jog N.
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Entropy

B Base of logarithm: not critical; for base 2, —log,(p(x)) is the
number of bits needed to represent p(x).

B Definition and notation: the entropy of a distribution p is
defined by the same quantity and denoted by H (p).

B Special case of Rényi entropy (rényi, 1961).

| Binary entropy: H(p) = —plogp — (1 — p)log(1 — p)

1.0

0.8t
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Relative Entropy

(Shannon, 1948; Kullback and Leibler, 1951)
B Definition: the relative entropy (or Kullback-Leibler divergence)
between two distributions p and q (discrete case) is

D(pllq)=FE llog ] > p(z)log g

reX

0
with Ologa = 0 and plog% = +400.

B Properties:
e asymmetric:in general, D(p || q) # D(q || p) forp # q.

® non-negative: D(p || q) > 0 for all pand q.
o definite:(D(p | q)=0) = (p=q).
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Non-Negativity of Rel. Entropy

B By the concavity of log and Jensen's inequality,

oundations of Machine Learning page
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Bregman Divergence

(Bregman, 1967)
B Definition: let F' be a convex and differentiable function
defined over a convex setC'in a Hilbert space H. Then, the
Bregman divergence Br associated to F'is defined by

Br(x ||y) = F(x) — F(y) —(VF(y),r —y) .

Foundations of Machine Learning page 8



Bregman Divergence

B Examples:

Br(z || y) F(x)
Squared Lo-distance |x — y]|* 1|2
Mahalanobis distance (x — y)TK_l(x —y) x K- 1x
Unnormalized relative entropy D(x|y) D icr Tilogx; — x;

* note: relative entropy not a Bregman divergence since
not defined over an open set; but, on the simplex,
coincides with unnormalized relative entropy

D(plla)=> p= log[ ;]+(q(w)—p(x))-

reX
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Conditional Relative Entropy

B Definition: let p and q be two probability distributions
overX x ). Then, the conditional relative entropy of p andq
with respect to distribution r over X' is defined by

E,[D6e10) at10)] = X ) Y- ploloytos 25

reX yey ‘ )
=D(p || 9),

with p(z,y) = r(z)p(y|x), q(z,y) = r(x)q(y|x), and the
conventions 0log0 =0, Olog 3 = 0, and plog § = +o0.

* note: the definition of conditional relative entropy is not
intrinsic, it depends on a third distributionr.
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This Lecture

Notions of information theory.
[htroduction to density estimation.

Maxent models.

Conditional Maxent models.
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Density Estimation Problem

B Training data: sample S of size m drawn i.i.d. from set X
according to some distribution D,

S = (xl,...,xm).

B Problem: find distribution p out of hypothesis set P that
best estimates D.

Foundations of Machine Learning page 12



Maximum Likelihood Solution

B Maximum Likelihood principle: select distributionp € P
maximizing likelihood of observed sample S,

P = argmax Pr|S|p]
peP

m
= argmax H p(x;)
PEP 21

— argmax Z log p(z;).
PEP =1

Foundations of Machine Learning page 13



Relative Entropy Formulation

B [emma: let pg be the empirical distribution for sample S,
then

Pmr = argminD(/ﬁS H P)-
peP

l Proof
D(ps | p) = ZPS ) log ps(x ZPS ) log p(x

= —H(ps) — » Zi:;nx:mi log p(x)

ACOESESY 133,;% log p(x)

1=1

= —H(ps) — » log:;(xi).

1=1
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Maximum a Posteriori (MAP)

B Maximum a Posteriori principle: select distributionp € P
that is the most likely, given the observed sample .S and
assuming a prior distribution Pr|p]over P,

Paap = argmax Pr(p|S]
peP

_ aremax Pr[S|p] Pr(p]
pEP Pr[S]

= argmax Pr|S|p| Pr[p].
peEP

e note: for a uniform prior, ML = MAP.
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This Lecture

Notions of information theory.
[htroduction to density estimation.

Maxent models.

Conditional Maxent models.
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Density Estimation + Features

B Training data: sample S of size mdrawn i.i.d. from set X
according to some distribution D,

S = (xl,...,xm).
B Features: associated to elements of X,
. N
b: X =R B, (2)
r— P(xr) = [ : ] .
DN ()

B Problem: find distribution p out of hypothesis set P that
best estimates D.

e for simplicity, in what follows, X is assumed to be finite.
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Features

B Feature functions ®; assumed to be in H and || ®|| < A.

B Examples of H:

o family of threshold functions {x + 1, <¢: x € R",0 € R}
defined over N variables.

e functions defined via decision trees with larger depths.
e k-degree monomials of the original features.

® zero-one features (often used in NLP, e.g., presence/
absence of a word or POS tag).
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Maximum Entropy Principle

(E. T. Jaynes, 1957, 1983)

[Hea: empirical feature vector average close to expectation.
For anyéd > 0, with probability at least1 — 9

E [@()— B [$() 108 ;

H < 2R, (H) + A
x~D x~D o0

)

2m

Maxent principle: find distribution p that is closest to a
prior distribution po (typically uniform distribution) while

verifying | Eu,[®(2)] - B, _5[®()]| < 5.

Closeness is measured using relative entropy.

® note: no setPneeded to be specified.
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Maxent Formulation

B Optimization problem:

in D
min D(p || po)
subject to: | E [®(z)] — ES[<I>(x)]H < 8.
T~p T 00

® convex optimization problem, unique solution.
e [ =0:standard Maxent (or unregularized Maxent).

e (5 >0:regularized Maxent.
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Relation with Entropy

B Relationship with entropy: for a uniform prior po,

(p |l po) =) plx log ))

reX

=~ > p(z)logpo(z) + > p(z)logp(z
reX reEX

= log || — H(p).
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Maxent Problem

B Optimization: convex optimization problem.

mm Zp )log p(x

reEX
subject to: p(x) > 0,Vx € X

> plx) =

> p()@; () — - 3@y (wi)| < 5.V € [1,N].
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Gibbs Distributions

B Gibbs distributions: set Q of distributions pyw withw e RY,

] = PolEle (W @(@) _ pola]exp (2 5m1 w;®;(x))
W - Z - Z Y

with Z = Zpo z]exp (w - ®(z)).

® Rich family:

e forlinear and quadratic features: includes Gaussians

and other distributions with non-PSD quadratic forms in
exponents.

e for higher-degree polynomials of raw features: more
complex multi-modal distributions.
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Examples
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Dual Problems

B Regularized Maxent problem:

mpin F(p) =D(p | po) + IC(]E[(I)Da

D(p || po) = D(p || po) ifp € A, 400 otherwise;
ith —Jdu: [lu= -
with ¢ ¢ = {u: [ju - B[®] || < B};
Ic(x) =0if z € C, Ic(x) = 400 otherwise.

B Regularized Maximum Likelihood problem with Gibbs
distributions:

sup Glw) = - Y log | P24 | = jwl
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Duality Theorem

(Della Pietra et al., 1997; Dudik et al., 2007; Cortes et al.,
B Theorem: the regdlarized Maxent and ML with Gibbs

distributions problems are equivalent,

sup G(w) = min F(p).
wERN P

o furthemore, letp* = argmin F'(p), then, for anye >0,
P

(\G(w) — sup G(w)| < e) N (D(p* | pw) < e).

weRN
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Notes

B Maxent formulation:
* no explicit restriction to a family of distributions P.

* but solution coincides with regularized ML with a specific
family P!

* more general Bregman divergence-based formulation.
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L1-Regularized Maxent

(Kazama and Tsuijii, 2003)
B Optimization problem:

inf Bllwl — — Zlog pw 3]

wERN

where pw|z] = %exp (W - ®(z)).

B Bayesian interpretation: equivalent to MAP with Laplacian
Prior gprior (W) (Williams, 1994),

max log (ﬁ Pw 3] qprior(W))

1=1 N
. B;
with C]prior(VV) = H EJ eXp(—ﬁj‘ij.
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Generalization Guarantee

(Dudik et al., 2007)

B Notation: Lp(w) = x?p[— log pwlz]], Ls(W) = xES[— log pw|]].

B Theorem: Fixé > 0. Let w be the solution of the L1-reg.

Maxent problem for 5 = 2R,,(H) + A\/Iog(§)/2m . Then,
with probability at least1 — 4,

£(%) < infu Lo(w) + 2wl (2%, (8) + 4551 |
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Proof

B By Holder's inequality and the concentration bound for
average feature vectors,

Lp(W) — Ls(w) =w - [E[®] — B[]

< Wil [ E[®] - E[®]]loc < Bllwl]1-

B Since wis a minimizer,
Lp(W)—Lp(w)=Lp(W)— (A)—l—ﬁs( ) — Lp(w)
) —

< Blwll + Ls(W) = Lp(w)

< Blwlly + Ls(w) = Lp(w) < 25| w|.
(W minimizer of ||wl|; + Lg(w))
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L>-Regularized Maxent

(Chen and Rosenfeld, 2000; Lebanon and Lafferty, 2001)
B Different relaxations:

e |, constraints:

vj € [1,N],

E [®;(2)] - E [&,(2)]| <5

Tr~Dp

e |, constraints:

E [@(x)] - E[@()]| <B

r~p r~p
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L>-Regularized Maxent

B Optimization problem:

1 m
f — =N log pu ],
nf Bllwll3 = — > log pwlai]

where pw|z] = %exp (W - ®(z)).

B Bayesian interpretation: equivalent to MAP with Gaussian
Prior ¢prior (W) (Goodman, 2004),

Hl‘SJX log (H pw £Lj qprior(w)>

1=1

N
with qprior H

l\D

2W02
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This Lecture

Notions of information theory.
[htroduction to density estimation.

Maxent models.

Conditional Maxent models.
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Conditional Maxent Models

B Maxent models for conditional probabilities:

conditional probability modeling each class.
use in multi-class classification.
can use different features for each class.

a.k.a. multinomial logistic regression.

logistic regression: special case of two classes.

Foundations of Machine Learning
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Problem

B Data: sample drawn i.i.d. according to some distribution D,
S = ((ZEl, yl), Ceey (xm, ym)) S (X Xy)m.

e Y={1,...,k}, or Y={0,1}* in multi-label case.
M Features: mapping®: X x Y — RY.

B Problem: find accurate conditional probability
models Pr[- | z],x€ X, based on ®.
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Conditional Maxent Principle

(Berger et al., 1996, Cortes et al., 2015)

B [tea: empirical feature vector average close to expectation.
For anyd > 0, with probability at least1 — ¢,

log 2

H E [®(y)- E [«b(x,ynH < 9%, (H) + | 253

xr~p r~p . 2m
y~DI-|x] y~pl[-|x]

B Maxent principle: find conditional distributions p|-|x| that
are closest to priors po[-|z] (typically uniform distributions)
while verifying H E .5 [®,y)] —E .5 [CI)(:U,y)]H <8.

y~pl[-|x] y~pl-|x] >

B (Closeness is measured using conditional relative entropy
based on p.
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Cond. Maxent Formulation

(Berger et al., 1996, Cortes et al., 2015)
B Optimization problem: find distribution p solution of

min 3 plal D(pla || pol-la)

[-|x]€eA

reX
.t EA[ E [@@y)|- B [@@y]]| <8
z~p Ly~pl[|z] (z,y)~S 00

® convex optimization problem, unique solution.
e [ =0:unregularized conditional Maxent.

e (3> 0:regularized conditional Maxent.
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Dual Problems

B Regularized conditional Maxent problem:

~

F(p) = E_ lﬁ(p[°\w] | po[°\ﬂ3])+IA(p[-!x])] +Ic( E_ [‘P])-

Tr~p T~p
y~p|-|x]

B Regularized Maximum Likelihood problem with conditional
Gibbs distributions

pW (A ‘/I;'L
Zlog[ il ]] _ Blwll:
PO yz‘xz]
where V(x,y) € X x ),

B Poly|x] exp (W - P(x, y))
= Z poly|x| exp(w - ®(z,y)).

yey
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Duality Theorem
(Cortes et al., 2015)

B Theorem: the regularized conditional Maxent and ML with
conditional Gibbs distributions problems are equivalent,

sup G(w) = min F(p).
weRN P

o furthemore, let p* = argmin F(p), then, for any e > 0,
P

(IG(w) = sup G(w)|<e) = E_[D(p"[fa] | pwlfal)| <e

Foundations of Machine Learning page 39



Regularized Cond. Maxent

(Berger et al., 1996, Cortes et al., 2015)
B Optimization problem: convex optimizations, regularization
parameterA > 0.

min  A[|w|; — — Zlog Pw (Y| 74]

wERN

or wm%RnN )‘HWHQ - Zlog pw[yz‘xz]
where V(x,y) € X x ),

_ exp(w - @(z,y))
pW[y|x]_ Z(CC)

=Y exp(w - B(a,y)).

yey
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More Explicit Forms

B Optimization problem: multinomial logistic loss.

I [
min_ < + — ) log exp (W b(x;,y) — W-(I)(jS,yi)) .
2 At + i 2

Il [ ®
min < — W + — @ 3327%, _|_ log W (CUz y):|
28\ Al 3 3 2
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Related Problem

B Optimization problem: log-sum-exp replaced by makx.

AWl 1
min + — maX(W-(I)ZCZ', —W-Cbxi,i).

1= _y

N

—Pw(fﬂi 7y’£>
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Common Feature Choice

B Multi-class features:

0 (W1
0 Wy
C@y) = T(@)| w=|w, | =3 w B(,y)=w, L)
0 Wy+t1
- 0 L Wiy -

B |,-regularized cond. maxent optimization:

min A Y fwy 3 + Zloglzexp(wy (2) ~ Wy, T(a1)) |

yey yey
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Prediction

B Prediction with pw|y|z]= eXp(v}ggx’y)) ;

y(x) = argmax, cy Pw ly|x] = argmax, cy w - b(x,y).
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Binary Classification

B Simpler expression:

Z exp (w - <I>(:E7;, y) — W ‘I’(a% yz))
yey
_ ew'@(xi,+1)—w~<1>(asi,yi) _|_€W“I>(£Ui,—1)—W'CI>(SU7L,y7;)
— 1+ e—yiw-[<I>(a:¢,—|—1)—<I>(a:,,;,—1)]

— 1 + 6—in"I’(fci)7

with¥(z) = ®(z,+1) — ®(x, —1).
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Logistic Regression

(Berkson, 1944)
B Binary case of conditional Maxent.

B Optimization problem: regularized logistic loss.

: Allw[1 1 —yw- P (z;
min { + ;:1 og |l+e

weRN )\HWH%

® convex optimization.
e variety of solutions: SGD, coordinate descent, etc.

* coordinate descent: similar to AdaBoost with logistic

loss ¢(—u) =log,(1 +e7 ) > 1,<0 instead of exponential
loss.

Foundations of Machine Learning page 46



Generalization Bound

B Theorem: assume that £®, € Hfor all j € [1, N]. Then, for
any ¢ > 0, with probability at least 1 — § over the draw of a
sample Sof sizem, forall f: x — w - ®(x),

R(f) < —ZloguO(l—l—e s RE)) 4 dw ]|y R (H)

’[,_

log log, 2||w log 2
_|_\/ glog, 2| ||1_|_ g3
m m

)

whereug =1+ 1,
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Proof

B Proof: by the learning bound for convex ensembles holding
uniformly for all p, with probability at least1 — 4, for all f

andp > 0,
1 & 4 loglog, 2 log 2
S - Y, W xT; —|_ _mm H —|_ V p —l_ 5 .
m Z e 10 T (H) m m

® Choosing p = s and using Lu<i < log,, (1 +e™") yields
immediately the learning bound of the theorem.
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Logistic Regression

(Berkson, 1944)

B |ogistic model:
w-P(z,+1)

Z(x)

where Z(z) = W ®(z,+1) 4 owB(z,—1)

€

Prly=+1]z| =

B Properties:

* linear decision rule, sign of log-odds ratio:
Prly = +1 | z]
Prly=—1| z]

log =w- (®(z,+1) — ®(z,-1)) = w- T(x).
* |ogistic form:
1 1

Prly=+1]z] = - e wil@@A)-@(z,-1)] ] LewE(@)
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Logistic/Sigmoid Function

1

Jra 1+e® :
0sf
0.!5E
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Applications

B Natural language processing (Berger et al., 1996; Rosenfeld, 1996;
Pietra et al., 1997; Malouf, 2002; Manning and Klein, 2003; Mann et al., 2009;

Ratnaparkhi, 2010).

B Species habitat modeling (Phillips et al., 2004, 2006; Dudik et al., 2007;
Elith et al, 2011).

B Computer vision (Jeon and Manmatha, 2004).
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Extensions

B Extensive theoretical study of alternative regularizations:
(Dudik et al., 2007) (see also (Altun and Smola, 2006) though some
proofs unclear).

B Maxent models with other Bregman divergences (see for
example (Altun and Smola, 2006)).

B Structural Maxent models (Cortes et al., 2015):
® extension to the case of multiple feature families.
* empirically outperform Maxent and L1-Maxent.

e conditional structural Maxent: coincide with deep
boosting using the logistic loss.
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Conclusion

B |ogistic regression/maxent models:

theoretical foundation.

natural solution when probabilites are required.

widely used for density estimation/classification.

often very effective in practice.

distributed optimization solutions.

no natural non-linear L1-version (use of kernels).

connections with boosting.

connections with neural networks.

Foundations of Machine Learning
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Motivation

B PAC learning:
® distribution fixed over time (training and test).

® |ID assumption.

® On-line learning:
no distributional assumption.
worst-case analysis (adversarial).

mixed training and test.

Performance measure: mistake model, regret.
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This Lecture

B Prediction with expert advice

B Linear classification
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General On-Line Setting

B Fort=1to7T do
® receive instance z; € X.
® predicty; €Y.
® receive label y; € Y.
®

incur loss L(¥:, y: ).
| (Classification: Y={0,1}, L(y,y") =y —y].
B Regression: YCR, L(y,y)= (v —y)?

® Objective: minimize total loss S, | L(Gy, ye).
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Prediction with Expert Advice

B Fort=1toT do
® receive instance z; € X and advice y,; €Y,i €1, N|.
® predicty; €Y.
® receive label y; € Y.
® incur loss L(¥y:, y:).

B Objective: minimize regret, i.e., difference of total

loss incurred and that of best expert.
T

Regret(T Z L(yt, yt) HllIl Ly, yt).
=1
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Mistake Bound Model

B Definition: the maximum number of mistakes a
learning algorithm L makes to learn c is defined by

My (c) = max |mistakes(L,c)|.

L1geeey T

B Definition: for any concept class C' the maximum
number of mistakes a learning algorithm L. makes is

ML(C) — I(%agML(C).

A mistake bound is a bound M on M (C).
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Halving Algorithm

see (Mitchell, 1997)

HALVING (H )
1 Hl — H
2 fort«<—1toT do
3 RECEIVE(x;)
4 Y: — MAJORITYVOTE(Hy, x¢)
5 RECEIVE(y;)
6 if y; # y; then
7 Hiv1 «— {ce Hy: c(xr) =yt }
8 return Hrpq
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Halving Algorithm - Bound

(Littlestone, 1988)
B Theorem:Let H be a finite hypothesis set, then

MHalm'ng(H) < :.ng ‘H‘

B Proof: At each mistake, the hypothesis set is
reduced at least by half.
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VC Dimension Lower Bound
(Littlestone, 1988)

B Theorem: Let opt(H) be the optimal mistake bound
for H.Then,

VClel(H) < Opt(H) < MHalving(H) < 10g2 ‘H‘

B Proof: for a fully shattered set, form a complete
binary tree of the mistakes with height VCdim(H).
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Weighted Majority Algorithm
(Littlestone and Warmuth, |1988)
WEIGHTED-MAJORITY (N experts) > g,y €10, 1}.

1 fori<1to N do B el0,1).
2 Wi 4 < 1
3 fort+—1toT do
4 RECEIVE(:Ct)
5, Yp 1ZN LwEN _w, > weighted majority vot
6 RECEIVE(yt)
7 if y; # y; then
8 for 1 — 1 to N do
9 if (y:.: # y¢) then
10 Wt41,0 < Bwt,i
11 else Wt41,4 < Wt

12 return wp,
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Weighted Majority - Bound

B Theorem:Let m;be the number of mistakes made
by the WM algorithm till time ¢ and m; that of the
best expert. Then, for all ¢,

log N + mj log %

1z <
log 135

® Thus,m; < O(log N) + constant x best expert.
® Realizable case:m: < O(log N).

® Halving algorithm: 5 =0.
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Weighted Majority - Proof

B Potential:®, = Z,fvzl Wi ;.-

B Upper bound: after each error,

1+
P11 < [% +% X B}CI% — {TB} D, .

¢

Thus,®,; < {#} N.

B [ ower bound: for any expert i, ®; >w; ; =[50,

2
= my log B < log N 4+ my log [#}

= my log [ﬁ] <log N + m; log %

& Comparison: g™ < {ﬁ}mt]\f
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Weighted Majority - Notes

B Advantage: remarkable bound requiring no
assumption.

B Disadvantage: no deterministic algorithm can
achieve a regret R = o(T") with the binary loss.

® better guarantee with randomized WM.

® better guarantee for WM with convex losses.
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Exponential Weighted Average

total loss incurred by

O AlgOI”ithmZ expert i up to time \
® weight update: w1, < w; ;e TEWeiv) = e"”@.

N . .
® prediction: y; = 2yizy Wil

Z,,];V:l Wt,q
B Theorem:assume that Lis convex in its first

argument and takes values in [0, 1]. Then, for any >0
and any sequence yi,...,yr € Y, the regretat T

satisfies log N T
Regret(7T) < LEME

n 8

Forn = +/8log N/T,
Regret(T) < +/(T/2)log N|
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Exponential VWeighted Avg - Proof

B Potential: ®; = log Z,ﬁil Wi ;.

& Upper bound:

N —nL .
Zi:l W1, € nL(ye,i Yt )

S Wi

— 10g< E [e_nL(yt,iayt)]>

Wwe—1

P, — Py 1 = log

:1og( B [exp (‘n(L(yt,i,yt) - B [L(?/t»i>yt>]) _"thl[L(yt’i’yt)])D

We—1 We—1

<-—-n E |[L(yti,y)] + (Hoeffding’s ineq.)

”
Wt—1 8

”

8

< —nL( E |yei],yt) + (convexity of first arg. of L)

Wt—1

772
= —nL(Ys, ye) + e
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Exponential VWeighted Avg - Proof

B Upper bound: summing up the inequalities yields
T

. n*T
Cr — Pp < —HZL(yt,yt) Lt
A |Lower bour;{;lz -
N

O — Py = log E e~ M1 _Jog N > log max e~ M1 _Jog N
i=1 2;71
= —7 m_1{1 Lt ;—log N.

® Comparison:
N n>T
—nmmLTz log N < nZL (s, yt)—l——
t=1 8
logN nT

:>ZL Ut yt mmLTZ_ ” 2
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Exponential Weighted Avg - Notes

B Advantage: bound on regret per bound is of the
form £z = O(\/%) .

B Disadvantage: choice of  requires knowledge of
horizonT.
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Doubling Trick

B |dea: divide time into periods [2¥, 2*T! _1] of length 2"
Withk':(),...’n,Tan_]’and ChOOsenk: SIZ%N
in each period.

B Theorem: with the same assumptions as before, for
any T, the following holds:

2

Regret(T') < T/2)log N + +/log N/2.
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Doubling Trick - Proof

B By the previous theorem, for any I, =[2% 2¢+1_1],

N

Ly, —minLy, ; < 1/2/2 log N.

k

n

n N n
Thus, L = ];)L[k ngr?:ilqufk,i + kzo \/2’“C (log N)/2

=0

N mn
<min Lz, + ) 2%/(log N)/2.
= k=0

iﬁ:\/§n+1—1:2(”+1)/2—1<\/§\/T+1—1<\/5(\/7+1)—1<\/5\/T
— V2 -1 vV2—-1 = V2-1 7 V2 -1 T V2-1

Mehryar Mohri - Foundations of Machine Learning page 19
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Notes

® Doubling trick used in a variety of other contexts
and proofs.

® More general method, learning parameter function
of time:n; = v/(8log N)/t. Constant factor
Improvement:

Regret(T) < 2+/(T/2)log N + +/(1/8)log N.
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This Lecture

B Prediction with expert advice

B L|inear classification
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Perceptron Algorithm

(Rosenblatt, 1958)

PERCEPTRON (W)
1 wi «— wy > typically wg = 0
2 fort+—1to T do
3 RECEIVE(X;)
4 Yt < sgn(wy - Xy)
5 RECEIVE (1)
0 if (y: # y;) then
7 Wi < Wi + 4y Xy D> more generally nyx:, >0
8 else w; 1 «— wy
9 return wr
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Separating Hyperplane

® Margin and errors
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Perceptron = Stochastic Gradient Descent

® Objective function: convex but not differentiable.
T
1
F(w) = Ezj max (0. ~yr(w - x)) = E_[f(w.)

with f(w, x) = max (0, —y(w - x)).

B Stochastic gradient: for each x;, the update is

(Wt —nVwf(we,x¢) if differentiable
Wil ¢ 9 ,
W otherwise,

\

where >0 is a learning rate parameter.

® Here; (Wt + nyexe  if ye(wy - xp) <0
Wip1 < 3

Wy otherwise.
\
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Perceptron Algorithm - Bound

(Novikoff, 1962)
B Theorem:Assume that|z;||<R for allt€[1,T]and
that for some p>0andveR", for all te[1,7],

Then, the number of mistakes made by the
perceptron algorithm is bounded by|R*/p?.

B Proof: Let I be the set of ts at which there is an
update and let M be the total number of updates.
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® Summing up the assumption inequalities gives:

M,O A Ztej Yt Xt
N [v]]
% Wiil — W
L ’( ‘t’+1 2 (definition of updates)
v
_ V-Wri1q
[v]]
< ||lwri1]| (Cauchy-Schwarz ineq.)
= ||we, + ye, Xz || (t,, largest ¢ in 1)
, , 1/2
= Ilwe, [I7 4+ %, 17 + 2 ye,, Wi, 'Xtmj}
1/2 B
< |||W¢,, >4 Rﬂ =0
7L/
< |MR =V MR. (applying the same to previous ts in I)
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® Notes:
® bound independent of dimension and tight.

® convergence can be slow for small margin, it can
be in Q(27).

® among the many variants: voted perceptron
algorithm. Predict according to

sign((z CtWi) - X),
tel
where c; is the number of iterations w; survives.
® {z,: tcl}are the support vectors for the
perceptron algorithm.

® non-separable case: does not converge.
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Perceptron - Leave-One-Out Analysis

B Theorem: Let hgbe the hypothesis returned by the
perceptron algorithm for sample S=(z1,...,27)~D
and let M (S) be the number of updates defining /.
Then,

E [R(hg)] < E min(M (), Ry, 41/ Prs1)
S~Dm S~ DmH m + 1

B Proof:Let S~ D™ be a sample linearly separable
and let xe S. If hg_(xy misclassifies x, thenx must
be a ‘support vector’ for hg (update at x). Thus,

~ M (S)
loo(perceptron) ——
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Perceptron - Non-Separable Bound
(MM and Rostamizadeh, 201 3)

B Theorem:let I denote the set of rounds at which
the Perceptron algorithm makes an update when
processing X1, ...,xr and let Mr=|I|.Then,

R
My < f L,(u)+—| |
p>0 <1 [\/ () p}

where R = max;cr ||x¢||
Lp(u) = Ztel (1 — yt(l;)OXt))Jr'
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® Proof:for anyt,1— yt(‘;xt) <(1- yt(‘;'xt))+, summing

up these inequalities for t €I yields:

MTSZ(l— 11Xt> _I_Zytu Xt

tel tel

vVMrR

0
by upper-bounding > _;;(y:u-x:)as in the proof
for the separable case.

< L,(u)+

® solving the second-degree inequality
, VMR
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Non-Separable Case - L2 Bound

(Freund and Schapire, 1998; MM and Rostamizadeh, 201 3)

B Theorem:let I denote the set of rounds at which
the Perceptron algorithm makes an update when

processing X1, ...,xr and let Mr=|I|.Then,
_ 7 2
My < o |Ly(u)l2 | 1L, (w)]]3 | V2 rer 1%e)? |
~ p>0,flufl2<1 2 4 p

® when|x:|| <R for all t € [, this implies

R 2
Mo < inf (—+HLp<u>uz),

p>0,|[ull2<1 \ p

_ t(u-x¢)
where L ,(u) = [(1 — 4= )+L€I.
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® Proof: Reduce problem to separable case in higher
dimension. Let I; = (1 — #%%¢)  lier,fort e [1,7].

® Mapping (similar to trivial mapping):

Lt 1
(N +t)th component
-y -
Tt N 4
L 0 '
Lt 1 . un
o : ;- - ; 7
Xt — . — Xy = ' Uu—u =1 ypl
\O AZ
T .
i t,N_ A
0 yrplT
A7 A
O ||u/H:1 — Z:\/l_l_pQHLp(u)HQ

AZ
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® Observe that the Perceptron algorithm makes the
same predictions and makes updates at the same
rounds when processing X}, ..., X7 .

® Foranyt e ],

/ / u - Xy ytplt
: = + A )
yt(u Xt) yt( - A
yia - Xy ply

-z Z

1
E(ytu - X¢ + [p—ye(u- Xt)]+) > %

® Summing up and using the proof in the separable
case Yields:

0
M2 <3y x) < ST g

tel tel
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® The inequality can be rewritten as

1 ||L,(w)|? r2 r2||Ly(u)|]?  MpA?2
2 p 2 2\__ P 2
M2 < (p2+ 3 )(r +MrA )_p2+ NI e +Mr|| Ly(u)||3

wherer = /S5, %%

I Inimi : L,(u)|2r
® Selecting A to minimize the bound gives A2 = 2l 5\4;”
and leads to

r2 Mr||L,(u)||r (T
M3 < o 4 YRR 4 pp L, ()12 = (£ + V7| Ly (w)]|2)2.

® Solving the second-degree inequality

My — /Mr| Ly(u)[z — = <0

0
yields directly the first statement. The second one
results from replacing r with MrR.
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Dual Perceptron Algorithm

DUAL-PERCEPTRON(”)

1 a+—a > typically a® = 0

2 fort—1toldo
3 RECEIVE(x¢)

4 Gesen(N ) aw(xe - x0))
5 RECEIVE(y;)

0 if (:/y\t 7& yt) then

7 iy < Qp + 1

8 return o
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Kernel Perceptron Algorithm
(Aizerman et al., 1964)

K PDS kernel.

KERNEL-PERCEPTRON (")

1 a+—a’ > typically a® =0

2 fort«<—1to71 do
3 RECEIVE(x¢)
4 G sen(N ) awK (2., x))
5 RECEIVE(y;)

6 if (y; # y:) then

7 o — o + 1

& return o
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Winnow Algorithm

(Littlestone, 1988)

WINNOW (7))
1 w; «— 1/N
2 fort«<1to T do
3 RECEIVE(x;)
4 Yp < sgn(wy - Xy) > oy € {—1,+1}
5 RECEIVE(y;)
6 if (yr # y¢) then
! At Zi\il we,; €XP(NYtT4,i)
S for i — 1 to N do
) Wei1,i * wtaieXPZ(Z?ytwt,i)
10 else w; 1 «— wy

11 return wp,
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Notes

B Winnow =weighted majority:
® fory,,=x:;€{—1,+1},sgn(w; - x¢)coincides with
the majority vote.

® multiplying by ¢” ore™" the weight of correct or
incorrect experts, is equivalent to multiplying
by 3 =e~*"the weight of incorrect ones.

B Relationships with other algorithms: e.g., boosting
and Perceptron (Winnow and Perceptron can be
viewed as special instances of a general family).
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Winnow Algorithm - Bound

B Theorem:Assume that||z:| . < Rforallte[l1,T]and
that for some p, >0andveR",v>0for all te[1,T],

Then, the number of mistakes made by the
Winnow algorithm is bounded by|2 (R2_/p2. ) log N|.

B Proof: Let I be the set of ts at which there is an
update and let M be the total number of updates.
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Notes

B Comparison with perceptron bound:
® dual norms: norms for x; and v.
® similar bounds with different normes.
® cach advantageous in different cases:

® Winnow bound favorable when a sparse set of

experts can predict well. For example, if v=e;
and x; € {1}, log N vs N.

® Perceptron favorable in opposite situation.
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Winnow Algorithm - Bound

N
B Potential: o, = E HUZH log U’L/HVH, (relative entropy)
, A4 Wt 5
1=1 ’

® Upper bound:for each ¢ in/,

N Vi Wt 4
(I)t—l—l — (I)t = ZiZl Tv log ’

1 Wt41,4

o N vV Zy
- Zi:l ||V 1 log exp(nytivt,q;)
=log Zy — 0 )iy vttt

N
<log Y ., we;exp(myexr,i)] — Npoc
= log E [exp(nyss)| — npoc

(Hoeffding) < log [ exp(n”(2R0)?/8)] + NYtW1 = Xt —1Poo
<n*RZ,/2 — poo. <0
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Winnow Algorithm - Bound

B Upper bound: summing up the inequalities yields
Ory1 — Py < M(°R3,/2 = 1poo)-

a Lower bound: note that

N
vi/llvlL _
levlllbg I/N _logN+;an og iy = log N

and for all ¢, &, >0 (property of relative entropy).

Thus, dr,; —®; >0 —log N = —log N.

® Comparison: —log N < M(n*RZ_/2 — npso). For n= £

we obtain
M < QIOngTOO.
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Conclusion

B On-line learning;
® wide and fast-growing literature.

® many related topics, e.g., game theory, text
compression, convex optimization.

® online to batch bounds and techniques.

® online version of batch algorithms, e.g.,
regression algorithms (see regression lecture).
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SVMs - Leave-One-Out Analysis

(Vapnik, 1995)
B Theorem:let hgbe the optimal hyperplane for a
sample Sand let Ngv(S) be the number of support
vectors defining hgs. Then,
E [R(hs)] < E min(Nsv (S), By41/Pmt1)
S~Dm S~ D m + 1

® Proof: one part proven in lecture 4. The other part
due to a; > 1/R? . ,for x; misclassified by SVMs.
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Comparison

B Bounds on expected error, not high probability
statements.

B | eave-one-out bounds not sufficient to distinguish
SVMs and perceptron algorithm. Note however:

® same maximum margin pmm+1can be used in both.

® but different radius R,,, 1 of support vectors.

| Difference: margin distribution.
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Motivation

B Very large data sets:
® too large to display or process.
® |imited resources, need priorities.

® —— ranking more desirable than classification.

B Applications:
® search engines, information extraction.

® decision making, auctions, fraud detection.

® Can we learn to predict ranking accurately?
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Related Problem

B Rank aggregation: given n candidates and & voters
each giving a ranking of the candidates, find
ordering as close as possible to these.

® closeness measured in number of pairwise
misrankings.

® problem NP-hard even fork =4 (Dwork etal., 2001).
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This Talk

B Score-based ranking

® Preference-based ranking
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Score-Based Setting

® Single stage: learning algorithm
® receives labeled sample of pairwise preferences;
® returns scoring function h: U — R.

B Drawbacks:
® }induces a linear ordering for full set U.

® does not match a query-based scenario.

B Advantages:
o efficient algorithms.

® good theory:VC bounds, margin bounds, stability
bounds (FISS 03, RCMS 05,AN 05,AGHHR 05, CMR 07).
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Score-Based Ranking

® Training data: sample of i.i.d. labeled pairs drawn
from U x U according to some distributionD,

S= ((azl,:z;’l, Y1)y« ey (T, :cgn,ym)> cUxUx{-1,0,+1},
+1 if ) >pref @
with y; = 0 if x; =pref ; or no information
—1 if @) <pret .
® Problem: find hypothesis 4:U —R in H with small
generalization error

R(h)= Pr |(f(z,2") #0) A (f(z,2')(h(') = h(z)) < 0)].

(x,x’)~D
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Notes

® Empirical error:

P

1 m
R(h) = — > 11y 20) A (h(a))~h(z))<0) -

1=1
® The relationz R 2" < f(x,2')=1may be non-
transitive (needs not even be anti-symmetric).

B Problem different from classification.
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Distributional Assumptions

| Distribution over points: m points (literature).
® |abels for pairs.
® — squared number of examples O(m?).

® dependency issue.

B Distribution over pairs: m pairs.
® |abel for each pair received.
® independence assumption.

® same (linear) number of examples.
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Confidence Margin in Ranking

| Labels assumed to be in{+1, —1}.

® Empirical margin loss for ranking: for p > 0,
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Marginal Rademacher Complexities

® Distributions:

® D; marginal distribution with respect to the first
element of the pairs;

® D, marginal distribution with respect to second
element of the pairs.

® Samples: S1 = ((z1,41),- -+ (T, Ym))
Sy = ((x’l, Y1)y .oy (2, ym))
B Marginal Rademacher complexities:

RD1(H) = EfRs, (H)] RD2(H) = E[Rs, (H)].
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Ranking Margin Bound

(Boyd, Cortes, MM, and Radovanovich 2012; MM, Rostamizadeh, and Talwalkar, 2012)

B Theorem:let H be a family of real-valued functions.
Fix p> 0, then, for any § >0, with probability at
least 1 —0 over the choice of a sample of size m, the
following holds for all he H:

R(h) < }?p(h) + %(9{5} (H)+RE2(H)) + k;if
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Proof

B Define: 5 = {z = ((z,2'),y) — y[h(z') — h(z)]: h € H}.
Then, by the general margin bound, with
probability at least 1 -4,

E [0,(4lh(e') — h(@)))] < Rop(h) + 20, (B, 0) + /252
® We have %,,(¢, 0 3) < 19,,(30) and
) = - & [ D o) — i)
% E :;fléfc i i (h(af) — ()] (yi0: and oy: same distib.)
< % E 2161% Z oih(x)) + sup Z oih(z; } (by sub-additivity of sup)
~E [mSQ(ﬂ{) + R, (:H)] (definition of S; and S,).
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Ranking with SVMs

see for example (Joachims, 2002)

B Optimization problem: application of SVMs.

1

& >0, ViE[l,m].

subject to: vy; [W : (<I>($’.) — q’(iz))} >1-¢&;

B Decision function:

h: x—w-®(x)+b.
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Notes

® The algorithm coincides with SVMs using feature
mapping
(z,2") — W(x,2") = ®(2") — P(x).
® Can be used with kernels:
K'((z4,27), (x5, 2%)) = W(x4,25) - U(xy, 2))

J

= K(xi,x5) + K(xj, ) — K(zj,25) — K(z4,2%).

® Algorithm directly based on margin bound.
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Boosting for Ranking

® Use weak ranking algorithm and create stronger
ranking algorithm.

B Ensemble method: combine base rankers returned
by weak ranking algorithm.

® Finding simple relatively accurate base rankers
often not hard.

B How should base rankers be combined?
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CD RankBoost

(Freund et al., 2003; Rudin et al., 2005)
HC{0,1}X. &+ ¢ +6 =1,e8(h) = Pr [sgn (f(z,2)(h(z)) — h(z))) = s]

(z,x")~Dy

RANKBOOST(S = ((xla xlla yl) sy (xma x;n7 ym)))
1 fori+<1tomdo

2 D1 (ZCZ', ZC;) — %
3 fort«+—1toT do
4 h; < base ranker in H with smallest €, —¢;” = — E;p, {yz (ht(a;;) — ht(mz))}
5 Qi — %log ELJ_F
6 Zy — ) +2[ef e ]z >mnormalization factor
7 for s — 1 to m do
3 Dt_|_1(513i7 x;) o Dy (x4,x;) exp [—othy: (ht(xz)—ht(xz))}
9 or «— Z?:l ahy
10 return @7
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Notes

| Distributions D, over pairs of sample points:
® originally uniform.

® at each round, the weight of a misclassified
example is increased.

e—y[sot(x/)—@t(x)

] .
, SINCE

® observation: Dy 1(z,2") = g
s=1 S
D (aj x/) Dt (ZB, Q’}/)e_yat[ht (x’)—ht(fb)] 1 e_y 2221 as[hs (CU/)—hs(x)]
t+1\4) — — :
/i |S| Hs:1 Z.

B weight assigned to base classifier h;: o directly
depends on the accuracy of h; at round ¢.
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Coordinate Descent RankBoost

® Objective Function: convex and differentiable.

Flay= Y e yler(@)—er ()] 3 exp(—yZat e )]),

(z,z"y)€S (z,x"y)es

0— 1 pairwise \oss
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® Direction: unit vector e; with

dF
e; = argmin (@ + ney)
t dn

n=0

® Since Flo+ ney) = Z oY s @slha(z")—ha(2)] ,—ynlhe (") —he(z)] :
(z,2,y)€ES

=— > y[hu(2!) — he(x)] exp [ —y ) asfhs(z') - hs(@ﬂ

=0 (z,2%y)€S

— > ylhle) — (@) Dra (w2 [m ﬁ .|

(x,x’,y)ES s=1

=€ —et]{mf[lZs}.

dF (o + ney)
dn

Thus, direction corresponding to base classifier selected by the
algorithm.
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® Step size: obtained via

dF (o +mnes) 0
dn B

e = 3 ylh(a) - he(x)] exp { yz% (x)]}e_y[ht(x’)_ht(w)]n
(z,2,y)€ES

oo Y Yl — M@IDr o) [ [ 2]

(z,xz\y)€S s=1
= Y (@) = h(@) Dy (w2l )e IR @l = g
(z,2'y)€S
& —lefe ™ —€e e =0
1 +
&n = = log — “]
2 €

Thus, step size matches base classifier weight used in algorithm.
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Bipartite Ranking

B Training data:

® sample of negative points drawn according to D _
S_:(Qfl,. - ,:L‘m)EU.
® sample of positive points drawn according to D,

S.=(z7,...,2) ) eU.

® Problem: find hypothesis.: U — R in H with small
generalization error

Rp(h) = Pr h(z')<h(z)].

x~D_ x'~Dy
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Properties

B Connection between AdaBoost and RankBoost
(Cortes & MM, 04; Rudin et al., 05).

® if constant base ranker used.

® relationship between objective functions.

B More efficient algorithm in this special case (Freund
et al., 2003).

| Bipartite ranking results typically reported in terms
of AUC.
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AdaBoost and CD RankBoost

® Obijective functions: comparison.

Fasa(@)= 3 exp(—y.f(a2)

T, €ES_ US_|_
= E exp (+f(x;)) + E exp (
T, ES_ CUES_|_

=F_ (o) + Fy(a).

FRank(a) — Z eXp ( — [f(xj) — f(x’b)])

(2,J)€S— XS54

_ Z exp (+f(x;)) exp (—f(x;))

(i,j)ES_ XS_|_
=F_(a)Fi(a).
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AdaBoost and CD RankBoost

(Rudin et al., 2005)
® Property:AdaBoost (non-separable case).

® constant base learner h=1-—>equal contribution
of positive and negative points (in the limit).

® consequence:AdaBoost asymptotically achieves
optimum of CD RankBoost objective.

@ Observations:if '\ (a)=F_(a),
d(FRank) — F—I—d(F—) + F—d(F+)

= I} (d(F-) + d(Fy))
= F,d(Faga).
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Bipartite RankBoost - Efficiency

B Decomposition of distribution: for (z,2')e(S_,S5,),
D(z,2") = D_(x)Ds(z").
& Thus,

D / —ozt[ht(a:’)—ht(a:)]
Dt+1($,33/) — t(aj?x )6

W|th Zt,— — Z Dt7_(x)€atht(37) Zt,—|— — Z Dt,+($/)€_atht(x/)°

reS_ $/€S+
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ROC Curve
(Egan, 1975)

| Definition: the receiver operating characteristic
(ROC) curve is a plot of the true positive rate (TP)

vs. false positive rate (FP).
® TP:% positive points correctly labeled positive.

® FP:% negative points incorrectly labeled positive.

A

1
oS
E h
2.6 0
2 - +
8.4
3 h(zs) h(zia)  h(zs) h(z1)f  h(w2s)
|:.2 sorted scores

0 >

2 4 .6 .8 1
False positive rate

@)
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Area under the ROC Curve (AUC)

(Hanley and McNeil, 1982)

B Definition: the AUC is the area under the ROC

curve. Measure of ranking quality.

A
1

o0

o

N

_True positive rate

[}

@)

0 2 4 .6 .8 1

. EqUivalent|)’, False positive rate
1 m_ m4
AUC(h) = 1y (. = Pr [h(z h
(h) m_m+;; h(z:)<h(z)) le{)_[ (") > h(z)]
. x'~D
=1—R(h).
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AUC = mz_:l [TP (k) + TP(k + 1)][FP(k) —
k

FP(k + 1)

Proof

2

m—1 m 1
_ Z Zl=k+1 1yl=+1 + §1yk:+1 1yk:_1

m m_
k=1 +
1 m—1 m X ,
mym_ 2 : § : y=+11yg
k=1 l=k+1
L Em Em 1 1 1
=—1 =+11k<I
maym_ Yk Y=+
k=11=1
1 m_— m+
E 1h(xz)<h(:c’)
m_m4 < - J
=1 j5=1

Mehryar Mohri - Foundations of Machine Learning
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(1yk=+1 ]‘yk=_1 - 0)

TP(k +1)

A
1

TP(k)

0  FP(k+1) FP(k) 1

I P
TP(]{:) — Zz:k: yi—=-+1

m4
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This Talk

B Score-based ranking

B Preference-based ranking
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Preference-Based Setting

B Definitions:
® [:universe, full set of objects.
® V:finite query subset to rank, V C U.

® 77 target ranking for V' (random variable).

B Jwo stages: can be viewed as a reduction.
® |earn preference function h: U xU — [0, 1].

® given V, use h to determine ranking o of V.

® Running-time: measured in terms of |calls to h|.
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Preference-Based Ranking Problem

B Training data: pairs (V, 7*) sampled i.i.d. according
toD:
/Y(Vl,Tl*), (Va, 75)s ooy (Vin, 7o) V. C U.

subsets ranked by .
different labelers. learn classifier

preference function h: U xU — |0, 1].

® Problem:for any query set V' C U, use h to return
ranking oy, close to target 7" with small average

error

R(h,0c)= E |L 1.
(ho)= B [Llowy.7)
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Preference Function
| h(u,v)close to 1when u preferred to v, close to 0
otherwise. For the analysis, h(u,v)€{0,1}.

B Assumed pairwise consistent:
h(u,v) + h(v,u) = 1.
B May be non-transitive, e.g., we may have
h(u,v) = h(v,w) = h(w,u) = 1.

B Output of classifier or ‘black-box’.
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Loss Functions

(for fixed (V,7%))
B Preference loss:

L(h7") = - (nz_ 5 3 w0 (o),

UFV

® Ranking loss:
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(Weak) Regret

® Preference regret:

/ _ \1 :
class(h) — VI,EE* [L(hﬂ/a T )} I‘E‘;[m}%n TIBEV

® Ranking regret:

rank

Lok (A) = E*, [L(As(V),7)] —]‘E;[ min

Mehryar Mohri - Foundations of Machine Learning
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Deterministic Algorithm
(Balcan et al., 07)
B Stage one:standard classification. Learn preference

function h: U xU —[0,1].

B Stage two: sort-by-degree using comparison
function A.

® sort by number of points ranked below.

® quadratic time complexity O(n?).
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Randomized Algorithm
(Ailon & MM, 08)
B Stage one:standard classification. Learn preference
function h: U xU —[0,1].

B Stage two: randomized QuickSort (Hoare, 61) using h
as comparison function.

® comparison function non-transitive unlike
textbook description.

® but, time complexity shown to be O(nlogn)in
general.
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Randomized QS

U
h(v,u)=1 h(u,v)=1
U
@
random
pivot
left recursion right recursion
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Deterministic Algo. - Bipartite Case

(V=V,uV.) (Balcan et al., 07)
B Bounds: for deterministic sort-by-degree algorithm

® expected loss:

B [LAY), ™) <2 B [L(h,7)]

® regret:
R (A(V)) <2R., ..(h).

rank

B Time complexity: Q(|V]?).
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Randomized Algo. - Bipartite Case
(V=V,UV.) (Ailon & MM, 08)
® Bounds: for randomized QuickSort.

® expected loss (equality):

JE LQAV).T)] = B [L(h, 7))
® regret:
Riank(Q: () < Regass () -
B Time complexity:
e full set: O(nlogn).
® topk: O(n+klogk).
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Proof ldeas

B QuickSort decomposition:

1
Puv T § g: }p’va’w (h(UJ?w)h(w?v) + h(v,w)h(w,u)) = 1.

| Bipartite property:
™ (u,v) + 7 (v, w) + 7 (w,u) =

™ (v,u) + 7 (w,v) + 7% (u, w).
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Lower Bound

B Theorem:for any deterministic algorithm A, there
is a bipartite distribution for which

Rrank (A) Z QRCZCLSS(h)°

® thus, factor of 2 = best in deterministic case.
® randomization necessary for better bound.

B Proof: take simple case U =V ={u, v, w}and assume
that h induces a cycle. U

® up to symmetry, A returns

U, V, W or w,v,u.
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Lower Bound

B [f Areturns u,v,w,then u
choose 7™ as:

Cefr > :
h

- T+

® If Areturnsw,v,u ,then
choose 7™ as: LiA,

<D

- T+

Mehryar Mohri - Foundations of Machine Learning page 42



Guarantees - General Case

B | oss bound for QuickSort:

B Q) 7)) <2 E [L(h, 7))

V,7*,s

B Comparison with optimal ranking (see (CSS 99)):

1D
0P

L(Q?(V), Ooptimal)] S 2 L(ha Uoptimal)

L(h, Q3 (V)] < 3L(h, Ooptimat).

where o,,tima = argmin L(h, o).

o)
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Weight Function

B Generalization:
™ (u,v) = o (u,v) w(oc™ (u),c™(v)).
® Properties: needed for all previous results to hold,
® symmetry: w(i,j) = w(j,?) for all i, ;.
® monotonicity: w(i,j),w(j, k) < w(i, k)fori < j < k.

® triangle inequality: w(i,j) < w(i, k) + w(k, j) for all
triplets i, j, k.
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Weight Function - Examples

& Kemeny: w(i,j) =1, Vi,j.

(

1 ie<korj<k;

\ 0 otherwise.

| Top-k: w(i, j) = <

(1 ifi<kandj>Ek:

B Bipartite: w(i,j) = <
P (4,7) 0 otherwise.

\

B k-partite: can be defined similarly.
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(Strong) Regret Definitions

® Ranking regret:

Reank(A) = E [L(A4(V),7%)] —min E [L(Gp, 7).

V,Tm* s o V,r*

® Preference regret:

RCZCLSS(h) — V]%*[L(hﬂ/'v T*)] — mfjn V@_*[L(EH/? T*)]

| All previous regret results hold if for Vi, V5 D {u, v},

T*]?Vl " (u,v)]| = T*]?‘@ 7" (u, v)]

for all u, v (pairwise independence on irrelevant alternatives).
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Motivation

® Real-world problems often have multiple classes:
text, speech, image, biological sequences.

B Algorithms studied so far: designed for binary
classification problemes.

® How do we design multi-class classification
algorithms?

® can the algorithms used for binary classification
be generalized to multi-class classification?

® can we reduce multi-class classification to binary
classification?
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Multi-Class Classification Problem

® Training data: sample drawn i.i.d. from set X
according to some distribution D,

S=((1,91)s -, (Tm,Ym)) EX XY,
® mono-label case: Card(Y)=k.
e multi-label case:Y ={—1,+1}"
B Problem:find classifier h: X —Y in H with small
generalization error,
® mono-label case: R(h)=E.p[lh)£f(2)]-
o multi-label case:R(h)=E.p [£ 37 Tin@) £, )
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Notes

® |[n most tasks considered, number of classesk < 100.

® Fork large, problem often not treated as a multi-
class classification problem (ranking or density
estimation, e.g., automatic speech recognition).

B Computational efficiency issues arise for largerks.

® |n general, classes not balanced.
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Multi-Class Classification - Margin

B Hypothesis set H:
® functionsh: X xY —R.

® |abel returned:x — argmaxh(z,y).
yey

® Margin:
® ru(,y) = h(z,y) —maxh(z,y’).
® error: 1ph(aj,y)§0 < (I)p(ph(ajay))

® empirical margin loss:
~ 1 —

R,(h) = m Z D, (pn(wis yi))-
1=1
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Multi-Class Margin Bound
(MM et al. 2012; Kuznetsov, MM, and Syed, 2014)
B Theorem:letH C R**YwithY = {1,...,k}. Fixp>0.
Then, for any § >0, with probability at least1—¢, the
following multi-class classification bound holds for
allhe H:
4k log %

R(h) < R,(h) + — R (M (H)) +1] 5

)

withIly(H) = {z — h(z,y): y €Y, h e H}.
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Kernel-Based Hypotheses

B Hypothesis set Hy ,:
® & feature mapping associated to PDS kernel K.
e functions(z,y) — w, - ®(x),y € {1,...,k}.
® |abel returned: x — argmax w, - ®(x).

e{l,....k
® foranyp > 1, Vet }

Hy, ={(z,y) € Xx[1,k] — w,-®(z): W = (w1,...,wg) ', ||W]|m, <A}

7“2 A2

m

R (1 (Hk p)) <
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Multi-Class Margin Bound - Kernels
(MM et al. 2012)
B Theorem:letK: X x X —R be a PDS kernel and
let®: X — Hbe a feature mapping associated tokX.
Fix p>0.Then, for anyd >0, with probability at
least1— 4, the following multiclass bound holds for
allh € Hg
2 A2 1
R(h) < B, (h) + 4k | 2 1 ([ 1982

0’m 2m

)

2

where r“ = sup K (x, ).

re X
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Approaches

| Single classifier:
® Multi-class SVMs.
® AdaBoost.MH.
® Conditional Maxent.

® Decision trees.

B Combination of binary classifiers:
® One-vs-all.
® One-vs-one.

® Error-correcting codes.
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Multi-Class SVMs

(Weston and Watkins, 1999; Crammer and Singer, 2001)

# Optimization problem°

mm — Z w; ]| + CZ&
subject to: wy, - X; + 0y, 1 > W, - X; + 1 =&
& >0, (i, l) c [1, m] XY.
B Decision function:

h: x+— argmax (w; - X).
leY
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Notes

B Directly based on generalization bounds.

B Comparison with (weston andWatkins, 1999): single slack
variable per point, maximum of slack variables

(penalty for worst class):
k
k
> - max .
=1 B
& PDS kernel instead of inner product

B Optimization: complex constraints,mk-size problem.

® specific solution based on decomposition intom
diSjOint sets of constraints (Crammer and Singer, 2001).
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Dual Formulation

m Optimization problem: a; ith row of matrixa € R7***
max S e e, i( (% - %)
X 7" i = Q; - O ) (X; - Xy

subject to: Vi € [1,m], (0 < a;y, < C)A (V] # yi,aij <0)A(a; -1 =0).

B Decision function:

h(x) = argmax (Za” ))

1€[1,K]
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AdaBoost

® Training data (multi-label case):
(Z1,Y1)s -+, (Tins Ym ) €EX x {—1, 117,

® Reduction to binary classification:

(Schapire and Singer, 2000)

® each example leads to k binary examples:
(:Eia y’L) — ((337,, 1)7 yz[l])v SRR ((337,, k)v y’t[k])az S [17 m]
® apply AdaBoost to the resulting problem.

® choice of o4.

® Computational cost: mkdistribution updates at
each round.
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AdaBoost.MH

HC({~1,+1}7)),

ADABOOST.MH(S=((z1,y1), .., (Tm, Ym)))

1 fori+1to m do
for [ — 1 to k do
D1 (Z, Z) — ﬁ
fort«+1to 1 do
h: < base classifier in H with small error ¢, =Prp, [he (s, 1) #y;|l]]
oy < choose > to minimize Z;
Ly Zi,l Dy(1,1) exp(—auy;[l|hi(zi, 1))
for 2 <— 1 to m do

for [ — 1 to k do
Dt—|—1(i, l) o D:(@,1) exp(=ayi[llhe (zi,0))

T “
fT H thl ot hy
12 return hp = sgn(fr)

O© 00 ~J O O i W b

[
_ O
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Bound on Empirical Error

B Theorem:The empirical error of the classifier
output by AdaBoost.MH verifies:

T
R(h) <[] 2.
t=1
B Proof: similar to the proof for AdaBoost.

B Choice of a;:
o forH C({—1,+1}*)**)as for AdaBoost, a; = log :==.

e forH C([-1,1]%)**ysame choice: minimize upper
bound.

® other cases: numerical/approximation method.
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Notes

O Objective function°

>1>1 _yz fn(xzal)—> >k‘ _yz Zt 1Oétht(i’3z,l).

=1 [=1

B All comments and analysis given for AdaBoost
apply here.

m Alternative: Adaboost.MR, which coincides with a
special case of RankBoost (ranking lecture).
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Decision Trees

Mehryar Mohri - Foundations of Machine Learning

Rs
Rs
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Different Types of Questions

B Decision trees
® X € {blue, white, red}: categorical questions.

e X <a:continuous variables.

B Binary space partition (BSP) trees:

e Y  «;X;<a:partitioning with convex
bolyhedral regions.

| Sphere trees:

® ||X — agl| <a: partitioning with pieces of spheres.
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Hypotheses

& |n each region Ry,

® classification: majority vote - ties broken
arbitrarily,
Yy = argmax |[{z; € Ry: 1 € [1,m]|,y; = y}|.
yey
® regression: average value,

yt ‘SHR” Z y’L

) 1m
® Form of hypotheses: i

h:x— Z@\tleRt'
t
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Training

® Problem: general problem of determining partition
with minimum empirical error is NP-hard.

B Heuristics: greedy algorithm.

e forallje[l, N],0eR, R"(j,0)
R™(j,0)

{2; € R: mlj]>6,i€]1,m]}
{z; € R: x;|5]<0,1€[1,m]}.
DECISION-TREES(S = ((%1, Y1)y -+, (Tm,Ym)))

1 P« {S} p>initial partition

2 for each region R € P such that Pred(R) do

3 (J,0) « argmin; 4y error(R~ (j,0)) + error(R* (4, 0))
4 P—P—-RU{R (j,0),RT(4,0)}
D

return P
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Splitting/Stopping Criteria

® Problem: larger trees overfit training sample.

B Conservative splitting:

® split node only if loss reduced by some fixed
valuen > 0.

® issue: seemingly bad split dominating useful splits.
® Grow-then-prune technique (CART):

® grow very large tree, Pred(R): |R|>|no|-

® prune tree based on:F(T)=Loss(T)+a|T|,a>0

parameter determined by cross-validation.
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Decision Tree Tools

® Most commonly used tools for learning decision
trees:

® CART (classification and regression tree) (Breiman
et al., 1984).

® C4.5 (Quinlan, 1986, 1993) and C5.0 (RuleQuest
Research) a commercial system.

B Differences: minor between latest versions.
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Approaches

| Single classifier:
® SVM-type algorithm.
® AdaBoost-type algorithm.
® Conditional Maxent.

® Decision trees.

@ Combination of binary classifiers:
® One-vs-all.
® One-vs-one.

® Error-correcting codes.
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One-vs-All

B Technique:
® for each class /€Y learn binary classifierh; =sgn(f;).

® combine binary classifiers via voting mechanism,

typically majority vote: h: x — argmax f;(x).
ley

® Problem: poor justification (in general).
® calibration: classifier scores not comparable.

® nevertheless: simple and frequently used in
practice, computational advantages in some cases.
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One-vs-One

B Technique:

® for each pair (/,1"') €Y, 11’ learn binary
classifier h;; : X —{0,1}.

® combine binary classifiers via majority vote:

h(z) = argmax |{l : hy (z) = 1}|.
l'ey

& Problem:
® computational: train k(k — 1)/2 binary classifiers.

® overfitting: size of training sample could become
small for a given pair.
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Computational Comparison

Training Testing
One'VS'a” O(kBtrain(m)) O(kBtest)
O(km*®)
O(k? Birain k
One-vs-one (F” Birain(m/£)) O(k” Btest)
(on average)
|O(k2_o‘mo‘) smaller Ngy per B

Time complexity for SVMs, & less than 3.
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Error-Correcting Code Approach

(Dietterich and Bakiri, 1995)

A |dea;

® assign F-long binary code word to each class:
—> M = [My;] € {0, L}

® |earn binary classifier f;: X — {0, 1} for each
column. Example zin class [ labeled with M.

® classifier output( (x)=(f1(=), .--,fF(fE))),

h: z+— argmin dgamming (Ml : f(x)) :
leYy
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lllustration

| 8 classes, code-length: 6.

f1(x

fa(x

f3(x

fa(x

f5(iU

fG(l’

0

codes

1 12|13 |4|5]6
llolo|o|I1|0]oO
211 l0|l0|0]0]oO
13]ol1 1 lol1]o
2l 4 1]11]0]0]0]0
Sls|li]1lololi1]o
6lo|o0 |1 |1]0]1
71olo|1]0]0/oO
slol1|o|1]0]oO
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Error-Correcting Codes - Design

B Main ideas:

® independent columns: otherwise no effective
discrimination.

® distance between rows: if the minimal Hamming
distance between rows is d, then the multi-class
can correct | 1| (classification) errors.

® columns may correspond to features selected
for the task.

® one-vs-all and one-vs-one (with ternary codes)
are special cases.
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Extensions

(Allwein et al., 2000)
® Matrix entries in{—1,0, +1}:

® examples marked with 0 disregarded during
training.

® —— one-vs-one becomes also a special case.

® Margin loss L: function of yf(x), e.g., hinge loss.
® Hamming loss: »
h(x) = argmin Z 5
® Margin loss: i
h(x) = argmin ZL(Mljfj (2)).

le{1,...k}
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Applications

® One-vs-all approach is the most widely used
combination method.

® No clear empirical evidence of the superiority of
other approaches (Rifkin and Klautau, 2004).

® except perhaps on small data sets with relatively
large error rate.

® [arge structured multi-class problems: often
treated as ranking problems (see ranking lecture).
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Regression Problem

® Training data: sample drawn i.i.d. from set X
according to some distribution D,

S:(($1,y1), Cees (xm,ym))EXxY,

with Y CR is a measurable subset.

B |oss function: L: Y xY —R_a measure of closeness,

typically L(y,y") = (v —)* or L(y,y") =y’ —y|" for
some p> 1.

® Problem: find hypothesis h: X —R in H with small
generalization error with respect to target f

Rp(h) = E [L(h(z), f(z))].

x~D

Mehryar Mohri - Foundations of Machine Learning page 2



Notes
® Empirical error:
R 1
Rp(h) = — > L(h(zi),y:)-
1=1

® |In much of what follows:
®Y =R orY=[-M, M]for some M >0.

o L(y,y')= (¥ —y)’—> mean squared error.
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This Lecture

Generalization bounds
Linear regression
Kernel ridge regression

Support vector regression

Lasso
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Generalization Bound - Finite H

B Theorem:let H be a finite hypothesis set, and

assume that L is bounded by M. Then, for any § >0,
with probability at least1—4,

log |H| + log 2

2m

Vh € H,R(h) < R(h) + M\/
& Proof: By the union bound,
Pr {sup R(h) — f{(h)‘ >e} < Z Pr [‘R(h) — f{(h)‘ >e].
heH e

By Hoeffding’s bound, for a fixed

2m62

Pr [‘R(h) — }A{(h)| >e} < 2e Mz,
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Rademacher Complexity of Lp Loss

B Theorem:Letp>1,H, ={z+— |h(z) — f(x)|P: h € H}.
Assume that sup,c x ycp |h(x) — f(2)| <M. Then, for
any sample S of size m,

AN

Rs(H,) < pMP~Rg(H).
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Proof

B Proof:LetH'={x +— h(x)— f(x): he H}.Then,
observe that H,={¢ o h: he H'} with ¢: x—|z|’.

® ¢is pMP~!- Lipschitz over [~ M, M], thus
R (Hp) < pMP~'Rg(H').

® Next, observe that:

%S(H):_E sggzaz £Lq +sz( )}

P

E supZaz xz}—l—g[sz(xi)}:?ﬁ H
i=1

-heH
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Rad. Complexity Regression Bound

B Theorem: Let p>1and assume that||h — f||cc <M
for all he H.Then, for any § >0, with probability at
least1 -4, for allhe H,

! log
E [\h(a:) } < EZ A(:) Y+ 2pMPT R, (H) + MP 2m5,
- MiS Z . 2m,

® Proof: Follows directly bound on Rademacher
complexity and general Rademacher bound.
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Notes

| As discussed for binary classification:

® estimating the Rademacher complexity can be
computationally hard for some Hs.

® can we come up instead with a combinatorial
measure that is easier to compute!
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Shattering

® Definition: Let G be a family of functions mapping
., T +is shattered by G if

fromX toR. A={x1,..
there exist %1, ..

14

to 4

?

., tm €R such that
Csgn (g(z1) —t1)

sgn (g(%)

_ tm)

ge G

1

Mehryar Mohri - Foundations of Machine Learning
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Pseudo-Dimension

B Definition: Let G
fromX toR.The
is the size of the

(Pollard, 1984)

be a family of functions mapping
bseudo-dimension of G, Pdim(G),
argest set shattered by G.

B Definition (equivalent, see also (Vapnik, 1995)):
Pdim(G) = VCdim({(x,t) — Lig(z)—t)>0: g € G})

i

|

/\

o L

t
o I(L(

(x). f(x))
h(x), f(x)) > t)

N\

/

!
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Pseudo-Dimension - Properties

® Theorem: Pseudo-dimension of hyperplanes.
Pdim(x—w-x+b: weRY becR) =N + 1.

B Theorem: Pseudo-dimension of a vector space of
real-valued functions H:

Pdim(H) = dim(H).
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Generalization Bounds
Classification——>Regression

B [emma (Lebesgue integral): for f > 0 measurable,

Emmzéwgm@>Wt

D

® Assume that the loss function L is bounded by M.

mw—ﬂw=/§(mwwmﬂM>ﬂ—mwwmﬂm>®ﬁ

x~D r~S

< sup | Pr(L(h(z).f(@)) > 1) = Pr[L(h(z). f(x)) > 1]

=M sup ED[IL(h(x),f(x))>t]_ Es[lL(h(x),f(x)>>t]
te[0,M] 1~ o

Pr [Sllp [R(h) — R(h)| > 6] <Pr [ sup ‘R(lL(h,fbt) — R(1(h,p)>t)

€
> —|.
heH heH M]
te[0,M]

Standard classification generalization bound.
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Generalization Bound - Pdim

B Theorem: Let H be a family of real-valued functions.
Assume thatPdim({L(h, f): h€e H})=d< oo and that
the loss L is bounded by M. Then, for any § >0, with
probability at least1—¢, for any he H,

2d log =+

R(h) < R(h) + M\/ +M

m om

log %

® Proof: follows observation of previous slide and
VCDim bound for indicator functions of lecture 3.
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Notes

® Pdim bounds in unbounded case modulo
assumptions: existence of an envelope function or
moment assumptions.

B Other relevant capacity measures:
® covering numbers.
® packing numbers.

® fat-shattering dimension.
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This Lecture

Generalization bounds
Linear regression
Kernel ridge regression

Support vector regression

Lasso

Mehryar Mohri - Foundations of Machine Learning page 16



Linear Regression

® Feature mapping®: X —RY.

B Hypothesis set: linear functions.
{x—w- ®(x)+b:weRY beR}.
B Optimization problem: empirical risk minimization.
1

m

1 _ . ) _ 2
min F(w,b) = — % (w-®(z;) +b—y:)".
1=1
Ya
®
o ® °
o &0
®
®
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Linear Regression - Solution

® Rewrite objective function as F(W)= L IX™W —Y|?,
X = [‘I’(wl)---@(wm)] c RN+ xm m

1 1 _ —
" B(xy) 1 o Y1
with X'= ; W=| |Y=]:
w
_(I)(ajm)—r 1_ bN | Ym

® Convex and differentiable function.

VF(W) = 3X(XTW -Y).

m

VFW)=0X(X'"W-Y)=0& XX'W=XY.
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Linear Regression - Solution

A Solution:

(XXT)"1XY if XX invertible.

W =«
(XX")'XY  in general

\

e Computational complexity: O(mN + N?) if matrix
inversion in O(N?).

® Poor guarantees in general, no regularization.

® For output labels in R?, p>1, solve p distinct
linear regression problems.
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This Lecture

Generalization bounds
Linear regression
Kernel ridge regression

Support vector regression

Lasso
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Mean Square Bound - Kernel-Based Hypotheses

B Theorem:LetK: X x X —R be a PDS kernel and
let &: X —H be a feature mapping associated to K.
Let H = ﬁx WD (2): HWHHSA} AssumeK (z, ) < R2
and|f(z)| < ARfor all € X.Then, for any § >0, with
probability at least1—4§,for anyhe H,

R 2A2 1 ] 1
R(h) < B(h) + 2& (1+ °g5)

Jm 2\ "2
SRZA? ( Tr[K] 3 1og§)

=
=
A
g@
=

/m mR2 ' 4 2
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Mean Square Bound - Kernel-Based Hypotheses

B Proof: direct application of the Rademacher
Complexity Regression Bound (this lecture) and
bound on the Rademacher complexity of kernel-
based hypotheses (lecture 5):

A~ A\/Tr R2A2
Rs(H
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Ridge Regression
(Hoerl and Kennard, 1970)
® Optimization problem:

min F (w, b) = \||w||* + Z (W ®(x;)+b—ys),
1=1
where A\ >0 is a (regularization) parameter.

® directly based on generalization bound.
® generalization of linear regression.
® closed-form solution.

® can be used with kernels.
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Ridge Regression - Solution

B Assume b=0: often constant feature used (but not
equivalent to the use of original offset!).

B Rewrite objective function as
F(W)=AW[* +[X'W - Y]|*.
B Convex and diferentiable function.
VE(W) =2AW 4+ 2X(X'W - Y).
VFE(W) =0« (XX"+ X)W = XY.

® Solution: |W = (XXT+ AI)"1XY]|

A\ J/

S

always invertible.
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Ridge Regression - Equivalent Formulations

® Optimization problem:

m

migl (W - ®(z;) +b—y;)?
WP =1

subject to: ||[w|* < AZ.
# Optimization problem°

mm Zf

subject to: fi =w-®(z;)+b—y;
lwl]? < A
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Ridge Regression Equations

0 Lagrangiawassume b=0.Forall¢,,w,a’,\ > 0,
L w. o/, 252+Za i =G — w2 () +A(lw])” — A,

A KKT condltlons.

m 1 Tre
Ve, L =28 —a; =0 & = /2.

Vi € [Lm]?a;(y’& o fz — W (I)(ZBZ)):O
Allwl* =A%) = 0.
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Moving to The Dual

0 Plugging in the expression of wand §;s gives

_ il i — | o)’ ;A 'il a;a;q)(wi)T@(xj)+)\<ﬁH ia;@(wi)\\z—f\z)-
- P o P
® Thus,
L33t Y o= gy Y alol (e B(r,) - M
i,jzl
= —)\Za? + QZaiyi — Z az'Oéj‘I)(fUz‘)T(I’(CUj) — AAZ,
i=1 i=1 i,7=1

with o, =2\a; .
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RR - Dual Optimization Problem

® Optimization problem:

max “da'a+2a'y —a' X' X)a
aclR™

or max —a'(X"X + M) + 2a'y.
aclR™

A Solution:

h(x) = Zozq;@(xi) - P(x),

with a = (X'X + \I) " ly.
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Direct Dual Solution

B [emma:The following matrix identity always holds.
(XX + A7 X = X(X'X + AI) L

B Proof: Observe that(XX'

A)X = X(X'X

Left-multiplying by (XX' + AI)~'and right-
multiplying by (X'X + AI) " 'yields the statement.

B Dual solution: o such that
W = ZO@K(Q?@, ) —
=1

By lemma,W = (XX '+ AI)7'XY = X(X'X+ AI)"'Y]

1=1

AI).

This gives a=(X'X+ )Y

Mehryar Mohri - Foundations of Machine Learning
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Computational Complexity

Solution Prediction
Primal O(mN? + N?) O(N)
Dual O(km* +m?) O(km)
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Kernel Ridge Regression

(Saunders et al., 1998)
® Optimization problem:

max —da' a+2a'y — a' Ka
acR™

or max —a'(K+ MN)a +2a'y.
aclR™

A Solution:

E a; K 33'1,7

with o= (K + )\I)
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Notes

B Advantages:
® strong theoretical guarantees.

® generalization to outputs inR?: single matrix
Inversion (Cortes et al., 2007).

® use of kernels.

B Disadvantages:
® solution not sparse.

® training time for large matrices: low-rank
approximations of kernel matrix, e.g., Nystrom
approx., partial Cholesky decomposition.
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This Lecture

Generalization bounds
Linear regression
Kernel ridge regression

Support vector regression

Lasso
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Support Vector Regression

(Vapnik, 1995)
B Hypothesis set:

{x—w- ®(x)+b: weRY beR}.
B |oss function:e-insensitive loss.

L(y,y') =y — yle = max(0, |y’ — y| —€).

Fit ‘tube’ with
width € to data.
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Support Vector Regression (SVR)

(Vapnik, 1995)
B Optimization problem: similar to that of SVM.

1 m
Il +C Y [y — (w- @(2:) + ).
=1

@ Equivalent formulation:
1

Juin, o flwlf® + CY (& +E)
T i=1

subject to (w - ®(x;) +b) —y; < e+¢&;
vy — (W -®(x;) +b) <e+&
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SVR - Dual Optimization Problem

® Optimization problem:

1
max —e(a’ +a)' 1+ (o —a)'y—=(a/ —a)'K(a' — a)

a,o’

subject to: (0 < a<CIA0<La <C)A((a —a)'1=0).

A Solution:

h(z) = Z(a; — o)) K (x4,%) + b

with » = —Z£1(@}—&j)K(xj,xi)+yi+e when 0 < o; < C
_221(a;_@j)K($ja$i)+yi—e when 0 < o, < C.

| Support vectors: points strictly outside the tube.
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Notes

B Advantages:
® strong theoretical guarantees (for that loss).
® sparser solution.

® use of kernels.

B Disadvantages:
® selection of two parameters: C'and e. Heuristics:

® search C' near maximum y, ¢ near average
difference of ys, measure of no. of SVs.

® |arge matrices: low-rank approximations of
kernel matrix.
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Alternative Loss Functions

quadratic €-insensitive

8- z+—max(0, || — €)?
(- Huber
x? if [z] <c
€Tt
" 2c|z| — ¢ otherwise.
0 47 . iy
E-insensitive
r—max(0, |z| — €)
2_
O_
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SVR - Quadratic Loss

® Optimization problem:

max —e(a’ +a)' 1+ (@ —a)'y — %(a’ —a)' (K + lI) (o' — )

a,o’

subject to: (¢ > 0)A (> 0)A (e —a)'1=0).

A Solution:

f:oz — ;) K(x;,x)+ b

=1
a ) K(xj,z;)+y;+€¢ when0<a; A& =0
a;j)K(xj,z;) +y; —e when 0 < a; A = 0.

(

Wlthb{ > im1 (0 =
D> i (o —

| Support vectors: points strictly outside the tube.
B Fore=0, coincides with KRR.
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£-Insensitive Bound - Kernel-Based Hypotheses

B Theorem:LetK: X x X —R be a PDS kernel and
let®: X — H be a feature mapping associated to K.
Let H={x— w-®(z): |[|w| g <A}.AssumeK (z,r) < R?
and|f(x)| <T'Rfor all z € X.Then, for any § >0, with
probability at least1—4§,for anyhe H,

Elloz) - f@)ld) < Bllate) - F@d + T 2+ (5 +1) /252 .

Bllh(z)—f(5)].] < BllA(r)— F(@)|d+ e W TKI/RE | (5 ¥ 1) o ]

Y1\

vm m A
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£-Insensitive Bound - Kernel-Based Hypotheses

B Proof:Let H.={x+— |h(x) — f(x)|c:he H} and let H’
be defined by H' ={z+—h(z)— f(z): he H}.

® The function®.: x+— |z|. is |-Lipschitz
and ®.(0)=0.Thus, by the contraction lemma,

Rs(H.) < Re(H').

e Since i)A%S(H’) DA%S H) (see proof for
Rademacher Complexity of L, Loss), this shows
that Rs(H.) <R (H).

® The restis a direct application of the
Rademacher Complexity Regression Bound (this
lecture).
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On-line Regression

® On-line version of batch algorithms:
® stochastic gradient descent.
® primal or dual.

B Examples:

® Mean squared error function:Widrow-Hoff (or
LMS) algorithm (Widrow and Hoff, 1995).

® SVR e-insensitive (dual) linear or quadratic
function: on-line SVR.
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Widrow-Hoff

(Widrow and Hoff, 1988)

WIDROWHOFF(w)
1 wi; «— wg > typically wg =0
2 fort«—1to1 do
3 RECEIVE(x})
4 Yp — Wi - Xy
5 RECEIVE(y¢)
6 Wil < Wi +20(We - Xe —yp)x¢ >n>0
7 return wriq
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Dual On-Line SVR

( h— O) (Vijayakumar and Wu, 1988)
DUALSVR()
l a0
2 a0
3 fort<—1to1 do
4 RECEIVE(x¢)
5 G — D as (0 — ) K (w5, 1)
6 RECEIVE(y¢)
7 iy < a;p + min(max(n(y: — 4 —€), —a;),C — a)
8 i1 — ap + min(max(n(y: — yr — €), —ay), C — ay)
9 return Zthl ar K (x4, -)
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This Lecture

Generalization bounds
Linear regression
Kernel ridge regression

Support vector regression

Lasso
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LASSO
(Tibshirani, 1996)

B Optimization problem: ‘least absolute shrinkage
and selection operator’.

min F(w,b) = A|wli+ Y (w-xi +b—y,)",
1=1
where A>0 is a (regularization) parameter.
| Solution: equiv. convex quadratic program (QP).
® general: standard QP solvers.

® specific algorithm: LARS (least angle regression
procedure), entire path of solutions.
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Sparsity of LI regularization

|

Ll regularization L2 regularization
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Sparsity Guarantee

® Rademacher complexity of LI-norm bounded

linear hypotheses:

-~ 1
Rs(H) = —E sup ZO‘ZW X
||W||1<A17; 1
1
=—E H iX;
m o i:ZlO-X oo]
1
= — FE | max O;iT;i
m o |jE[l,N] ; ’ ]
1
= —FE | max max O;T;
m o Je[l | se{—1,+1} ; ‘7]
A 21og(2N
:_1E SungZZl] <TOOA1\/ Og( )
m o |zcA m

Mehryar Mohri - Foundations of Machine Learning
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(by definition of | - |)

(Massart’s lemma)
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Notes

B Advantages:

® theoretical guarantees.

® sparse solution.

® feature selection.

® Drawbacks:
® no natural use of kernels.

® no closed-form solution (not necessary, but can
be convenient for theoretical analysis).
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Regression

® Many other families of algorithms: including
® neural networks.
® decision trees (see multi-class lecture).

® boosting trees for regression.
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Reinforcement Learning

B Agent exploring environment.

B [nteractions with environment:
action

state =

'nvironment

reward

® Problem: find action policy that maximizes
cumulative reward over the course of interactions.
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Key Features

B Contrast with supervised learning:

® no explicit labeled training data.

e distribution defined by actions taken.
B Delayed rewards or penalties.
® RL trade-off:

® exploration (of unknown states and actions) to
gain more reward information; vs.

® exploitation (of known information) to optimize
reward.
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Applications

Robot control e.g., Robocup Soccer Teams (Stone et
al,, 1999), helicopter flight, autonomous driving.

Board games, e.g., TD-Gammon (Tesauro, 1995), Go
(Silver et al.,2016).

Elevator scheduling (Crites and Barto, 1996).
Ads placement, patient treatment.
Telecommunications.

Inventory management.

Dynamic radio channel assignment.
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This Lecture

B Markov Decision Processes (MDPs)
® Planning
B Learning

® Multi-armed bandit problem
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Markov Decision Process (MDP)

| Definition: a Markov Decision Process is defined by:
® a set of decision epochs{0,...,T}.
® a set of states S, possibly infinite.
® 3 start state or initial state sg;
® a set of actions A4, possibly infinite.

® a transition probability Pr[s’|s, a]: distribution over
destination states s’ =4(s, a).

® a reward probability Pr[r'|s, a]: distribution over
rewards returned ' =r(s,a).
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Model

B State observed at time t: s, € S.

action

gﬁwimnment

reward

B Action taken at time ¢t : a; € A.

B State reacheds;i1=46(s¢, as).

B Reward received: 1111 =7(s¢, ay).

at/”’“t+1 at4+1 /7"t+2
..... ... .>
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MDPs - Properties

B Finite MDPs: A and S finite sets.
B Finite horizon when T < .

B Reward r(s,a) : often deterministic function.

Mehryar Mohri - Foundations of Machine Learning page 8



Example - Robot Picking up Balls
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Policy

® Definition: a policy is a mapping 7: S — A.

B Obijective: find policy 7 maximizing expected
return.
® finite horizon return: 3"/ " r(s;, 7(s:)).

® infinite horizon return: 3% 77 (s;, 7(s¢)) -

B Theorem:for any finite MDP, there exists an
optimal policy (for any start state).
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Policy Value

B Definition: the value of a policy 7 at state s is

® finite horizon:

Ve(s) =E i st,

80—8

® infinite horizon: dlscount factory<|0,1),

Ve(s) =E Z”ytr(st,w(st))

® Problem: find policy = with maximum value for all
states.
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Policy Evaluation

| Analysis of policy value:

+00 il
Va(s) =E Z'YtT(St,W(St)) So = S| .

1 oo

— E[;(s,w(s))] +~vE thr(-stﬂ,ﬁ(stﬂ)) So =S

= Elr(s,7(s)] + 7E[Vz(0(s,7(s)))].
B Bellman equations (system of linear equations):

Vi(s) =E|r(s,m(s)] + ’YZPI[S/‘S, 7(s)|Vr(s").

Mehryar Mohri - Foundations of Machine Learning page 12




Bellman Equation - Existence and Uniqueness

® Notation:
® transition probability matrix P, o =Pr[s’|s, w(s)].
® value column matrixV =V_(s).

® expected reward column matrix: R=E[r(s, 7(s)].

B Theorem:for a finite MDP, Bellman’s equation
admits a unique solution given by

Vo=(I-~P)"'R.

Mehryar Mohri - Foundations of Machine Learning page |3



Bellman Equation - Existence and Uniqueness

® Proof: Bellman’s equation rewritten as
V=R +~vPV.

® P is a stochastic matrix, thus,

® This implies that||yP|| = v<1. The eigenvalues
of vP are all less than one and (I —~P)is
invertible.

B Notes: general shortest distance problem (MM, 2002).
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Optimal Policy

® Definition: policy 7™ with maximal value for all

states sc S.

® value of 7 (optimal value):
Vs € S, Vi (s) = max Vi (s).

® optimal state-action value function: expected
return for taking action a at states and then
following optimal

Q" (s,a) =E
— k

7 (s,a)

(s, a)

Mehryar Mohri - Foundations of Machine Learning
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-y Z Pr[s’ | s,a]V*(s").
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Optimal Values - Bellman Equations

® Property: the following equalities hold:
Vs €S, V*(s) = maxQ*(s,a).

acA
| Proof: by definition, for all s,V *(s) < ax Q" (s,a).

® |f for some swe hadV™(s) <max Q*(s,a), then

maximizing action would define a better policy.

B Thus,

V*(s) = max { E[r(s,a)] +~ Z Pr[s’|s, a]V*(s’)}.

aEA
s’'eS
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This Lecture

B Markov Decision Processes (MDPs)
B Planning
B Learning

® Multi-armed bandit problem
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Known Model

| Setting: environment model known.
® Problem: find optimal policy.

B Algorithms:
® value iteration.
® policy iteration.

® |inear programming.
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Value Iteration Algorithm

®(V)(s) = max { E[r(s,a)] + v Z Pr[s’|s, a]V(s’)}.

acA
s’'eS
®(V) =max{R, + 7P, V}.

VALUEITERATION( V)
1 V< Vy »>Vgarbitrary value
2 while [V - @(V)| > 122 do
3 V — &(V)
4 return ®(V)
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VI Algorithm - Convergence

B Theorem:for any initial value Vi, the sequence
defined by V,,,; =®(V, ) converge toV™.

B Proof: we show that & is y-contracting for || - ||
—> existence and uniqueness of fixed point for ®.

® for anys e S, let a*(s) be the maximizing action
defining ®(V)(s) .Then, for s € S and any U,

<72Pr "Is, a*($)]||V = Ulloe = ||V = Ul|so.
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Complexity and Optimality

®m Complexity: convergence in O(log 1) . Observe that
Vit = Villoo <V = Vicileo < 47[[@(Vo) — Vo[-

(1 —)e

Thus, 7"||®(Vo) — Vollee < .

=N = O(log %)

| -Optimality: let V,,41 be the value returned. Then,

HV* — Vn+1Hoo < HV* _ (I)(Vn—Fl)HOO T H(I)(Vn—kl) — Vn+1HOO

< 7||V* — Vn+1Hoo + VHV"thl - VnHoo
Thus,

X Y
IV* = Vol € T2 Vst = Vil < €
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VI Algorithm - Example

V. 1(1) = max {2 + 7(%Vn(1) + ivn@)) 2 Wn(z)}

Vi1 (2) = max {3+ 9Va(1),2+1Va(2) }

For V()(l) — —1,V0(2) m— 1,’7 _— 1/2,V1(1) — V1(2) — 5/2
But,V*(1) = 14/3, V*(2) = 16/3.
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Policy Iteration Algorithm

POLICYITERATION(7g)

1 m™<«m ©mo arbitrary policy
2 7'« NIL
3 while (7 #7') do
4 V «— V. b policy evaluation: solve (I —yP,)V = R.
5 o
6 7 «— argmax_{R, +vP,.V} b greedy policy improvement.
7 return 7
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Pl Algorithm - Convergence

B Theorem:let(V,).cn be the sequence of policy
values computed by the algorithm, then,

Vn é Vn—l—l S V*

& Proof:letr,; be the policy improvement at the nth
iteration, then, by definition,

Ry, . +7P~... V>R, +7P-, V, = V,.
e therefore, R:, ., > (I—"P,, . ,) V..
® note that(I — yP,, ) ' preserves ordering:
X >0= (I-P,,.,)"'X = Y50 (1Pr,., )FX > 0.
e thus,V,11 = (I—-P, .,) 'R >V,.

Tn4+1 —
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Notes

B Two consecutive policy values can be equal only at
last iteration.

® The total number of possible policies is |A|'°!, thus,
this is the maximal possible number of iterations.

® best upper bound known O(%).
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Pl Algorithm - Example

Thus, V., (1) = 1— Vo (2) = =
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VI and Pl Algorithms - Comparison

B Theorem:let(U,),cn be the sequence of policy
values generated by the VI algorithm,and (V,,).,.en
the one generated by the Pl algorithm. If Uy =V,
then,

vneN, U, <V, <V*

® Proof: we first show that & is monotonic. Let U
and V be such that U < Vand let 7 be the policy
such that ®(U) = R, +~P,U.Then,

®(U) <R, +9P,V <max{R] +9P,V} = &(V).
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VI and Pl Algorithms - Comparison

® The proof is by induction on n.Assume U,, <V,
then, by the monotonicity of &,

U,.: =®(U,) <®(V,) =max{R,+vP,.V,}.
® letm,1 be the maximizing policy:

The1 = argmax{R, + YP.V,}.
7T
® Then,
(I)(Vn) — Rﬂ-n—l—l T 7P7Tn+1vn < Rﬂ-n—l—l T 7P7Tn+1vn+1 — V’n—l—1°
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Notes

B The Pl algorithm converges in a smaller number of
iterations than the VIl algorithm due to the optimal

policy.

B But, each iteration of the Pl algorithm requires
computing a policy value, i.e., solving a system of
linear equations, which is more expensive to
compute that an iteration of the VI algorithm.
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Primal Linear Program

®m P formulation: choose a(s) >0, with) _ a(s)=1.
H{}_n Za(s)V(s)

subject to Vs € S,Va € A,V (s) > E[r(s,a)] +~ Z Pr[s’|s, a]V (s").
s'€S

B Parameters:
® number rows:|S||A|.

® number of columns:|S]|.

Mehryar Mohri - Foundations of Machine Learning page 30



Dual Linear Program

A LP formulation:

max Z Elr(s,a)] x(s,a)

x
s€S,acA

subject to Vs € S, Z z(s',a) = a(s’) + ’YZPI[S/|S, al z(s', a)

aCA s€S,acA
Vs € S,Va € A,xz(s,a) > 0.

B Parameters: more favorable number of rows.
® number rows:|S].

® number of columns: |S||A4]| .
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This Lecture

B Markov Decision Processes (MDPs)
® Planning
B [earning

® Multi-armed bandit problem
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Problem

& Unknown model:
® transition and reward probabilities not known.
® realistic scenario in many practical problems, e.g.,
robot control.
® Training information: sequence of immediate
rewards based on actions taken.
B Learning approches:
® model-free: learn policy directly.

® model-based: learn model, use it to learn policy.
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Learning Approaches

® Two broad families:

® model-based approaches: use samples based on

interactions to learn P and r explicitly; next, use
value iteration to learn policy.

® model-free approaches: do not seek to learn
model; instead, use samples to learn Q function;
policy readily derived from Q.
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Problem

B How do we estimate reward and transition
probabilities?

® use equations derived for policy value and Q-
functions.

® but, equations given in terms of some
expectations.

® —> instance of a stochastic approximation
problem.
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Stochastic Approximation

® Problem: find solution of x=H(x) with xeR" while
® [(x) cannot be computed, e.g., H not accessible;

® i.i.d. sample of noisy observations H (x;)+wj,
available, i € [1, m], with E[w]=0.

B |[dea:algorithm based on iterative technique:
Xt+1 = (1 — Oét)Xt -+ Oét[H(Xt) -+ Wt]
= Xt + Olt[H(Xt) + Wi — Xt].

® more generally x;11 = x; + oD (x¢, Wy).
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Mean Estimation

B Theorem:Let X be a random variable taking values
in[0,1]and let zo, ..., x,, be i.i.d. values of X. Define
the sequence(tm)men by

,um—l—lz(l_oém),um_l_&mxm with Ho = T0-

Then, fora,, €0, 1], wicham = 400 andZafn < 400,

m >0 m >0

Lo, ﬂ>E][X']
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Proof

& Proof: By the independence assumption, for m>0,
Var[ima1] = (1 — aun)*Var[um,] + o, Var[z,,]
< (1 — aup)Var|um,] + afn.
® We have a,, —0 sinced ., a2 <+oo.

® |ete>0 and suppose there exists N € Nsuch that

for all m > N, Var|u,,| >¢.Then, for m> N,

Var(pim 1] < Var[m,] — ame + oy,

which implies Var|u,,+n] < Var[un] — EZZ’L{,V oy, + Zer]{,V o

— —00 when m—oo

contradicting Var|u,,+n]>0.
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Mean Estimation

® Thus, for all N eNthere exists mg> Nsuch that
Var[um,,] <e. Choose N large enough so that
Ym> N, a,, <e. Then,

Var|tmg+1] < (1— Q) €+ € =¢.

® Therefore, 1 <€ for allm>mg (L2 convergence).
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Notes

m special case: o=
® Strong law of large numbers.

® Connection with stochastic approximation.
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TD(0) Algorithm

® [dea: recall Bellman’s linear equations giving V
Vi(s) =E|r(s,m(s)] + fyz Pr[s’|s, m(s)|Vx (s")

— ]SE/) (s, m(s)) +Va(s)|s].

® Algorithm: temporal difference (TD).
® sample new state s'.

® update: o depends on number of visits of s.
V(s) — (1 —=a)V(s) + alr(s,m(s)) + 7V (s)]
= V(s) + afr(s,7(s)) +AV(s') ~ V(s)].

temporal difference of V values
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TD(0) Algorithm

TD(0)()
1 V « Vg initialization.
2 fort«<— 0to1l do
3 S «— SELECTSTATE()
4 for each step of epoch t do
5 r’ «— REWARD(s, 7(s))
6 s’ «— NEXTSTATE(T, S)
7 Vis) — (1—a)V(s)+alr’ +~yV(s')]
8 s <« s

9

return V
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Q-Learning Algorithm

B |dea:assume deterministic rewards.

Q*(s,a) = Elr(s,a)] +v ) Prls’ | 5,a]V*(s')
s'esS
=Elr(s,a) + ymax@™(s’, a)]
® Algorithm: a € [0, 1] depends on number of visits.
® sample new state s’

® update:

Q(s,a) + (1 = )Q(s,a) +alr(s,a) +ymax Q(s', a’)].
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Q-Learning Algorithm

(Watkins, 1989;Watkins and Dayan 1992)

Q-LEARNING(7)
1 @« Qo >initialization, e.g., Q9 = 0.
2 fort«<—0toT do
3 S < SELECTSTATE()
4 for each step of epoch t do
5 a < SELECTACTION(7,s) > policy 7w derived from @), e.g., e-greedy.
6 r’ < REWARD(S, a)
7 s’ «— NEXTSTATE(s, a)
8 Q(s,a) — Q(s,a) + a|r’ + ymaxy Q(s',a’) — Q(s,a)]
9 s« &
0

10 return ()

Mehryar Mohri - Foundations of Machine Learning page 44



Notes

B Can be viewed as a stochastic formulation of the
value iteration algorithm.

B Convergence for any policy so long as states and
actions visited infinitely often and parameter
chosen as in mean estimation theorem.

B How to choose the action at each iteration?
Maximize reward! Explore other actions!?

B Q-learning is an off-policy method: no control over
the policy; estimates and evaluates policy using
experience from following different policy.
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Policies

| Epsilon-greedy strategy:
® with probabilityl —e greedy action from s ;

® with probability e random action.

B Epoch-dependent strategy (Boltzmann exploration):

Q(s,a)
€ 7t
pt(a”S7Q) — Q(s,a’) )

Za’EA e

® 7, — 0:greedy selection.

® |arger 7, : random action.

Mehryar Mohri - Foundations of Machine Learning page 46



Convergence of Q-Learning

B Theorem: consider a finite MDP. Assume that for
all s€ S and CLGA,Z;ZO O‘t(sv a) — 00, Z:io &?(57 CL) <0
with a;(s,a) €[0,1].Then, the Q-learning algorithm
converges to the optimal value @* (with probability
one).

® note: the conditions on a4 (s, a)impose that each
state-action pair is visited infinitely many times.

Mehryar Mohri - Foundations of Machine Learning page 47



This Lecture

B Markov Decision Processes (MDPs)
® Planning
B Learning

@ Multi-armed bandit problem
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Multi-Armed Bandit Problem

(Robbins, 1952)

® Problem: gambler must decide which arm of a N
-slot machine to pull to maximize his total reward
in a series of trials.

® stochastic setting: Vlever reward distributions.

® adversarial setting: reward selected by adversary
aware of all the past.
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Applications

B Clinical trials.

® Adaptive routing.

B Ads placement on pages.

B Games.

Mehryar Mohri - Foundations of Machine Learning page 50



Multi-Armed Bandit Game

® Fori¢=1toTdo
® adversary determines outcomey; € Y.

® player selects probability distribution p; and pulls
everl;{1,..., N}, I;~p;.

® player incurs loss L(1;, ;) (adversary is informed
of p; and I,.

B Objective: minimize regret

T T
Regret(T) = Y L(Iy,y1) — _min > L(i, ).
t=1 T t=1

°
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Notes

| Player is informed only of the loss (or reward)
corresponding to his own action.

® Adversary knows past but not action selected.

| Stochastic setting: loss (L(1,y¢),..., L(N,y:))drawn
according to some distributionD = D; ® --- ® Dy.
Regret definition modified by taking expectations.

® Exploration/Exploitation trade-off: playing the best
arm found so far versus seeking to find an arm
with a better payoff.
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Notes

® Equivalent views:
® special case of learning with partial information.
® one-state MDP learning problem.

B Simple strategy: ¢-greedy: play arm with best

empirical reward with probability 1—¢; , random
arm with probability €: .
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Exponentially Weighted Average

B Algorithm: Exp3, defined for n,v>0by
exp(=nd>iilie) |
SEiexp(—nXiily) N

with Vi € [1,N], li,t — LU0 l7,—;.

pIt,t

it = (1—=7)

B Guarantee: expected regret of

O(v/NTlog N).
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Exponentially Weighted Average

® Proof: similar to the one for the Exponentially
Weighted Average with the additional observation
that:

Bllie] = 3200 pie = 220 =i = L(i o).

pIt,t
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