# Numerical Methods I MATH-GA 2010.001/CSCI-GA 2420.001

Benjamin Peherstorfer Courant Institute, NYU

Based on slides by G. Stadler and A. Donev

### Outline

Organization

Conditioning of problems

Stability of algorithms

Representing real numbers

# Organization

► Time and location: Mondays and Wednesdays 4:55–6:10PM, WWH 1302

- Office hours: Mondays, 6.10 7.10pm, stop by or make an appointment (please email). My office number is WWH #421
- Course webpage: https://docs.google.com/document/d/1VxdM4s-wiV-\_ C4uBDrP4ioiOdscfLwim8o1mokuj2oQ/edit?usp=sharing

You need to be logged in with your NYU-Google account to access it

Brightspace https://brightspace.nyu.edu/d21/home/400947

▶ 7 homework assignments (60% of your grade).

- ▶ 7 homework assignments (60% of your grade).
  - These will be mixed paper&pencil and computational/programming. You hand in solutions in LaTeX and Matlab code

- ▶ 7 homework assignments (60% of your grade).
  - These will be mixed paper&pencil and computational/programming. You hand in solutions in LaTeX and Matlab code
  - Grader is Qi (Winston) Liang, lq504@nyu.edu

- ▶ 7 homework assignments (60% of your grade).
  - These will be mixed paper&pencil and computational/programming. You hand in solutions in LaTeX and Matlab code
  - Grader is Qi (Winston) Liang, lq504@nyu.edu
  - Grader's office hour: tbd

- ▶ 7 homework assignments (60% of your grade).
  - These will be mixed paper&pencil and computational/programming. You hand in solutions in LaTeX and Matlab code
  - Grader is Qi (Winston) Liang, Iq504@nyu.edu
  - Grader's office hour: tbd
  - You are welcome to discuss with your colleagues, but you've to write up your solution independently and write every line of code yourself.

- ▶ 7 homework assignments (60% of your grade).
  - These will be mixed paper&pencil and computational/programming. You hand in solutions in LaTeX and Matlab code
  - Grader is Qi (Winston) Liang, lq504@nyu.edu
  - Grader's office hour: tbd
  - You are welcome to discuss with your colleagues, but you've to write up your solution independently and write every line of code yourself.
  - The first homework assignment has been posted.

- ▶ 7 homework assignments (60% of your grade).
  - These will be mixed paper&pencil and computational/programming. You hand in solutions in LaTeX and Matlab code
  - Grader is Qi (Winston) Liang, Iq504@nyu.edu
  - Grader's office hour: tbd
  - You are welcome to discuss with your colleagues, but you've to write up your solution independently and write every line of code yourself.
  - The first homework assignment has been posted.
  - Follow the guidelines/rules provided with the homework to present and submit your solution.

- ▶ 7 homework assignments (60% of your grade).
  - These will be mixed paper&pencil and computational/programming. You hand in solutions in LaTeX and Matlab code
  - Grader is Qi (Winston) Liang, Iq504@nyu.edu
  - Grader's office hour: tbd
  - You are welcome to discuss with your colleagues, but you've to write up your solution independently and write every line of code yourself.
  - The first homework assignment has been posted.
  - Follow the guidelines/rules provided with the homework to present and submit your solution.
  - If you find errors/typos in the slides or homework assignments, please let me know.

- ▶ 7 homework assignments (60% of your grade).
  - These will be mixed paper&pencil and computational/programming. You hand in solutions in LaTeX and Matlab code
  - Grader is Qi (Winston) Liang, lq504@nyu.edu
  - Grader's office hour: tbd
  - You are welcome to discuss with your colleagues, but you've to write up your solution independently and write every line of code yourself.
  - The first homework assignment has been posted.
  - Follow the guidelines/rules provided with the homework to present and submit your solution.
  - If you find errors/typos in the slides or homework assignments, please let me know.
  - Late homework policy: We understand that there are sometimes unexpected circumstances. You can hand in one homework late by 24h this semester if you send me and the grader an email at least 24h before the deadline that your work will be late.

- ▶ 7 homework assignments (60% of your grade).
  - These will be mixed paper&pencil and computational/programming. You hand in solutions in LaTeX and Matlab code
  - Grader is Qi (Winston) Liang, lq504@nyu.edu
  - Grader's office hour: tbd
  - You are welcome to discuss with your colleagues, but you've to write up your solution independently and write every line of code yourself.
  - The first homework assignment has been posted.
  - Follow the guidelines/rules provided with the homework to present and submit your solution.
  - If you find errors/typos in the slides or homework assignments, please let me know.
  - Late homework policy: We understand that there are sometimes unexpected circumstances. You can hand in one homework late by 24h this semester if you send me and the grader an email at least 24h before the deadline that your work will be late.
- ► A final (40% of grade)

- ▶ 7 homework assignments (60% of your grade).
  - These will be mixed paper&pencil and computational/programming. You hand in solutions in LaTeX and Matlab code
  - Grader is Qi (Winston) Liang, lq504@nyu.edu
  - Grader's office hour: tbd
  - You are welcome to discuss with your colleagues, but you've to write up your solution independently and write every line of code yourself.
  - The first homework assignment has been posted.
  - Follow the guidelines/rules provided with the homework to present and submit your solution.
  - If you find errors/typos in the slides or homework assignments, please let me know.
  - Late homework policy: We understand that there are sometimes unexpected circumstances. You can hand in one homework late by 24h this semester if you send me and the grader an email at least 24h before the deadline that your work will be late.
- ► A final (40% of grade)
  - Expect to write *some* code too

# Organization issues

#### Prerequisites:

 Basic linear algebra; calculus; experience in Matlab (or Python or another programming language)

#### There is a part II of this class...

- In the Spring semester. You should take both parts to get a reasonably complete overview of Numerical Methods.
- If you consider taking only one semester of Numerical Methods, I recommend taking Scientific Computing this semester instead of this class.

# Topics covered in Numerical Methods I

Numerical Methods and their Analysis

- Stability; sources of errors; error propagation, representation of numbers in computers
- Numerical linear algebra: direct solution of sparse/dense linear systems; solution of least square systems; eigenvalue problems; iterative solution of linear systems
- Nonlinear systems; Newton's method; Nonlinear least squares
- Numerical optimization
- Interpolation and Approximation
- Numerical integration

#### Computing Issues

- What makes some computer codes faster than others?
- Where are numerical methods used, and what is their role in science research?
- How large/complicated problems can we solve today? Where are the challenges and limits of what we can do?

Main topics covered in Numerical Methods II in the Spring semester

- Approximation of ordinary differential equations (ODEs)
- Approximation of partial differential equations (PDEs)
- Solvers for the resulting (high-dimensional) discrete problems

Programming the methods we discuss is an integral part of this course. To really understand methods & algorithms, one needs to implement them and experiment with them.

- Make sure you have access to MATLAB (CIMS, student license), you will need it for the first homework assignment.
- Alternatives to MATLAB: Octave, Python or Julia.
- ▶ We will talk about a few best coding practices, and how to present results.

# Recommended textbooks/literature:

Text books:

- P. Deuflhard, A. Hohmann: Numerical Analysis in Modern Scientific Computing. An Introduction, 2nd edition, Springer, 2003.
- L. N. Trefethen, D. Bau: *Numerical Linear Algebra*, SIAM, 1997.
- A. Quarteroni, R. Sacco, F. Saleri: Numerical Mathematics, 2nd edition, Springer, 2007.
- M. Overton: Numerical Computing with IEEE Floating Point Arithmetic, SIAM, 2004.

#### Matlab/Programming:

- W. Gander, M. J. Gander, F. Kwok: Scientific Computing An Introduction Using Maple and MATLAB. Texts in Computation Science and Engineering. Springer, 2014.
- C. Moler: Numerical Computing with Matlab, SIAM, 2007.

# Numerical mathematics

Computer simulations have had a big influence on research and development; sometimes the ability to simulate phenomena is referred to as the third pillar of science.

Numerical mathematics is a part of mathematics that develops, analyzes and applies methods from scientific computing to

analysis

. . .

- linear algebra
- optimization
- differential equations

It has applications accross many applied sciences, including:

- physics
- economics
- biology
- finance
- ▶ ...

# Development of Numerical Methods at Courant

A few examples...

. . .

- Eigenvalue problems (Overton)
- Fast multipole method (Greengard, O'Neil, Zorin)
- Finite elements and contact problems (Panozzo, Zorin)
- Methods for studying dynamical systems, multiscale methods (Vanden-Eijnden)
- Methods for free boundary problems in fluid dynamics (Shelley)
- Scalable implicit solvers for viscous flows (Stadler)
- Sampling methods and Uncertainty Quantification (Goodman, Stadler, Peherstorfer)
- Scientific machine learning (Vanden-Eijnden, Stadler, Peherstorfer)

# Applications of Numerical Methods at Courant

A few examples. . .

- Simulation and analysis of natural and artificial heart valves (Peskin)
- Simulation of plate tectonics and mantle convection (Stadler)
- The physics of cell's interiors and their motion (Shelley)
- Optimal complexity wave simulations (Greengard)
- Simulation of blood cells-resolving blood flow (Zorin)
- Plasmas (Stadler, Kaptanoglu)



#### Seminars

#### **Computational Mathematics and Scientific Computing seminar**

- ► Fridays at 10:00, WWH 1302
- Talks about current research
- https://cims.nyu.edu/dynamic/calendars/seminars/

computational-mathematics-and-scientific-computing-seminar/



# Computational Mathematics and Scientific Computing Seminar

The Computational Mathematics and Scientific Computing seminar will be in person at the usual time on Fridays at 10am unless otherwise noted. In rare cases we have zoom talks and then the zoom link to join the seminar will be sent to the seminar mailing list. Contact the organizers Georg Stacler and Benjamin Peherstorfer if you haven't received the Zoom link.

To subscribe to the CMSC seminar mailing list, please see here.

Seminar Organizer(s): Georg Stadler and Benjamin Peherstorfer

#### Fall 2023 -

#### **Upcoming Events**

Friday, September 15, 2023

#### Modeling and Simulation meeting

- ► Thursdays at 12:30, WWH 1302
- Student-driven meeting on topics related to computational mathematics
- https://math.nyu.edu/dynamic/research/pages/ research-and-training-group-mathematical-modeling-and-simulation/ activities/group-meeting/

#### Modeling and Simulation meeting

- ► Thursdays at 12:30, WWH 1302
- Student-driven meeting on topics related to computational mathematics
- https://math.nyu.edu/dynamic/research/pages/ research-and-training-group-mathematical-modeling-and-simulation/ activities/group-meeting/

#### Mathematics colloquium

- Mondays at 3:45, WWH 1302
- https:

//math.nyu.edu/dynamic/calendars/seminars/mathematics-colloquium/

#### Modeling and Simulation meeting

- ► Thursdays at 12:30, WWH 1302
- Student-driven meeting on topics related to computational mathematics
- https://math.nyu.edu/dynamic/research/pages/ research-and-training-group-mathematical-modeling-and-simulation/ activities/group-meeting/

#### Mathematics colloquium

- Mondays at 3:45, WWH 1302
- https:

//math.nyu.edu/dynamic/calendars/seminars/mathematics-colloquium/

#### Math and data

- Thursdays at 2.00, Auditorium Hall 150, Center for Data Science, NYU, 60 5th ave.
- Interface of Applied Mathematics, Statistics and Machine Learning
- https://mad.cds.nyu.edu/seminar/



Organization

Conditioning of problems

Stability of algorithms

Representing real numbers

#### Condition of a problem

Consider a generic problem: given F and data/input x, find output y such that

F(x,y)=0

Let's assume there is a unique solution so that we can write

$$y=f(x)\,,$$

for a function f in the following

- Well-posed: Unique solution + If we perturb the input x a little bit, the solution y gets perturbed by a small amount.
- Otherwise, the problem is ill-posed; no numerical method can help with that. (What should we do in such a situation?

#### Condition of a problem

Consider a generic problem: given F and data/input x, find output y such that

F(x,y)=0

Let's assume there is a unique solution so that we can write

$$y=f(x),$$

for a function f in the following

- Well-posed: Unique solution + If we perturb the input x a little bit, the solution y gets perturbed by a small amount.
- Otherwise, the problem is ill-posed; no numerical method can help with that. (What should we do in such a situation? ~> change the problem)

Condition of a problem (visualization)



Condition of a problem (intersecting lines)

Consider the problem of determining the intersection point of two lines f: (g, h) hos & intersection point in lines

# Condition of a problem (cont'd)

- Terms such as "little bit" and a "small amount" already point to that we need to measure something
- $\blacktriangleright$  Therefore, we assume the map f is given as

 $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$ 

and we are interested in the norm  $\|\cdot\|$ 

► The input error is then

$$\|x - \hat{x}\| \le \delta$$
 (absolute)  $\|x - \hat{x}\| \le \delta \|x\|$  (relative)

► Correspondingly we measure the output error f(x) - f(x̂) in || · || (we could also have looked at a componentwise error)

#### Condition of a problem (cont'd)

Absolute condition number at x is

$$\kappa_{\mathsf{abs}} = \lim_{\delta \to 0} \sup_{\|x - \hat{x}\| \le \delta} \frac{\|f(x) - f(\hat{x})\|}{\|x - \hat{x}\|}$$

Relative condition number at x is

$$\kappa_{\mathsf{rel}} = \lim_{\delta \to 0} \sup_{\|x - \hat{x}\| \le \delta} \frac{\|f(x) - f(\hat{x})\| / \|f(x)\|}{\|x - \hat{x}\| / \|x\|}$$

► If *f* is differentiable in *x*, then

$$\kappa_{\mathsf{abs}} = \|f'(x)\| \qquad \kappa_{\mathsf{rel}} = \frac{\|x\|}{\|f(x)\|} \|f'(x)\|,$$

where ||f'(x)|| is the norm of the Jacobian f'(x) in the operator norm

$$||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||} = \sup_{||x||=1} ||Ax||$$

Another way to interpret the condition number at x is via the bounds

$$\|f(\hat{x}) - f(x)\| \le \kappa_{\mathsf{abs}} \|\hat{x} - x\|$$

and

$$\frac{\|f(\hat{x}) - f(x)\|}{\|f(x)\|} \le \kappa_{\mathsf{rel}} \frac{\|\hat{x} - x\|}{\|x\|},$$

for infinitesimal  $\delta$  (or  $\hat{x} \rightarrow x$ )

Condition of a problem (cont'd)



# Condition of a problem (cont'd)

- If  $\kappa_{rel} \sim 1$ , then the problem is well conditioned: If the relative error in the data/input is small, then the relative error in the answer/output is similarly small
- If  $\kappa_{\rm rel} \gg 1$ ,
## Condition of a problem (cont'd)

- ▶ If  $\kappa_{rel} \sim 1$ , then the problem is well conditioned: If the relative error in the data/input is small, then the relative error in the answer/output is similarly small
- If  $\kappa_{rel} \gg 1$ , then the problem is poorly conditioned: Small relative input error can lead to large relative output error
- ▶ If  $\kappa_{rel}$  (and  $\kappa_{abs}$ ) do not exist, then the problem is ill conditioned.
- What is poorly conditioned depends on desired accuracy: if the input accuracy is low but we expect a high output accuracy, then problems are quickly poorly conditioned. If we are happy with a less accurate output, we might consider the problem still well conditioned.
- Sometimes, the possibly large error in the output does not matter and so we can solve poorly conditioned problems (think of early design stages, rapid prototyping, etc); but we should be very much aware of the condition of the problem.

Condition of a problem: Example Condition number of "oddition" linear map f: In -> In , (a,b) +> f(a,b) = a+b derivative  $f'(o_1b) = [1, 1] \in \mathbb{R}^{1\times 2}$ choose (-norn ll.ll, on IR [[ ] [ ] [ ] ] = [ ] + [ ] + [ ] ]

Induced operator norm is more colorn sum  

$$\| f'(o_{1}b)\|_{1} = \| [1, 1]\|_{1} = \|$$

$$\mathbb{E}_{obs} = \| f'(o_{1}b)\|_{1} = \|$$

$$\mathbb{E}_{rel} = \frac{\| \times \|}{\| f(x) \|} \| f'(x)\|_{1} = \frac{10|+16|}{(0+6)|} \cdot \|$$

$$0, b \text{ have the some sign}$$

$$if 0.b = 0, \quad \mathbb{E}_{rel} = (-) \text{ perfect}$$

$$0, b = -(0+e), \quad 0.e \in \mathbb{Z}$$

$$\mathbb{E}_{rel} = \frac{0+0+e}{(0-(0+e))|} = \frac{20-1e}{e} > |$$

$$\sim \text{ poonly conditioned}$$

l

# Numerical Methods I MATH-GA 2010.001/CSCI-GA 2420.001

Benjamin Peherstorfer Courant Institute, NYU

Based on slides by G. Stadler and A. Donev

# Today

#### Last time

Condition of problems

#### Today

- More on condition of problems
- Stability of algorithms
- Matlab recap

#### Announcements

► Homework 1 was posted last week; is due in two weeks Mon, Sep 23 *before class* 

## Recap: Condition of a problem

Consider a generic problem: given F and data/input x, find output y such that

F(x,y)=0

Let's assume there is a unique solution so that we can write

$$y=f(x)$$
,

for a function f in the following

- Well-posed: Unique solution + If we perturb the input x a little bit, the solution y gets perturbed by a small amount.
- Otherwise, the problem is ill-posed; no numerical method can help with that. (What should we do in such a situation?

## Recap: Condition of a problem

Consider a generic problem: given F and data/input x, find output y such that

F(x,y)=0

Let's assume there is a unique solution so that we can write

 $y=f(x)\,,$ 

for a function f in the following

- Well-posed: Unique solution + If we perturb the input x a little bit, the solution y gets perturbed by a small amount.
- Otherwise, the problem is ill-posed; no numerical method can help with that. (What should we do in such a situation? ~> change the problem)

Absolute condition number at x is

$$\kappa_{\mathsf{abs}} = \lim_{\delta \to 0} \sup_{\|x - \hat{x}\| \le \delta} \frac{\|f(x) - f(\hat{x})\|}{\|x - \hat{x}\|}$$

Relative condition number at x is

$$\kappa_{\mathsf{rel}} = \lim_{\delta \to 0} \sup_{\|x - \hat{x}\| \le \delta} \frac{\|f(x) - f(\hat{x})\| / \|f(x)\|}{\|x - \hat{x}\| / \|x\|}$$

• If f is differentiable in x, then

$$\kappa_{\mathsf{abs}} = \|f'(x)\| \qquad \kappa_{\mathsf{rel}} = \frac{\|x\|}{\|f(x)\|} \|f'(x)\|,$$

where ||f'(x)|| is the norm of the Jacobian f'(x) in the operator norm

$$||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||} = \sup_{||x||=1} ||Ax||$$



- If  $\kappa_{rel} \sim 1$ , then the problem is well conditioned: If the relative error in the data/input is small, then the relative error in the answer/output is similarly small
- If  $\kappa_{\rm rel} \gg 1$ ,

- If  $\kappa_{rel} \sim 1$ , then the problem is well conditioned: If the relative error in the data/input is small, then the relative error in the answer/output is similarly small
- If  $\kappa_{rel} \gg 1$ , then the problem is poorly conditioned: Small relative input error can lead to large relative output error
- ▶ If  $\kappa_{rel}$  (and  $\kappa_{abs}$ ) do not exist, then the problem is ill conditioned.
- What is poorly conditioned depends on desired accuracy: if the input accuracy is low but we expect a high output accuracy, then problems are quickly poorly conditioned. If we are happy with a less accurate output, we might consider the problem still well conditioned.
- Sometimes, the possibly large error in the output does not matter and so we can solve poorly conditioned problems (think of early design stages, rapid prototyping, etc); but we should be very much aware of the condition of the problem.

| Condition<br>Constitio | of a problem: Example<br>n number of MatVec: XHDAX |
|------------------------|----------------------------------------------------|
| f(x) =                 | Ax                                                 |
| f'(x)                  | = A                                                |
| kabs =                 | $\  f'(x) \  = \  A \ $                            |
| Erel =                 | $\frac{1}{\ A \times \ } \ A\ $                    |
| norm                   | plays a critical role!                             |

if we take II. II a conjust 
$$x_{i}$$
 then greater horn  

$$||A||_{2} = c_{inst}(A)$$
Singnoor values fell us by how much  
a value gets a strathed' by matrix  
I perturbation  
Condition number of solving Ginear systems  
 $Ax = b$   
(1) Problem: fix  $A_{i}$  consider  $b \mapsto A^{-1}b$   
 $f: ||R^{n} \rightarrow ||R^{n}$ ,  $f(b) = A^{-1}b$   
 $di(formtisble$   
 $g_{abs} = ||f'(b)|| = (||A^{-1}||)$   
 $g_{abs} = ||f'(b)|| = (||A^{-1}||)$   
 $g_{rel} = \frac{||Ax||}{||A^{-1}b||} ||A^{-1}||$   
 $if A^{-1}b = x$   
 $g_{rel} = \frac{||Ax||}{||x||} (||A^{-1}|| \leq \frac{||A|| ||x||}{||x||} \cdot ||A^{-1}|| = g(A)$   
 $a condition number of matrix  $A^{n}$$ 

If we take 
$$\|\cdot\|_2$$
 on input  $b$ , then operator horn  
 $\||A^{-i}||_2 = \operatorname{Funot}(A^{-i}) = \frac{1}{\operatorname{Funit}(A)}$ 



Organization

Conditioning of problems

Stability of algorithms

Representing real numbers

Is  $\tilde{f}(x)$ , computed with an algorithm  $\tilde{f}$ , a good approximation of f(x)?

We are happy if the error due to the algorithm

 $\tilde{f}(x) - f(x)$ 

lies within reasonable bounds of the error due to the input

 $f(\tilde{x}) - f(x)$ 



Stability: Stability

We say that an algorithm  $\tilde{f}$  for a problem f is stable if for each  $x \in E$  the error

$$\frac{\|\tilde{f}(x) - f(\tilde{x})\|}{\|f(\tilde{x})\|}$$

is small for  $\tilde{x}$  with small

$$\frac{\|\tilde{x} - x\|}{\|x\|}$$

A stable algorithm gives nearly the right answer  $(\tilde{f}(x))$  to nearly the right question  $(f(\tilde{x}))$ .

In forward error analysis one tries to establish stability by showing error bounds on the result in each operation in the algorithm in order to bound the error in the end result

### Stability: Backward stability

Backward stability: Pass the errors of the algorithm back and interpret as input errors.

An algorithm  $\tilde{f}$  for a problem f is backward stable if for each  $x \in X$  we have  $\tilde{f}(x) = f(\tilde{x})$  for an  $\tilde{x}$  with

$$\frac{\|\tilde{x} - x\|}{\|x\|}$$

#### small

This is a tightening of the definition of stability of the previous slide: A backward stable algorithm gives exactly the right answer to nearly the right question.

In backward error analysis one calculates, for a given output, how much one would need to perturb the input in order for the answer to be exact.



algorithmic error is interpreted as injul error

### Errors and error analyses

Relative errors:

$$\frac{\|x - x_n\|}{\|x\|}$$

Absolute error:

 $||x - x_n||$ 

- Used for theoretical arguments
- In numerical practice: exact solution is not available, so these errors must be approximated.

A priori analysis is performed before a specific solution is computed. Typically, the analysis is performed for a large class of possible inputs. A posteriori analysis bounds the error for a specific numerical solution  $\hat{x}$  (computed with a specific numerical method), and uses, e.g., residuals for the a posteriori analysis.

#### Computational errors

Numerical algorithms try to control or minimize, rather then eliminate, the various computational errors:

- Approximation error due to replacing the computational problem with an easier-to-solve approximation. Also called discretization error for ODEs/PDEs.
- Truncation error due to replacing limits and infinite sequences and sums by a finite number of steps. Closely related to approximation error.
- **Roundoff error** due to finite representation of real numbers and arithmetic on the computer,  $x \neq \hat{x}$ .
- Propagated error due to errors in the data from user input or previous calculations in iterative methods.
- **Statistical error** in stochastic calculations such as Monte Carlo calculations.

## Intuition: Stability, Consistency, Convergence

Instead of solving F(x, y) = 0 directly, many numerical methods generate a solution sequentially

$$ar{F}(x_i, x_{i-1}) = 0, \qquad i = 1, 2, 3, \dots,$$

with  $x_0 = x$  and sequence  $(x_i)$  converging to y

Additionally, we use a numerical method  $\hat{F}_n$  instead of  $\bar{F}$ 

$$\hat{F}_n(\hat{x}_i, \hat{x}_{i-1}) = 0, \qquad i = 1, 2, 3, \ldots,$$

with method  $\hat{F}_n$  depending on a parameter *n*: Increasing *n* typically means investing more computational time for a hopefully more accurate result

Consistent: A numerical method is consistent if the local error made at each step vanishes for  $n \to \infty$ 

$$\hat{F}_n(x_i, x_{i-1}) \to \bar{F}(x_i, x_{i-1}) \qquad (n \to \infty)$$

This is one of the most basic requirements that we have on a numerical approach. If it is not consistent, it means we can invest more computational time (more effort) and certainly won't get lower errors.

Stability: Because we use  $\hat{F}_n$  instead of  $\overline{F}$ , in each iteration we make a local error (see above). We have  $\hat{x}_i$  at iteration *i* rather than  $x_i$ . Stability means here that the local error can be amplified only by a constant that is independent of *n*.

Convergence: If the numerical error can be made arbitrarily small by increasing the computational effort  $n \rightarrow \infty$ 

consistency + stability  $\rightarrow$  convergence

A concrete and formal description of these concepts for finite difference approximations can be found in Chapter 2 of LeVeque's textbook on finite difference methods.

### Speed of convergence

Let  $x_n \to x$  in a normed space  $X, \|\cdot\|$  for  $n \to \infty$ .

$$\lim_{n\to\infty}\frac{\|x-x_{n+1}\|}{\|x-x_n\|^q} < C$$

with C > 0 and  $q \ge 1$ 

• Linear convergence: q = 1 and C < 1

$$\|x-x_{n+1}\|\leq C\|x-x_n\|$$

• Quadratic convergence: q = 2

$$||x - x_{n+1}|| \le C ||x - x_n||^2$$

- An algorithm will produce the correct answer if it is convergent, but...
- Not all convergent methods are equal. We can differentiate them further based on:

- An algorithm will produce the correct answer if it is convergent, but...
- Not all convergent methods are equal. We can differentiate them further based on:
- Accuracy How much computational work do you need to expand to get an answer to a desired relative error?

- An algorithm will produce the correct answer if it is convergent, but...
- Not all convergent methods are equal. We can differentiate them further based on:
- Accuracy How much computational work do you need to expand to get an answer to a desired relative error?
- Robustness Does the algorithm work (equally) well for all (reasonable) input data d?

- An algorithm will produce the correct answer if it is convergent, but...
- Not all convergent methods are equal. We can differentiate them further based on:
- Accuracy How much computational work do you need to expand to get an answer to a desired relative error?
- Robustness Does the algorithm work (equally) well for all (reasonable) input data d?
- Efficiency How fast does the implementation produce the answer? This depends on the algorithm, on the computer, the programming language, the programmer, etc. (more next class)

- An algorithm will produce the correct answer if it is convergent, but...
- Not all convergent methods are equal. We can differentiate them further based on:
- Accuracy How much computational work do you need to expand to get an answer to a desired relative error?
- Robustness Does the algorithm work (equally) well for all (reasonable) input data d?
- Efficiency How fast does the implementation produce the answer? This depends on the algorithm, on the computer, the programming language, the programmer, etc. (more next class)
- Difficulty How easy is it to implement and apply in practice? Do I need to spend 5 years of my time to implement it or can I code it up in 2 lines of code?

# Matlab peculiarities [Following slides: A. Donev]

- MATLAB is an interpreted language, meaning that commands are interpreted and executed as encountered. MATLAB caches some stuff though...
- Many of MATLAB's intrinsic routines are however compiled and optimized and often based on well-known libraries (BLAS, LAPACK, FFTW, etc.).
- Variables in scripts/worspace are global and persist throughout an interactive session (use *whos* for info and *clear* to clear workspace).
- Every variable in MATLAB is, unless specifically arranged otherwise, a matrix, **double precision float** if numerical.
- Vectors (column or row) are also matrices for which one of the dimensions is 1.
- **Complex arithmetic** and complex matrices are used where necessary.

# Matrices [Slide: A. Donev]

```
>> format compact; format long
>> x=-1; % A scalar that is really a 1x1 matrix
>> whos('x')
                        Bytes Class Attributes
      Size
 Name
                               double
          1 \times 1
                            8
 Х
>> y=sqrt(x) % Requires complex arithmetic
                   y =
>> whos('y')
 Name
      Size
                         Bytes Class Attributes
                           16 double complex
          1 \times 1
 У
>> size(x)
               1
ans = 1
>> x(1)
ans = -1
>> x(1,1)
ans = -1
>> x(3)=1;
>> x
x = -1
             0
                   1
```

42 / 102

# Vectorization/Optimization [Slide: A. Donev]

- MATLAB uses dynamic memory management (including garbage collection), and matrices are re-allocated as needed when new elements are added.
- It is however much better to **pre-allocate space** ahead of time using, for example, *zeros*.
- The **colon notation** is very important in accessing array sections, and x is different from x(:).
- Avoid for loops unless necessary: Use array notation and intrinsic functions instead.
- To see how much CPU (computing) time a section of code took, use *tic* and *toc* (but beware of timing small sections of code).
- MATLAB has built-in **profiling tools** (*help profile*).

### Pre-allocation [Slide: A. Donev]

format compact; format long
clear; % Clear all variables from memory

```
N=100000; % The number of iterations
```

```
% Try commenting this line out:
f=zeros(1,N); % Pre-allocate f
```

```
tic ;
f(1)=1;
for i=2:N
    f(i)=f(i-1)+i;
end
elapsed=toc;
```

```
fprintf('The_result_is_f(%d)=%g,_computed_in_%g_s\n', ...
N, f(N), elapsed);
```

Vectorization [Slide: A. Donev]

```
function vect(vectorize)
   N=1000000; % The number of elements
   x=linspace(0,1,N); % Grid of N equi-spaced points
   tic:
   if (vectorize) % Vectorized
      x = sqrt(x);
   else % Non-vectorized
      for i=1:N
         \times(i)=sqrt(\times(i));
      end
   end
   elapsed=toc;
```

fprintf('CPU\_time\_for\_N=%d\_is\_%g\_s\n', N, elapsed);
end
Matlab examples [Slide: A. Donev]

```
>> fibb % Without pre-allocating
The result is f(100000)=5.00005e+09, computed in 6.53603 s
```

>> fibb % Pre-allocating The result is f(100000)=5.00005e+09, computed in 0.000998 s

```
>> vect(0) % Non-vectorized
CPU time for N=1000000 is 0.074986 s
```

>> vect(1) % Vectorized — don't trust the actual number CPU time for N=1000000 is 0.002058 s

# Vectorization/Optimization [Slide: A. Donev]

- Recall that everything in MATLAB is a double-precision matrix, called **array**.
- Row vectors are just matrices with first dimension 1. Column vectors have row dimension 1. Scalars are  $1 \times 1$  matrices.
- The syntax x' can be used to construct the **conjugate transpose** of a matrix.
- The **colon notation** can be used to select a subset of the elements of an array, called an **array section**.
- The default arithmetic operators, +, -, \*, / and ^ are matrix addition/subtraction/multiplication, linear solver and matrix power.
- If you prepend a **dot before an operator** you get an **element-wise operator** which works for arrays of the same shape.

# Matrices [Slide: A. Donev]

>> size(x) % Shape of the matrix x ans =  $2 \quad 3$ 

>> 
$$y=x(:)$$
 % All elements of y  
 $y = 1$  4 2 5 3 6  
>>  $size(y)$   
 $ans = 6$  1  
>>  $x(1,1:3)$   
 $ans = 1$  2 3  
>>  $x(1:2:6)$   
 $ans = 1$  2 3

# Matrices [Slide: A. Donev]

>> sum(x) ans = 9 5 7 >> sum(x(:)) ans = 21 >> z=1i; % Imaginary unit >> y=x+zy = 1.0000 + 1.0000i 2.0000 + 1.0000i 3.0000 + 1.0000i4.0000 + 1.0000i 5.0000 + 1.0000i 6.0000 + 1.0000i>> y' ans =1.0000 - 1.0000i 4.0000 - 1.0000i2.0000 - 1.0000 i 5.0000 - 1.0000 i 3.0000 - 1.0000i 6.0000 - 1.0000i

# Matrices [Slide: A. Donev]

```
>> x * y
??? Error using ==> mtimes
Inner matrix dimensions must agree.
>> x . * y
ans =
   1.0000 + 1.0000i 4.0000 + 2.0000i 9.0000 + 3.0000i
  16.0000 + 4.0000i 25.0000 + 5.0000i 36.0000 + 6.0000i
>> x * y'
ans =
  14.0000 - 6.0000i 32.0000 - 6.0000i
  32.0000 -15.0000i 77.0000 -15.0000i
>> x'*y
ans =
  17.0000 + 5.0000i 22.0000 + 5.0000i 27.0000 + 5.0000i
  22.0000 + 7.0000i
                    29.0000 + 7.0000i 36.0000 + 7.0000i
  27.0000 + 9.0000i 36.0000 + 9.0000i 45.0000 + 9.0000i
```

# Coding guidelines [Slide: A. Donev]

- Learn to reference the **MATLAB help**: Including reading the examples and "fine print" near the end, not just the simple usage.
- Indendation, comments, and variable naming make a big difference! Code should be readable by others.
- Spending a few extra moments on the code will pay off when using it.
- Spend some time learning how to **plot in MATLAB**, and in particular, how to plot with different symbols, lines and colors using *plot, loglog, semilogx, semilogy.*
- Learn how to **annotate plots**: *xlim, ylim, axis, xlabel, title, legend.* The intrinsics *num2str* or *sprintf* can be used to create strings with embedded parameters.
- Finer controls over fonts, line widths, etc., are provided by the intrinsic function *set*...including using the LaTex interpreter to typeset mathematical notation in figures.

# Today

#### Last time

- Condition of problems
- Stability of algorithms

#### Today

- Float-point numbers in IEEE format
- Rounding, propagation of errors, and cancellation
- Truncation errors

#### Announcements

Homework 1 was posted last week; is due next week Mon, Sep 23 before class

## Recap: Condition of a problem

- Terms such as "little bit" and a "small amount" already point to that we need to measure something
- $\blacktriangleright$  Therefore, we assume the map f is given as

 $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$ 

and we are interested in the norm  $\|\cdot\|$ 

The input error is then

$$\|x - \hat{x}\| \le \delta$$
 (absolute)  $\|x - \hat{x}\| \le \delta \|x\|$  (relative)

► Correspondingly we measure the output error f(x) - f(x̂) in || · || (we could also have looked at a componentwise error)

Absolute condition number at x is

$$\kappa_{\mathsf{abs}} = \lim_{\delta \to 0} \sup_{\|x - \hat{x}\| \le \delta} \frac{\|f(x) - f(\hat{x})\|}{\|x - \hat{x}\|}$$

Relative condition number at x is

$$\kappa_{\mathsf{rel}} = \lim_{\delta \to 0} \sup_{\|x - \hat{x}\| \le \delta} \frac{\|f(x) - f(\hat{x})\| / \|f(x)\|}{\|x - \hat{x}\| / \|x\|}$$

► If *f* is differentiable in *x*, then

$$\kappa_{\mathsf{abs}} = \|f'(x)\| \qquad \kappa_{\mathsf{rel}} = \frac{\|x\|}{\|f(x)\|} \|f'(x)\|,$$

where ||f'(x)|| is the norm of the Jacobian f'(x) in the operator norm

$$||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||} = \sup_{||x||=1} ||Ax||$$



- If  $\kappa_{rel} \sim 1$ , then the problem is well conditioned: If the relative error in the data/input is small, then the relative error in the answer/output is similarly small
- If  $\kappa_{\rm rel} \gg 1$ ,

- ▶ If  $\kappa_{rel} \sim 1$ , then the problem is well conditioned: If the relative error in the data/input is small, then the relative error in the answer/output is similarly small
- If  $\kappa_{rel} \gg 1$ , then the problem is poorly conditioned: Small relative input error can lead to large relative output error
- ▶ If  $\kappa_{rel}$  (and  $\kappa_{abs}$ ) do not exist, then the problem is ill conditioned.
- What is poorly conditioned depends on desired accuracy: if the input accuracy is low but we expect a high output accuracy, then problems are quickly poorly conditioned. If we are happy with a less accurate output, we might consider the problem still well conditioned.
- Sometimes, the possibly large error in the output does not matter and so we can solve poorly conditioned problems (think of early design stages, rapid prototyping, etc); but we should be very much aware of the condition of the problem.

## Recap: Condition number of a matrix

Consider a matrix  $A \in \mathbb{R}^{n \times n}$ . Its condition number is

 $\kappa(A) = \|A\| \|A^{-1}\|$ 

Widely used is the  $\|\cdot\|_2$  norm and then

$$\kappa_2(A) = \|A\|_2 \|A^{-1}\|_2 = rac{\sigma_{\max}(A)}{\sigma_{\min}(A)}$$

with the maximal and minimal singular value  $\sigma_{max}(A)$  and  $\sigma_{min}(A)$  of A

Consider a system of linear equations Ax = b. Then, the problems  $A \mapsto A^{-1}b$  and  $b \mapsto A^{-1}b$  have relative condition numbers

$$\kappa_{\mathsf{rel}} \leq \kappa(A)$$

### Recap: Backward stability

Backward stability: Pass the errors of the algorithm back and interpret as input errors.

An algorithm  $\tilde{f}$  for a problem f is backward stable if for each  $x \in X$  we have  $\tilde{f}(x) = f(\tilde{x})$  for an  $\tilde{x}$  with

$$\frac{\|\tilde{x} - x\|}{\|x\|}$$

small

A backward stable algorithm gives exactly the right answer to nearly the right question.

In backward error analysis one calculates, for a given output, how much one would need to perturb the input in order for the answer to be exact.

# Recap: Backward stability (cont'd)



Representing real numbers

#### Representing real numbers

- Computers represent everything using bit strings, i.e., integers in base 2. A finite number of integers can thus be exactly represented. But not real numbers! This leads to roundoff errors.
- Assume we have N digits to represent real numbers on a computer that can represent integers using a given number system, say decimal for human purposes.
- Fixed-point representation of numbers

$$x = (-1)^s \cdot [a_{N-2}a_{N-3}\cdots a_k.a_{k-1}\cdots a_0]$$

has a problem of representing either small or larger numbers because the decimal point . is fixed at position k

What could we do?

## Floating-point numbers

Instead, let's use floating-point representation

$$x = (-1)^{s} \cdot [0 \cdot a_1 a_2 \cdots a_t] \cdot \beta^{e} = (-1)^{s} \cdot m \cdot \beta^{e-t}$$

similar to the common scientific number representation

$$0.1156 \cdot 10^1 = 1156 \cdot 10^{-3} \qquad t = 4$$

► A floating-point number in base β is represented using one sign bit s = 0 or 1, a t-digit integer mantissa

$$0 \leq m = [a_1 a_2 \cdots a_t] \leq \beta^t - 1$$

and an integer exponent  $L \leq e \leq U$ 

• Computers today use binary numbers and so  $\beta = 2$ 

### IEEE 754 standard

- Formats for representing and encoding real numbers using bit strings (single and double precision).
- Rounding algorithms for performing accurate arithmetic operations (e.g., addition, subtraction, division, multiplication) and conversions (e.g., single to double precision).
- Exception handling for special situations (e.g., division by zero and overflow).



Single precision IEEE floating-point numbers have the standardized storage format:

sign + power + fraction

with

$$N_s + N_p + N_f = 1 + 8 + 23 = 32$$
 bits

and are interpreted as

$$x = (-1)^s \cdot 2^{p-127} \cdot (1.f)_2$$

- Sign s = 1 for negative numbers
- ▶ Power  $1 \le p \le 254$  determines the exponent
- Fractional part of the mantissa f
- ▶ single in Matlab, float in C/C++, REAL in Fortran

#### IEEE representation example

Take the number  $x = 2752 = 0.2752 \cdot 10^4$ .

•

1

•

,

$$[138]_{10} = (10001010)_{2}$$

$$x = (-1)^{\circ} 2^{(10001010)_{2} - \frac{127}{2}} \cdot (1.01011)_{2}$$

$$x = [s|p|f] = [0|10001010[010110...0]$$

$$= (452c000)_{16}$$

#### IEEE representation example

Take the number  $x = 2752 = 0.2752 \cdot 10^4$ . Converting 2752 to the binary number system

$$\begin{aligned} x &= 2^{11} + 2^9 + 2^7 + 2^6 = (101011000000)_2 = 2^{11} \cdot (1.01011)_2 \\ &= (-1)^0 2^{138 - 127} \cdot (1.01011)_2 = (-1)^0 2^{(10001010)_2 - 127} \cdot (1.01011)_2 \end{aligned}$$

On the computer:

 $\begin{aligned} x &= [s \mid p \mid f] \\ &= [0 \mid 100, 0101, 0 \mid 010, 1100, 0000, 0000, 0000] \\ &= (452c0000)_{16} \end{aligned}$ 

=(452c0000) 16

65 / 91

## Double precision IEEE numbers

Double precision IEEE numbers (default in Matlab, double in C/C++) follow the same principle but use 64 bits to give higher precision and range

 $N_s + N_p + N_f = 1 + 11 + 52 = 64$  bits  $x = (-1)^s \cdot 2^{p-1023} \cdot (1.f)_2$ 

Even higher (extended) precision formats are not really standardized or widely implemented/used.

There is also software-emulated variable precision arithmetic in, e.g., Maple

The extremal exponent values have special meaning (here single precision)

| value              | power p | fraction <i>f</i> |
|--------------------|---------|-------------------|
| $\pm$ 0            | 0       | 0                 |
| $\pm\infty$        | 255     | 0                 |
| Not a number (NaN) | 255     | > 0               |

### Important facts about floating-point numbers

- Not all real numbers x can be represented exactly as a floating-point number. Instead, they must be *rounded* to the nearest floating point number  $\hat{x} = fl(x)$
- Floating-point numbers have a relative rounding error that is smaller than the machine precision or roundoff-unit u

$$\frac{|\hat{x} - x|}{|x|} \le u = 2^{-(N_f + 1)} = \begin{cases} 2^{-24} \sim 6.0 \cdot 10^{-8} \,, & \text{for single precision} \\ 2^{-53} \sim 1.1 \cdot 10^{-16} \,, & \text{for double precision} \,. \end{cases}$$

- Often the machine precision/roundoff-unit is denoted as  $\epsilon$
- The rule of thumb is that single precision gives 7-8 digits of precision and double 16 digits.
- There is a smallest and largest possible number due to limit for the exponent.

Two axioms

Ignoring over- and underflow, we assume the following two "axioms" to hold for computers we work with:

1. For all  $x \in \mathbb{R}$ , there exists  $\epsilon$  with  $|\epsilon| \leq u$  (roundoff unit) such that

$$\mathsf{fl}(x) = x(1+\epsilon)\,,$$

where  $fl(\cdot)$  rounds to the closest floating point approximation.

$$x \circledast y = \mathsf{fl}(x \ast y)$$

Axiom 1 and 2 imply that for two floating-point numbers x, y, there exists  $\epsilon$  with  $|\epsilon| \le u$  such that

$$x \circledast y = (x \ast y)(1 + \epsilon).$$

Computing with floating point values may lead to exceptions, which may halt the program:

Computing with floating point values may lead to exceptions, which may halt the program:

**Divide-by-zero**: if the result is  $\pm \infty$ , e.g., 1/0

Computing with floating point values may lead to exceptions, which may halt the program:

- **Divide-by-zero**: if the result is  $\pm \infty$ , e.g., 1/0
- **Invalid**: If the result is a *NaN*, e.g., taking  $\sqrt{-1}$  (note that Matlab supports complex numbers...)

```
1: >>> x = math.sqrt(-1)
2: Traceback (most recent call last):
3: File "<stdin>", line 1, in <module>
4: ValueError: math domain error
```

Computing with floating point values may lead to exceptions, which may halt the program:

- **Divide-by-zero**: if the result is  $\pm \infty$ , e.g., 1/0
- **Invalid**: If the result is a *NaN*, e.g., taking  $\sqrt{-1}$  (note that Matlab supports complex numbers...)

```
1: >>> x = math.sqrt(-1)
2: Traceback (most recent call last):
3: File "<stdin>", line 1, in <module>
4: ValueError: math domain error
```

Overflow: If the result is too large to be represented, e.g., adding two numbers, each on the order of *realmax* 

Computing with floating point values may lead to exceptions, which may halt the program:

- **Divide-by-zero**: if the result is  $\pm \infty$ , e.g., 1/0
- **Invalid**: If the result is a *NaN*, e.g., taking  $\sqrt{-1}$  (note that Matlab supports complex numbers...)

```
1: >>> x = math.sqrt(-1)
2: Traceback (most recent call last):
3: File "<stdin>", line 1, in <module>
4: ValueError: math domain error
```

- Overflow: If the result is too large to be represented, e.g., adding two numbers, each on the order of *realmax*
- Underflow: If the result is too small to be represented, e.g., dividing a number close to realmin by a large number.

## Avoiding overflow

Numerical software needs to be careful about avoiding exceptions:

Mathematically equivalent expressions are not necessarily computationally equivalent!

For example, computing  $\sqrt{x^2 + y^2}$  may lead to overflow in computing  $x^2 + y^2$  even though the result does not overflow

Matlab's hypot function guards against this:

$$\sqrt{x^2 + y^2} = |x|\sqrt{1 + \left(\frac{y}{x}\right)^2}$$
 ensuring that  $|x| > |y|$ 

works correctly

These kind of careful constructions may have higher computational cost (more CPU operations) or make roundoff errors worse.

# Floating-point in practice

- Most scientific software uses double precision to avoid range and accuracy issues with single precision (better be safe then sorry).
   Single precision may offer speed/memory/vectorization advantages however (e.g. GPU computing).
- **Do not compare floating point numbers** (especially for loop termination), or more generally, do not rely on logic from pure mathematics.
- Optimization, especially in compiled languages, can rearrange terms or perform operations using **unpredictable** alternate forms (e.g., wider internal registers).

Using parenthesis helps, e.g. (x + y) - z instead of x + y - z, but does not eliminate the problem.

• Library functions such as sin and In will typically be computed almost to full machine accuracy, but do not rely on that for special/complex functions.

## Propagation of errors

- Assume that we are calculating something with numbers that are not exact, e.g., a rounded floating-point number x̂ versus the exact real number x.
- ► For IEEE representations, recall that

$$\frac{|\hat{x} - x|}{|x|} \le u = 2^{-(N_f + 1)} = \begin{cases} 2^{-24} \sim 6.0 \cdot 10^{-8} \,, & \text{for single precision} \\ 2^{-53} \sim 1.1 \cdot 10^{-16} \,, & \text{for double precision} \,. \end{cases}$$

▶ In general, the *absolute error*  $\delta x = \hat{x} - x$  may have contributions from each of the different types of error (roundoff, truncation, propagated, statistical).

Assume we have an estimate or bound for the relative error

$$\left|\frac{\delta x}{x}\right| \lesssim \epsilon_x \ll 1$$

based on some analysis, e.g., for roundoff error the IEEE standard determines  $\epsilon_x = u$  (roundoff-unit)

# Propagation of errors

How does the relative error change (propagate) during numerical calculations?
$$\frac{\Pr \circ \gamma \circ \gamma \circ \gamma \circ \gamma}{mu(\text{figlication} / \exists \hat{v} \text{vision})}$$

$$E_{XY} = \left| \frac{(x + \delta x)(y + \delta y) - x \gamma}{x \gamma} \right|$$

$$= \left| \frac{x \gamma}{x \gamma} + \frac{\delta x \gamma}{x \gamma} + \frac{x \delta \gamma}{x \gamma} + \frac{\delta x \delta \gamma}{x \gamma} - \frac{\chi \gamma}{x \gamma} \right|$$

$$= \left| \frac{\delta x}{x} + \frac{\delta \gamma}{\gamma} + \frac{\delta x \delta \gamma}{x \gamma} \right|$$

Now use  

$$\frac{\left|\frac{S_{X}}{X}\right| \leq 1}{\left|\frac{S_{Y}}{X}\right| \leq 1}, \quad \left|\frac{S_{Y}}{Y}\right| \leq 1 \\
\left|\frac{S_{X}S_{Y}}{XY}\right| \leq mot \quad \left|\frac{S_{Y}}{X}\right|, \quad \left|\frac{S_{Y}}{Y}\right|\right\}$$

Addition / subtraction  
this is more dergerous  
=> (eod to codestropic errors  
Example  

$$X = I , Y = 0.999 , Sx = 10^{-6} , Sy = 9 \times 10^{-7}$$

$$\left|\frac{\delta \times}{\times}\right| = 10^{-6} , \left(\frac{\delta \times}{5}\right) = \left(\frac{9 \times 10^{-7}}{9.99 \times 10^{-7}}\right) \approx 10^{-6}$$

$$\left|\frac{(x + 5x) - (y + 5y) - (x - 7)}{x - 7}\right|$$

$$= \left(\frac{5x - 5y}{x - 7}\right) = \frac{10^{-7}}{10^3} = (0^{-7} \times 10^{-6})$$
=> errors can propagate quickly in t/-

Propagation of errors: Numerical experiment [From A. Donev]

Harmonic sum

$$H(N) = \sum_{i=1}^{N} \frac{1}{i}$$

What are the numerical issues of this implementation?

Propagation of errors: Numerical experiment [From A. Donev]

Harmonic sum

$$H(N) = \sum_{i=1}^{N} \frac{1}{i}$$

What are the numerical issues of this implementation?  $\rightsquigarrow$  Adds very small number 1/i to potentially large number nhsum



What can we do about it?

Implementation with backward summation

```
1: function nhsum = harmonicBwd(N)
2: nhsum = 0;
3: for i = N:-1:1
4: nhsum = nhsum + 1.0/i;
5: end
6: end
```

Better, because adds small numbers to small numbers and larger numbers to large numbers.



# Numerical Methods I MATH-GA 2010.001/CSCI-GA 2420.001

Benjamin Peherstorfer Courant Institute, NYU

Based on slides by G. Stadler and A. Donev

## Today

#### Last time

- Float-point numbers in IEEE format
- Rounding
- Propagation of errors

#### Today

- Cancellation
- Truncation errors
- Solving linear systems

#### Announcements

► Homework 1 was posted last week; is due next week Mon, Sep 23 before class -> Groder office hour; Fri, 2-4pm, WWH \$03

## Recap: Floating-point numbers

Let's use floating-point representation

$$x = (-1)^{s} \cdot [0 \cdot a_1 a_2 \cdots a_t] \cdot \beta^{e} = (-1)^{s} \cdot m \cdot \beta^{e-t}$$

similar to the common scientific number representation

$$0.1156 \cdot 10^1 = 1156 \cdot 10^{-3} \qquad t = 4$$

► A floating-point number in base β is represented using one sign bit s = 0 or 1, a t-digit integer mantissa

$$0 \leq m = [a_1 a_2 \cdots a_t] \leq \beta^t - 1$$

and an integer exponent  $L \leq e \leq U$ 

• Computers today use binary numbers and so  $\beta = 2$ 

## Recap: Single precision

Single precision IEEE floating-point numbers have the standardized storage format:

sign + power + fraction

with

$$N_s + N_p + N_f = 1 + 8 + 23 = 32$$
 bits

and are interpreted as

$$x = (-1)^s \cdot 2^{p-127} \cdot (1.f)_2$$

- Sign s = 1 for negative numbers
- ▶ Power  $1 \le p \le 254$  determines the exponent
- Fractional part of the mantissa f
- ▶ single in Matlab, float in C/C++, REAL in Fortran

### Recap: Important facts about floating-point numbers

- Not all real numbers x can be represented exactly as a floating-point number. Instead, they must be *rounded* to the nearest floating point number  $\hat{x} = fl(x)$
- Floating-point numbers have a relative rounding error that is smaller than the machine precision or roundoff-unit u

$$\frac{|\hat{x} - x|}{|x|} \le u = 2^{-(N_f + 1)} = \begin{cases} 2^{-24} \sim 6.0 \cdot 10^{-8} \,, & \text{for single precision} \\ 2^{-53} \sim 1.1 \cdot 10^{-16} \,, & \text{for double precision} \,. \end{cases}$$

- Often the machine precision/roundoff-unit is denoted as  $\epsilon$
- The rule of thumb is that single precision gives 7-8 digits of precision and double 16 digits.
- There is a smallest and largest possible number due to limit for the exponent.

## Recap: Two axioms

Ignoring over- and underflow, we assume the following two "axioms" to hold for computers we work with:

1. For all  $x \in \mathbb{R}$ , there exists  $\epsilon$  with  $|\epsilon| \leq u$  (roundoff unit) such that

$$\mathsf{fl}(x) = x(1+\epsilon)\,,$$

where  $fl(\cdot)$  rounds to the closest floating point approximation.

Consider two floating point numbers x, y. The floating-point operation ⊛ (=add, sub, mult, div) of \* (=add, sub, mult, div) satisfies

$$x \circledast y = \mathsf{fl}(x \ast y)$$

Axiom 1 and 2 imply that for two floating-point numbers x, y, there exists  $\epsilon$  with  $|\epsilon| \le u$  such that

$$x \circledast y = (x * y)(1 + \epsilon).$$

#### Numerical cancellation

If x and y are close to each other, then x - y can have reduced accuracy due to catastrophic cancellation.

Consider computing the smaller root of the quadratic equation

$$x^2 - 2x + c = 0$$

for  $|c| \ll 1$  and focus on propagation/accumulation of roundoff errors.

 $x^{2}-2x+c=0$ , Ic/4/ Solution: X = 1- VI-2 Before ne sloot : Toylor  $f(z) = \sqrt{1+2}, \quad f'(z) = 2\sqrt{1+2}$  $f(z) = f(0) + \frac{f'(0)}{1!}(z-0) + \frac{f''(0)}{2!}(z-0)^{2} + \dots$ fruncate:  $\sqrt{1+2} = 1 + \frac{1}{2\sqrt{1+0}} = 1 + \frac{2}{9}$ Thus, for (c) small, get  $X = \left(-\sqrt{1-c'}\right) = \left(-\frac{c}{2}\right) = \frac{c}{2}$ Case 1: ICI 2 IUI & round -off wit  $\mathcal{A}((1-c)) = ($ no point in moving forward Cose 2: IUI CICI 24 Colculate 1-c in floating point  $f((1) \bigoplus f((c)) = f((f(1)) - f((c)))$  $= (f((1) - f((c)))(1 + \varepsilon))$ 18/40  $= (1(1+\varepsilon_{c}) - c(1+\varepsilon_{c}))(1+\varepsilon) , \quad (\varepsilon_{c}) \leq 0 , \quad (\varepsilon_{c}) \leq 0$  $(1 - c) + (\varepsilon_{1} - c\varepsilon_{2})$ order la  $\{ ((1) \Theta f((c) - (1-c)) = ((-c)) + (\varepsilon_{1} - (c)) f((1)) \}$ 

order tut

$$\left|\frac{\delta(1-c)}{1-c}\right| = o(so order 101 because 1-c close
+o 1
Assume sqrf() computes rool to within
relative occuracy of rows-off-mill u
$$\sqrt{x+\delta x}^{2} = \sqrt{x}^{2}\left(1+\frac{\delta x}{2x}\right)^{2}$$

$$= \sqrt{x}\left(1+\frac{\delta x}{2x}\right)$$
So for shows first VI-c' has obs and  
relative error of power 101  
We have  $x = 1 - \sqrt{1-c^{2}}$   
 $\Theta(ready lenew
f((1)  $\Theta f((y) - (1-y) = \delta(1-y))$   
is of order 11-y1-101 +101  
Relative error:  
 $\int \frac{\delta(1-y)}{1-y} \propto \frac{|1-y|\cdot|0|}{1-y1} = \int \frac{|0|}{1-y} \int \frac{|0|}{1-y1}$   
If is higher than 101 for  $1-y \approx 0$$$$

To avoid cancellation, we should not directly implement  $1 - \sqrt{1-c}$ 

Rather, we can take the Taylor approximate  $x \approx \frac{c}{2}$ , which provides a good approximation for small c.

Even better, we could use the **mathematically equivalent but numerically preferred form**:

$$1 - \sqrt{1-c} = \frac{c}{1 + \sqrt{1-c}}$$

which does not suffer from cancellation problems as c becomes smaller. (Notice that  $1 - \sqrt{\ldots}$  is avoided and therefore the cancellation problem shown by our analysis is avoided. We showed that  $\sqrt{1-c}$  is safe.) To avoid cancellation, we should not directly implement  $1 - \sqrt{1 - c}$ 

Rather, we can take the Taylor approximate  $x \approx \frac{c}{2}$ , which provides a good approximation for small *c*.

Even better, we could use the **mathematically equivalent but numerically preferred form**:

$$1 - \sqrt{1-c} = \frac{c}{1+\sqrt{1-c}}$$

which does not suffer from cancellation problems as c becomes smaller. (Notice that  $1 - \sqrt{\ldots}$  is avoided and therefore the cancellation problem shown by our analysis is avoided. We showed that  $\sqrt{1-c}$  is safe.)

1: >>> c = 1e-10 # solution roughly 5.00000000125 x 10^-11
2: >>> 1 - math.sqrt(1 - c)
3: 5.000000413701855e-11
4: >>> c/(1 + math.sqrt(1 - c))
5: 5.0000000125e-11

## Big ${\mathcal O}$ notation

Useful to compare growth of functions.

We write  $f \in \mathcal{O}(g)(x \to \infty)$  if there exists constant C > 0 such that for an  $x_0$  the following holds

$$\forall x \geq x_0: \quad |f(x)| \leq C|g(x)|$$

We also write  $f \in \mathcal{O}(g)(x \to 0)$  if there exists a constant C > 0 such that for an  $x_0 > 0$  the following holds

$$\forall |x| \leq x_0$$
:  $|f(x)| \leq C|g(x)|$ 

In many cases we do not write explicitly whether we mean  $x \to \infty$  or  $x \to 0$  because it is clear from the context.

Question: In practice, would you prefer an algorithm with costs growing as  $c_1(x) \in \mathcal{O}(x)$  or  $c_2(x) \in \mathcal{O}(x^2)$ ? Why?

Question: In practice, would you prefer an algorithm with costs growing as  $c_1(x) \in \mathcal{O}(x)$  or  $c_2(x) \in \mathcal{O}(x^2)$ ? Why?

Answer: It depends on the hidden constants C and  $x_0$ . If  $c_1$  and  $c_2$  have roughly the same constants, then probably  $c_1$ .

However, if the constant for  $c_1$  is  $x_0 = 10^{10}$  and the constant for  $c_2$  is  $x_0 = 1$ , then in most practical situations we prefer  $c_2$  because we most likely will never reach the asymptotics of  $x > x_0$  for  $c_1$  in practice!

**Warning:** The Big  $\mathcal{O}$  notation tells us something about the asymptotics. The constants  $x_0$  and C that are hidden in  $\mathcal{O}(\cdot)$  do matter in practice!

Costs (i.e.,  $x \to \infty$ ) of  $c_1(x) = 10^{10} + 10^{10}x$  and  $c_2(x) = 2 \times 10^{10} + x^2$ . Then,  $c_1 \in \mathcal{O}(x)$  and  $c_2 \in \mathcal{O}(x^2)$  for  $x \to \infty$ . I.e., asymptotically the costs of  $c_2$  grow faster than  $c_1$ . Costs (i.e.,  $x \to \infty$ ) of  $c_1(x) = 10^{10} + 10^{10}x$  and  $c_2(x) = 2 \times 10^{10} + x^2$ . Then,  $c_1 \in \mathcal{O}(x)$  and  $c_2 \in \mathcal{O}(x^2)$  for  $x \to \infty$ . I.e., asymptotically the costs of  $c_2$  grow faster than  $c_1$ .



**Warning:** The Big  $\mathcal{O}$  notation tells us something about the asymptotics. The constants  $x_0$  and C that are hidden in  $\mathcal{O}(\cdot)$  do matter in practice!

Set now error:  $e_1(h) = h$  and  $e_2(h) = 10^{-10}h + h^2$ . Then,  $e_1 \in \mathcal{O}(h)$  and  $e_2 \in \mathcal{O}(h)$  for  $h \to 0$ .



**Warning:** The Big  $\mathcal{O}$  notation tells us something about the asymptotics. The constants  $h_0$  and C that are hidden in  $\mathcal{O}(\cdot)$  do matter in practice!

## Revisiting stability

Recall that we said: An algorithm  $\tilde{f}$  for a problem f is backward stable if for each  $x \in X$  we have  $\tilde{f}(x) = f(\tilde{x})$  for an  $\tilde{x}$  with

$$\frac{\|\tilde{x} - x\|}{\|x\|}$$

small.

We now can be more precise: An algorithm  $\tilde{f}$  for a problem f is backward stable if for each  $x \in X$  we have  $\tilde{f}(x) = f(\tilde{x})$  for an  $\tilde{x}$  with

$$\frac{\|\tilde{x}-x\|}{\|x\|}\in\mathcal{O}(u)\,,$$

where *u* is the roundoff unit

- Recall that, loosely speaking, the symbol O(u) means "on the order of the roundoff unit."
- ► By allowing u → 0 (which is implied here by the O), we consider an idealization of a computer (in practice, u is fixed). So what we mean is that the error should decrease in proportion to u or faster.

Suppose a backward stable algorithm is applied to solve a problem  $f : X \to Y$  with relative condition number  $\kappa$ . Then, the relative errors satisfy

$$\frac{|\tilde{f}(x) - f(x)||}{\|f(x)\|} \in \mathcal{O}(\kappa(x)u).$$

*Proof* board

det 
$$\tilde{f}$$
 be a bochnows stable ofgorithm of  $f:x \to y$   
with rel condition  $\mathcal{E}_{i}$  then  

$$\frac{\|\tilde{f}(x) - f(x)\|}{\|f(x)\|_{i}} \in \mathcal{O}(\mathcal{E}(x) \cup)$$
where  $\cup$  is the round off unit.  
Bochword stability tells  $\cup$  s  $\tilde{f}(x) = f(x) \int_{\mathcal{I}} \int_$ 

Condition number  

$$R = \lim_{x \to 0} \sup_{\|x - x\| \le 5} \frac{\|f(x) - f(x)\|}{\|f(x)\|} \frac{\|x - x\|}{\|x\||}$$
thus with  $\hat{f}(x) = f(x)$  we have  

$$\frac{\|f(x) - \hat{f}(x)\|}{\|f(x)\|} \le R(x) \frac{\|x - \hat{x}\|}{\|x\||} \quad (x - 5)$$

$$\in O(R(x))$$

$$\in O(R(x))$$

## Local truncation error

- Approximation error comes about when we replace a mathematical problem with some easier to solve approximation.
- This error is separate from and in addition to any numerical algorithm or computation used to actually solve the approximation itself, such as roundoff or propagated error.
- Truncation error is a common type of approximation error that comes from replacing infinitesimally small quantities with finite step size and truncating infinite sequences/series with finite ones.
- This is the most important type of error in methods for numerical interpolation, integration, solving differential equations, and others.

## Local truncation error (cont'd)

Analysis of local truncation error is almost always based on using Taylor series to approximate a function about a given point x

$$f(x+h) = \sum_{n=0}^{\infty} \frac{h^n}{n!} f^{(n)}(x) = f(x) + hf'(x) + \frac{h^2}{2} f''(x) + \dots,$$

where we call h the step size

We cannot do a series (infinite number of terms) numerically, so we truncate

$$f(x+h) \approx F_p(x,h) = \sum_{n=0}^{p} \frac{h^n}{n!} f^{(n)}(x)$$

Question: What is the truncation error in this approximation? ~> This kind of error estimate is one of the most commonly used in numerical analysis. The remainder theorem of calculus provides a formula for the error: If the derivatives of f up to order p + 1 exist and are continuous in the interval (x, x + h), then there is a ξ ∈ [x, x + h] so that

$$f(x+h) - F_p(x,h) = rac{h^{p+1}}{(p+1)!} f^{(p+1)}(\xi)$$

$$C = rac{1}{(p+1)!} \max_{y \in [x,x+h]} \left| f^{(p+1)}(y) \right|$$

then

► If we set

$$|f(x+h) - F_p(x,h)| \le Ch^{p+1}$$

▶ Intuition: If *h* is small and  $f^{(p+1)}$  smooth, then  $x \approx \arg \max_{y \in [x,x+h]} |f^{(p+1)}(y)|$ and the remainder term is nearly equal to the first neglected term

$$f(x+h) - F_p(x,h) \approx \frac{h^{p+1}}{(p+1)!} f^{(p+1)}(x)$$

For example, let  $e(h) = |f(x + h) - F_p(x, h)|$  and let the remainder theorem from the previous slide apply, then

$$e(h) \in \mathcal{O}(h^{p+1}), \qquad h \to 0$$

### Conclusions and summary

- No numerical method can compensate for a poorly conditioned problem. But not every numerical method will be a good one for a well conditioned problem.
- A numerical method needs to control the various computational errors (approximation, truncation, roundoff, propagated, statistical) while balancing computational cost.
- A numerical method must be consistent and stable in order to converge to the correct answer.
- The IEEE standard standardizes the single and double precision floating-point formats, their arithmetic, and exceptions. It is widely implemented.
- Numerical overflow, underflow and cancellation need to be carefully considered and avoided: Mathematically equivalent forms are not numerically equivalent.

Linear systems

#### Linear systems of equations

It is said that 70-80% of computational mathematics research involves solving systems of m linear equations in n unknowns

$$\sum_{j=1}^n a_{ij} x_j = b_i, \qquad i=1,\ldots,m.$$

Linear systems arise directly from discrete models (e.g., in machine learning). Or through representing some abstract linear operator (such as a differential operator) in a finite basis as when numerically solving partial differential equations.

The common abstract way of writing systems of linear equations is

$$Ax = b$$

with matrix  $\boldsymbol{A} \in \mathbb{R}^{m imes n}$ , right-hand side  $\boldsymbol{b} \in \mathbb{R}^m$ , and solution  $\boldsymbol{x} \in \mathbb{R}^n$ 

The goal is to calculate solution  $\boldsymbol{x}$  given data  $\boldsymbol{A}, \boldsymbol{b}$  in a numerically stable and computationally efficient way.

#### The matrix inverse

▶ A square matrix  $\mathbf{A} \in \mathbb{R}^{n \times n}$  is invertible or nonsingular if there exists a matrix inverse  $\mathbf{A}^{-1} = \mathbf{B} \in \mathbb{R}^{n \times n}$  such that

$$AB = BA = I$$
,

where *I* is the identity matrix.

Matrix norm induced by a given vector norm

$$\|\boldsymbol{A}\| = \sup_{\boldsymbol{x}\neq \boldsymbol{0}} \frac{\|\boldsymbol{A}\boldsymbol{x}\|}{\|\boldsymbol{x}\|} \implies \|\boldsymbol{A}\boldsymbol{x}\| \leq \|\boldsymbol{A}\|\|\boldsymbol{x}\|$$

with sub-multiplicativity:  $\|\boldsymbol{A}\boldsymbol{B}\| \leq \|\boldsymbol{A}\| \|\boldsymbol{B}\|$ 

- ► Special case of interest: The 2-norm or spectral norm: ||**A**||<sub>2</sub> = σ<sub>1</sub> (largest singular value)
- The Euclidean or Frobenius norm is not an induced norm

$$\|oldsymbol{A}\|_F = \sqrt{\sum_{i,j} |a_{ij}|^2}$$

but still is sub-multiplicative:  $\|\boldsymbol{A}\boldsymbol{B}\|_{F} \leq \|\boldsymbol{A}\|_{F} \|\boldsymbol{B}\|_{F}$ 

## Condition of solving system of linear equations

Recall that we derived the condition number  $\kappa(\mathbf{A}) = \|\mathbf{A}\| \|\mathbf{A}^{-1}\|$  of a matrix  $\mathbf{A}$
## Condition of solving system of linear equations (cont'd)

Now consider the general perturbations of the data

 $(\mathbf{A} + \delta \mathbf{A})(\mathbf{x} + \delta \mathbf{x}) = \mathbf{b} + \delta \mathbf{b}$ 

One obtains the condition (proof in Quarteroni et al., Sec. 3.1)

$$\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \leq \frac{\kappa(\mathbf{A})}{1 - \kappa(\mathbf{A})\frac{\|\delta \mathbf{A}\|}{\|\mathbf{A}\|}} \left(\frac{\|\delta \mathbf{b}\|}{\|\mathbf{b}\|} + \frac{\|\delta \mathbf{A}\|}{\|\mathbf{A}\|}\right)$$

Important practical estimate: Roundoff error in the data, with rounding unit u (recall  $\approx 10^{-16}$  for double precision), produces a relative error

$$\frac{\|\delta \boldsymbol{x}\|_{\infty}}{\|\boldsymbol{x}\|_{\infty}} \leq \frac{2}{1-\kappa(\boldsymbol{A})u}u\kappa(\boldsymbol{A})$$

 $\implies$  makes *no* sense to try to numerically solve systems with  $\kappa(\mathbf{A}) > 10^{16}$  in double precision

## Numerical solution of linear systems

There are many numerical methods for solving a system of linear equations

The most appropriate method depends on the properties of  $\boldsymbol{A}$ 

- General dense matrices, where the entries in A are mostly non-zero and nothing special is known ~> we focus on Gaussian elimination today
- General sparse matrices, where only a small fraction of  $a_{ij} \neq 0$  (sparse typically means that  $\mathcal{O}(n)$  entries are non-zero in an  $n \times n$  matrix)
- Symmetric and positive-definite matrices
- Special structured sparse matrices, often arising from specific physical properties of the underlying system

It is also important to consider how many times a linear system with the same or related matrix or right-hand side needs to be solved.

# Numerical Methods I MATH-GA 2010.001/CSCI-GA 2420.001

Benjamin Peherstorfer Courant Institute, NYU

Based on slides by G. Stadler and A. Donev

# Today

#### Last time

- Cancellation
- Truncation errors
- Solving linear systems

#### Today

Solving linear systems

#### Announcements

► Homework 1 was posted last week; is due next week Mon, Sep 23 *before class* 

### Recap: Linear systems of equations

It is said that 70-80% of computational mathematics research involves solving systems of m linear equations in n unknowns

$$\sum_{j=1}^n a_{ij} x_j = b_i, \qquad i=1,\ldots,m.$$

Linear systems arise directly from discrete models (e.g., in machine learning). Or through representing some abstract linear operator (such as a differential operator) in a finite basis as when numerically solving partial differential equations.

The common abstract way of writing systems of linear equations is

$$Ax = b$$

with matrix  $\boldsymbol{A} \in \mathbb{R}^{m imes n}$ , right-hand side  $\boldsymbol{b} \in \mathbb{R}^m$ , and solution  $\boldsymbol{x} \in \mathbb{R}^n$ 

The goal is to calculate solution  $\boldsymbol{x}$  given data  $\boldsymbol{A}, \boldsymbol{b}$  in a numerically stable and computationally efficient way.

### Recap: The matrix inverse

▶ A square matrix  $\mathbf{A} \in \mathbb{R}^{n \times n}$  is invertible or nonsingular if there exists a matrix inverse  $\mathbf{A}^{-1} = \mathbf{B} \in \mathbb{R}^{n \times n}$  such that

$$AB = BA = I$$
,

where *I* is the identity matrix.

Matrix norm induced by a given vector norm

$$\|\boldsymbol{A}\| = \sup_{\boldsymbol{x}\neq \boldsymbol{0}} \frac{\|\boldsymbol{A}\boldsymbol{x}\|}{\|\boldsymbol{x}\|} \implies \|\boldsymbol{A}\boldsymbol{x}\| \leq \|\boldsymbol{A}\|\|\boldsymbol{x}\|$$

with sub-multiplicativity:  $\|\boldsymbol{A}\boldsymbol{B}\| \leq \|\boldsymbol{A}\| \|\boldsymbol{B}\|$ 

- ► Special case of interest: The 2-norm or spectral norm: ||**A**||<sub>2</sub> = σ<sub>1</sub> (largest singular value)
- The Euclidean or Frobenius norm is not an induced norm

$$\|oldsymbol{A}\|_F = \sqrt{\sum_{i,j} |a_{ij}|^2}$$

but still is sub-multiplicative:  $\|\boldsymbol{A}\boldsymbol{B}\|_{F} \leq \|\boldsymbol{A}\|_{F} \|\boldsymbol{B}\|_{F}$ 

### Recap: Condition of solving system of linear equations (cont'd) Now consider the general perturbations of the data

 $(\mathbf{A} + \delta \mathbf{A})(\mathbf{x} + \delta \mathbf{x}) = \mathbf{b} + \delta \mathbf{b}$ 

One obtains the condition (proof in Quarteroni et al., Sec. 3.1)

$$\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \leq \frac{\kappa(\mathbf{A})}{1 - \kappa(\mathbf{A})\frac{\|\delta \mathbf{A}\|}{\|\mathbf{A}\|}} \left(\frac{\|\delta \mathbf{b}\|}{\|\mathbf{b}\|} + \frac{\|\delta \mathbf{A}\|}{\|\mathbf{A}\|}\right)$$

Important practical estimate: Roundoff error in the data, with rounding unit u (recall  $\approx 10^{-16}$  for double precision), produces a relative error

$$\frac{\|\delta \boldsymbol{x}\|_{\infty}}{\|\boldsymbol{x}\|_{\infty}} \leq \frac{2}{1-\kappa(\boldsymbol{A})u}u\kappa(\boldsymbol{A})$$

 $\implies$  makes *no* sense to try to numerically solve systems with  $\kappa(\mathbf{A}) > 10^{16}$  in double precision

## Recap: Numerical solution of linear systems

There are many numerical methods for solving a system of linear equations

The most appropriate method depends on the properties of  $\boldsymbol{A}$ 

- General dense matrices, where the entries in A are mostly non-zero and nothing special is known ~> we focus on Gaussian elimination today
- General sparse matrices, where only a small fraction of  $a_{ij} \neq 0$  (sparse typically means that O(n) entries are non-zero in an  $n \times n$  matrix)
- Symmetric and positive-definite matrices
- Special structured sparse matrices, often arising from specific physical properties of the underlying system

It is also important to consider how many times a linear system with the same or related matrix or right-hand side needs to be solved.

Gauss elimination and LU factorization



01 01 13 0<sup>(1)</sup> 0(1)  $a_{22}^{(1)} - a_{12}^{(1)}$  $Q_{2_{1}}^{(i)} - l_{2_{1}} a_{1_{1}}^{(i)} = 0$  $Q_{\ell 3}^{(i)}$  $\begin{array}{c} a_{32}^{(1)} - & a_{33}^{(1)} - \\ e_{31} a_{12}^{(1)} & e_{31} a_{13}^{(1)} \end{array}$ 

| ව <mark>(1)</mark><br>වැ | व <mark>े।</mark> 2                  | ∂ <mark>(1)</mark>                    | ) ( | $\left( \boldsymbol{X}, \boldsymbol{\gamma} \right)$ |   | $(6, 0)^{-1}$    | ) |
|--------------------------|--------------------------------------|---------------------------------------|-----|------------------------------------------------------|---|------------------|---|
| 0                        | Q <sup>(2)</sup><br>2 <sup>2</sup> 2 | ∂ <mark>(2)</mark><br>2 <sub>23</sub> |     | $\times_{\mathbf{z}}$                                | 0 | b <sup>(2)</sup> |   |
| 0                        | $\overline{Q}_{32}^{(2)}$            | 0 <sup>(2)</sup><br>37                |     | ×3.                                                  | ) | 63               |   |

 $\begin{bmatrix} \mathbf{a}_{11}^{(1)} & \mathbf{a}_{12}^{(1)} & \mathbf{a}_{13}^{(1)} \\ & \mathbf{a}_{22}^{(2)} & \mathbf{a}_{23}^{(2)} \\ & & \mathbf{a}_{23}^{(2)} & \mathbf{a}_{33}^{(2)} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \mathbf{x}_{3} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_{1}^{(1)} \\ \mathbf{b}_{2}^{(2)} \\ \mathbf{b}_{3}^{(2)} \\ \mathbf{b}_{3}^{(3)} \end{bmatrix}$ 

Upper triangular system  $x_3 = b_3^{(3)} / a_{33}^{(3)} \implies eliminole x_3$  $\begin{cases} a_{11}^{(1)} & a_{12}^{(1)} \\ 0 & a_{22}^{(2)} \\ 0 & a_{22}^{(2)} \\ 0 & z_{22}^{(2)} \\ 0 & z_{22}^{(2)} \\ 0 & z_{23}^{(2)} \\ 0 & z_{23}^{(2)}$ 



## Gauss elimination in Matlab

```
1: function A = mylu(A) % In-place LU factorization
2: % need square matrix
3: [n, m] = size(A);
4: assert(n == m);
5: for k=1:(n-1) % for variable x(k)
6:
      % Assumed A(k, k) non-zero and then
7: % calculate multipliers in column k
      A((k + 1):n, k) = A((k + 1):n, k)/A(k, k);
8:
9:
       for j = (k + 1):n
10:
           % eliminate variable x(k)
11:
           A((k + 1):n, j) = A((k + 1):n, j) - A((k + 1):n)
              n, k)*A(k, j);
12:
      end
13: end
14: end
```

- Gaussian elimination is a general method for dense matrices and is commonly used
- Implementing Gaussian elimination efficiently is difficult and we will not discuss it ~> course on HPC
- The LAPACK public-domain library is the main repository for excellent implementations of dense linear solvers
- Matlab (and numpy) use highly optimized variants of GEM by default, mostly based on LAPACK
- Matlab (and numpy) have specialized solvers for special cases of matrices, so always check help pages!

# Problem?

# Problem?

| 1:  | >>  | А   | =   | [1   | 1   | 3; | 2  | 2  | 2; | 3 | 6 | 4] |
|-----|-----|-----|-----|------|-----|----|----|----|----|---|---|----|
| 2:  |     |     |     |      |     |    |    |    |    |   |   |    |
| 3:  | A = | =   |     |      |     |    |    |    |    |   |   |    |
| 4:  |     |     |     |      |     |    |    |    |    |   |   |    |
| 5:  |     |     | 1   |      | -   | 1  |    | 3  |    |   |   |    |
| 6:  |     |     | 2   |      |     | 2  |    | 2  |    |   |   |    |
| 7:  |     |     | 3   |      | 6   | 5  |    | 4  |    |   |   |    |
| 8:  |     |     |     |      |     |    |    |    |    |   |   |    |
| 9:  | >>  | my  | ylu | ι(Α) | )   |    |    |    |    |   |   |    |
| 10: |     |     |     |      |     |    |    |    |    |   |   |    |
| 11: | ans | 5 = | =   |      |     |    |    |    |    |   |   |    |
| 12: |     |     |     |      |     |    |    |    |    |   |   |    |
| 13: |     |     | 1   |      | -   | 1  |    | 3  |    |   |   |    |
| 14: |     |     | 2   |      | (   | )  | -  | -4 |    |   |   |    |
| 15: |     |     | 3   | •    | Inf | f  | Ir | nf |    |   |   |    |

# LU with pivoting

Zero diagonal entries (pivots) pose a problem  $\rightsquigarrow$  pivoting by swapping rows

 $\rightsquigarrow$  board

 $\begin{bmatrix}
1 & 3 \\
3 & -5 \\
3 & -4 \\
2 & 0 & -4
\end{bmatrix}$ 

LU = PApermulation (100)

| 1:  | >>  | А   | =   | [1  | 1     | 3; | 2 | 2  | 2; | 3 | 6 | 4] | , |      |     |   |     |   |
|-----|-----|-----|-----|-----|-------|----|---|----|----|---|---|----|---|------|-----|---|-----|---|
| 2:  | >>  | Ρ   | =   | [1  | 0     | 0; | 0 | 0  | 1; | 0 | 1 | 0] | % | swap | row | 2 | and | 3 |
| 3:  |     |     |     |     |       |    |   |    |    |   |   |    |   |      |     |   |     |   |
| 4:  | P = | =   |     |     |       |    |   |    |    |   |   |    |   |      |     |   |     |   |
| 5:  |     |     |     |     |       |    |   |    |    |   |   |    |   |      |     |   |     |   |
| 6:  |     |     | 1   |     | (     | )  |   | 0  |    |   |   |    |   |      |     |   |     |   |
| 7:  |     |     | 0   |     | (     | )  |   | 1  |    |   |   |    |   |      |     |   |     |   |
| 8:  |     |     | 0   |     |       | L  |   | 0  |    |   |   |    |   |      |     |   |     |   |
| 9:  |     |     |     |     |       |    |   |    |    |   |   |    |   |      |     |   |     |   |
| 10: | >>  | my  | ylu | (P> | × A ) | )  |   |    |    |   |   |    |   |      |     |   |     |   |
| 11: |     |     |     |     |       |    |   |    |    |   |   |    |   |      |     |   |     |   |
| 12: | ans | 3 = | =   |     |       |    |   |    |    |   |   |    |   |      |     |   |     |   |
| 13: |     |     |     |     |       |    |   |    |    |   |   |    |   |      |     |   |     |   |
| 14: |     |     | 1   |     | 1     | L  |   | 3  |    |   |   |    |   |      |     |   |     |   |
| 15: |     |     | 3   |     | Ċ     | 3  | - | -5 |    |   |   |    |   |      |     |   |     |   |
| 16: |     |     | 2   |     | (     | )  | - | -4 |    |   |   |    |   |      |     |   |     |   |

For any square (regular or singular) matrix A, partial (row) pivoting ensures exists of

$$PA = LU$$

where  $\boldsymbol{P}$  is a permutation matrix

Q: What else could pivoting be useful for? ~> let's see what Matlab does

| 1:  | >> | >  | [L, | U,      | P]   | =   | lu(  | A) | % | built- | in |
|-----|----|----|-----|---------|------|-----|------|----|---|--------|----|
| 2:  | L  | =  |     |         |      |     |      |    |   |        |    |
| 3:  |    |    | 1.0 | 0000    | )    |     |      | 0  |   |        | 0  |
| 4:  |    |    | 0.0 | 6667    | 7    | -   | L.00 | 00 |   |        | 0  |
| 5:  |    |    | 0.3 | 3333    | 3    | (   | 0.50 | 00 |   | 1.000  | 0  |
| 6:  | U  | =  |     |         |      |     |      |    |   |        |    |
| 7:  |    |    | 3.  | 0000    | )    | 6   | 5.00 | 00 |   | 4.000  | 0  |
| 8:  |    |    |     | (       | C    | -2  | 2.00 | 00 |   | -0.666 | 7  |
| 9:  |    |    |     | (       | C    |     |      | 0  |   | 2.000  | 0  |
| 10: | Ρ  | =  |     |         |      |     |      |    |   |        |    |
| 11: |    |    | 0   |         | 0    |     | 1    |    |   |        |    |
| 12: |    |    | 0   |         | 1    |     | 0    |    |   |        |    |
| 13: |    |    | 1   |         | 0    |     | 0    |    |   |        |    |
| 14: | >> | >  | nor | n ( L ; | ∗U · | - F | ▷*A) |    |   |        |    |
| 15: | ar | ıs | =   | С       |      |     |      |    |   |        |    |

lu

| 1:  | >> | >   | [L,  | U,   | P]   | =   | lu(   | A) | % | built-in | lu |
|-----|----|-----|------|------|------|-----|-------|----|---|----------|----|
| 2:  | L  | =   |      |      |      |     |       |    |   |          |    |
| 3:  |    |     | 1.(  | 000  | C    |     |       | 0  |   | 0        |    |
| 4:  |    |     | 0.6  | 6667 | 7    | -   | 1.000 | 00 |   | 0        |    |
| 5:  |    |     | 0.3  | 3333 | 3    | (   | 0.500 | 00 |   | 1.0000   |    |
| 6:  | U  | =   |      |      |      |     |       |    |   |          |    |
| 7:  |    |     | 3.0  | 000  | )    | 6   | 5.000 | 00 |   | 4.0000   |    |
| 8:  |    |     |      | (    | C    | - 2 | 2.000 | 00 |   | -0.6667  |    |
| 9:  |    |     |      | (    | C    |     |       | 0  |   | 2.0000   |    |
| 10: | Ρ  | =   |      |      |      |     |       |    |   |          |    |
| 11: |    |     | 0    |      | 0    |     | 1     |    |   |          |    |
| 12: |    |     | 0    |      | 1    |     | 0     |    |   |          |    |
| 13: |    |     | 1    |      | 0    |     | 0     |    |   |          |    |
| 14: | >> | > : | norn | n(L× | ∗U · | - I | ⊃*A)  |    |   |          |    |
| 15: | ar | ıs  | = (  | C    |      |     |       |    |   |          |    |

Reverses order of rows rather than just swapping 2 and 3. Leads to entries of L with magnitude  $\leq 1$ 

 $\rightsquigarrow$  board  $e_{z_{l}} = \frac{a_{z_{l}}^{(1)}}{\partial_{u}^{(1)}} = \frac{1}{15^{z_{s}}} = 10^{20}$  $\mathcal{A} = \begin{pmatrix} 10^{-70} & 1 \\ 1 & 1 \end{pmatrix}$  $\begin{bmatrix} (0^{-20} & 1) \\ 10^{20} & 7 \end{bmatrix} = \begin{bmatrix} (0^{-20} & 1) \\ 10^{20} & (-10^{20}) \end{bmatrix}$  $|-|\cdot|0^{20}$ =  $|-|0^{10}$ 

$$L = \begin{bmatrix} 1 & 0 \\ 10^{20} & 1 \end{bmatrix}, \quad U = \begin{bmatrix} 10^{-20} & 1 \\ 0 & 1 - 10^{20} \end{bmatrix}$$
$$L U = A$$
$$f(opting ppind: (-10^{20}) = -10^{20} U$$

```
1: >> A = [1e-20 \ 1; \ 1 \ 1]
2:
3: A =
 4:
 5: 1.0000e-20 1.0000e+00
 6: 1.0000e+00 1.0000e+00
7:
8: >> LUmat = mylu(A);
9: L = [1 \ 0; LUmat(2, 1) \ 1];
10: U = LUmat; U(2, 1) = 0;
11: L*U
12:
13: ans =
14:
15: 1.0000e-20 1.0000e+00
16: 1.0000e+00
                              0
```

| 1:  | >: | > [L,  | U,   | Ρ]   | = | lu(A)    |     |
|-----|----|--------|------|------|---|----------|-----|
| 2:  | L  | =      |      |      |   |          |     |
| 3:  |    | 1.0    | 000  | e+0( | ) |          | 0   |
| 4:  |    | 1.0    | 000e | e-20 | ) | 1.0000e+ | -00 |
| 5:  | U  | =      |      |      |   |          |     |
| 6:  |    | 1      |      | 1    |   |          |     |
| 7:  |    | 0      |      | 1    |   |          |     |
| 8:  | Ρ  | =      |      |      |   |          |     |
| 9:  |    | 0      |      | 1    |   |          |     |
| 10: |    | 1      |      | 0    |   |          |     |
| 11: | >: | > P'*] | L*U  |      |   |          |     |
| 12: | aı | ns =   |      |      |   |          |     |
| 13: |    | 1.0    | 000e | e-20 | ) | 1.0000e+ | 00  |
| 14: |    | 1.0    | 000  | e+0( | ) | 1.0000e+ | 00  |
| 15: | >: | > A    |      |      |   |          |     |
| 16: | А  | =      |      |      |   |          |     |
| 17: |    | 1.0    | 000e | e-20 | ) | 1.0000e+ | 00  |
| 18: |    | 1.0    | 000  | =+0( | ) | 1.0000e+ | -00 |

## Instability of LU decomposition without pivoting

If **A** has an **LU** factorization, then the computed  $\tilde{L}$  and  $\tilde{U}$  obtained in floating-point arithmetic with Gaussian elimination satisfy  $\tilde{L}\tilde{U} = A + \delta A$  with the bound

$$\frac{\|\delta \boldsymbol{A}\|}{\|\boldsymbol{L}\|\|\boldsymbol{U}\|} \in \mathcal{O}(u)\,,$$

where u is the roundoff unit.

- ► Notice that we would have liked to bound  $\|\delta A\| / \|A\|$  but we got  $\|\delta A\| / (\|L\| \|U\|)$
- ▶ Thus, for matrices with  $\|L\| \|U\| \approx \|A\|$ , the algorithm will show stable behavior

► However, if  $\|L\| \|U\| \approx \|A\|$ , then we can get an unstable result

 $\rightsquigarrow$  Gaussian elimination is *not* stable in general

Example  $\rightsquigarrow$  board

$$m{A} = egin{bmatrix} 10^{-20} & 1 \ 1 & 1 \end{bmatrix}, m{L} = egin{bmatrix} 1 & 0 \ 10^{20} & 1 \end{bmatrix}, m{U} = egin{bmatrix} 10^{-20} & 1 \ 0 & 1 - 10^{20} \end{bmatrix}$$

Compare  $\|\boldsymbol{\textit{L}}\|_{\infty}\|\boldsymbol{\textit{U}}\|_{\infty}$  and  $\|\boldsymbol{\textit{A}}\|_{\infty}$ 

$$A = \begin{bmatrix} 10^{-20} & 1 \\ 1 & 1 \end{bmatrix}, L = \begin{bmatrix} 1 & 0 \\ 10^{10} & 1 \end{bmatrix}, U = \begin{bmatrix} 10^{20} & 1 \\ 0 & 1 - 10^{10} \end{bmatrix}$$

$$Recall : operator norm induced by
$$\|x\|_{\infty} = mox_{1} \|x_{1}\|$$

$$\|A\|_{\infty} = mox_{1} \sum_{j=1}^{2} |\partial_{j}_{j}|$$

$$\|A\|_{\infty} = 2 \qquad \|L\|_{\infty} \|U\|_{\infty} \gg \|A\|_{\infty}$$

$$\|L\|_{\infty} = |+10^{20} \qquad \|L\|_{\infty} \|U\|_{\infty} \gg \|A\|_{\infty}$$$$

### LU with row pivoting to maximum element

1: function [A, P] = myplu(A) % In-place LU factorization 2: [n, m] = size(A); P = eye(n);3: for k=1:(n-1) % for variable x(k)[~, selI] = max(abs(A(k:n, k))); % select pivot 4: 5: c = A(k, k:end); d = P(k, :);A(k, k:end) = A(sell + (k-1), k:end); P(k, :) = P(k)6: sell + (k-1), :);7: A(sell + (k-1), k:end) = c; P(sell + k-1, :) = d;% calculate multipliers in column k 8: 9: A((k + 1):n, k) = A((k + 1):n, k)/A(k, k);10: for j = (k + 1):n % eliminate variable x(k) 11:A((k + 1):n, j) = A((k + 1):n, j) - A((k + 1):n)n, k)\*A(k, j); 12: end

13: end

14: end

```
1: >> A = [1e-20 \ 1; \ 1 \ 1]
2: [LUmat, P] = myplu(A);
3: L = [1 \ 0; LUmat(2, 1) \ 1];
 4: U = LUmat; U(2, 1) = 0;
 5: P'*L*U
6:
7: A =
8:
9:
   1.0000e-20 1.0000e+00
10: 1.0000e+00
                    1.0000e+00
11:
12:
13: ans =
14:
15: 1.0000e-20
                    1.0000e+00
16: 1.0000e+00
                    1.0000e+00
```

### Stability of Gaussian elimination with pivoting For A = LU, introduce the growth factor

$$o = \frac{\max_{i,j} |u_{ij}|}{\max_{i,j} |a_{ij}|}$$

where  $u_{ij}$  is the *i*, *j*-th element of **U** 

Consider the factorization PA = LU with partial row pivoting w.r.t. taking the maximum element for a matrix A of dimension  $n \times n$ . Gaussian elimination gives  $\tilde{P}, \tilde{L}, \tilde{U}$  that satisfy

$$\tilde{\boldsymbol{L}}\tilde{\boldsymbol{U}}=\tilde{\boldsymbol{P}}\boldsymbol{A}+\delta\boldsymbol{A},\qquad \frac{\|\delta\boldsymbol{A}\|}{\|\boldsymbol{A}\|}\in\mathcal{O}(\rho u),$$

where u is the roundoff unit. If all off-diagonal entries of L are < 1, implying that there are no ties in the selection of pivots in exact arithmetic, then  $P = \tilde{P}$  for sufficiently small u.

This means that Gaussian elimination with partial pivoting is backward stable if  $\rho$  holds uniformly for matrices with  $n \times n$ .

For any square (regular or singular) matrix A, partial (row) pivoting ensures exists of

$$PA = LU$$

where  $\boldsymbol{P}$  is a permutation matrix

- Furthermore, pivoting (w.r.t. max |a<sub>ij</sub>|) leads to a backward stable algorithm.
   However, the growth factor ρ can be huge and grow with the dimension of *A*! Fortunately, large factors ρ "never seem to appear in real applications." (Trefethen & Bau, Chapter 22)
- ► There also is full pivoting (rows + columns)

#### PAQ = LU

to further increases stability but it usually is not worth it in practice (higher costs to search for pivoting element over rows and columns but little improvement in terms of stability)

## Solving linear systems

Once an LU factorization is available, solving a linear system is cheap:

Ax = LUx = L(Ux) = Ly = b

Solve for y using forward substitution
Solve for x by using backward substitution Ux = y

What is *forward/backward substitution*? ~> board

$$\begin{bmatrix} l_{11} & 0 & \cdots & \cdots & 0\\ l_{21} & l_{22} & 0 & \cdots & 0\\ \vdots & & & \vdots\\ l_{n1} & \cdots & \cdots & l_{nn} \end{bmatrix} \begin{bmatrix} x_1\\ \vdots\\ \vdots\\ x_n \end{bmatrix} = \begin{bmatrix} b_1\\ \vdots\\ \vdots\\ b_n \end{bmatrix}$$

For vord substitution  $\begin{pmatrix} e_{11} & 0 & \dots & 0 \\ e_{21} & e_{22} & 0 & \dots & 0 \\ \vdots & & & & & & & \\ e_{11} & e_{12} & \dots & e_{14} \end{pmatrix} \begin{pmatrix} x_{11} \\ \vdots \\ \vdots \\ x_{14} \end{pmatrix} = \begin{pmatrix} b_{11} \\ b_{22} \\ \vdots \\ b_{14} \end{pmatrix}$ 

x1 = bile,1  $x_{1} = (b_{2} - l_{2}, x_{1})/l_{2}$ Xn = (bn - ln, x, - ... ln, n-1 xn-1)/lnn

If row pivoting is used, the same process works by also permuting the right-hand side b

$$PAx = LUx = Ly = Pb$$

or formally (never implement inverse for solving linear systems of equations)

$$\boldsymbol{x} = (\boldsymbol{L}\boldsymbol{U})^{-1}\boldsymbol{P}\boldsymbol{b} = \boldsymbol{U}^{-1}\boldsymbol{L}^{-1}\boldsymbol{P}\boldsymbol{b}$$

▶ Because **P** is orthonormal, we have  $P^{-1} = P^T$  and thus

$$\boldsymbol{A} = \boldsymbol{P}^{-1} \boldsymbol{L} \boldsymbol{U} = (\boldsymbol{P}^{T} \boldsymbol{L}) \boldsymbol{U} = \tilde{\boldsymbol{L}} \boldsymbol{U},$$

with  $\tilde{L}$  a row permutation of a unit lower triangular matrix

In Matlab, the backslash operator solves linear systems (see help mldivide)

| 1:  | $A = [1 \ 2 \ 3; \ 4 \ 5]$             | 6; 7 8 0]; |            |
|-----|----------------------------------------|------------|------------|
| 2:  | b = [2; 1; -1];                        |            |            |
| 3:  | $x = A \setminus b; x'$                |            |            |
| 4:  | [L, U] = lu(A)                         |            |            |
| 5:  | $y = L \setminus b; x = U \setminus j$ | y; x'      |            |
| 6:  | ans =                                  |            |            |
| 7:  | -2.5556e+00                            | 2.1111e+00 | 1.1111e-01 |
| 8:  | L =                                    |            |            |
| 9:  | 1.4286e-01                             | 1.0000e+00 | 0          |
| 10: | 5.7143e-01                             | 5.0000e-01 | 1.0000e+00 |
| 11: | 1.0000e+00                             | 0          | 0          |
| 12: | U =                                    |            |            |
| 13: | 7.0000e+00                             | 8.0000e+00 | 0          |
| 14: | 0                                      | 8.5714e-01 | 3.0000e+00 |
| 15: | 0                                      | 0          | 4.5000e+00 |
| 16: | ans =                                  |            |            |
| 17: | -2.5556e+00                            | 2.1111e+00 | 1.1111e-01 |
Is the permuted triangular matrix  $\tilde{L}$  (which we get from [L, U] = lu(A)) detected as such? Yes!



# Numerical Methods I MATH-GA 2010.001/CSCI-GA 2420.001

Benjamin Peherstorfer Courant Institute, NYU

Based on slides by G. Stadler and A. Donev

# Today

#### Last time

- Solving linear systems
- LU decomposition
- Pivoting

### Today

- Cost analysis of LU decomposition
- Solving linear systems with sparse matrices
- Least-squares problems

#### Announcements

Homework 2 has been posted; is due next week Mon, Oct 7 before class

### Recap: Condition of solving system of linear equations (cont'd) Now consider the general perturbations of the data

 $(\mathbf{A} + \delta \mathbf{A})(\mathbf{x} + \delta \mathbf{x}) = \mathbf{b} + \delta \mathbf{b}$ 

One obtains the condition (proof in Quarteroni et al., Sec. 3.1)

$$\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \leq \frac{\kappa(\mathbf{A})}{1 - \kappa(\mathbf{A})\frac{\|\delta \mathbf{A}\|}{\|\mathbf{A}\|}} \left(\frac{\|\delta \mathbf{b}\|}{\|\mathbf{b}\|} + \frac{\|\delta \mathbf{A}\|}{\|\mathbf{A}\|}\right)$$

Important practical estimate: Roundoff error in the data, with rounding unit u (recall  $\approx 10^{-16}$  for double precision), produces a relative error

$$\frac{\|\delta \boldsymbol{x}\|_{\infty}}{\|\boldsymbol{x}\|_{\infty}} \leq \frac{2}{1-\kappa(\boldsymbol{A})u}u\kappa(\boldsymbol{A})$$

 $\implies$  makes *no* sense to try to numerically solve systems with  $\kappa(\mathbf{A}) > 10^{16}$  in double precision

## Recap: LU decomposition



### LU with pivoting

Zero diagonal entries (pivots) pose a problem ~> pivoting by swapping rows



### Recap: Stability of Gaussian elimination with pivoting For A = LU, introduce the growth factor

$$p = \frac{\max_{i,j} |u_{ij}|}{\max_{i,j} |a_{ij}|}$$

where  $u_{ij}$  is the *i*, *j*-th element of **U** 

Consider the factorization PA = LU with partial row pivoting w.r.t. taking the maximum element for a matrix A of dimension  $n \times n$ . Gaussian elimination gives  $\tilde{P}, \tilde{L}, \tilde{U}$  that satisfy

$$\tilde{\boldsymbol{L}}\tilde{\boldsymbol{U}}=\tilde{\boldsymbol{P}}\boldsymbol{A}+\delta\boldsymbol{A},\qquad \frac{\|\delta\boldsymbol{A}\|}{\|\boldsymbol{A}\|}\in\mathcal{O}(\rho u),$$

where u is the roundoff unit. If all off-diagonal entries of  $\boldsymbol{L}$  are < 1, implying that there are no ties in the selection of pivots in exact arithmetic, then  $\boldsymbol{P} = \tilde{\boldsymbol{P}}$  for sufficiently small u.

This means that Gaussian elimination with partial pivoting is backward stable if  $\rho$  holds uniformly for matrices with  $n \times n$ .

## Recap: LU with row pivoting to maximum element

14: end

# Costs: Forward/backward substitution

 $\rightsquigarrow$  board

Forward substitution

$$\begin{cases} P_{i_1} & Q_{\dots} & Q_{i_1} \\ P_{21} & P_{22} & Q_{\dots} & Q_{i_1} \\ P_{21} & P_{22} & Q_{\dots} & Q_{i_n} \\ P_{21} & P_{22} & P_{21} & P_{21} \\ P_{21} & P_{21} & P_{21} & P_{22} \\ P_{21} & P_{21} & P_{21} & P_{21} \\ P_{21} & P_{21} & P_{21} & P_{22} \\ P_{21} & P_{21} & P_{22} & P_{21} & P_{22} \\ P_{21} & P_{21} & P_{22} & P_{21} & P_{22} \\ P_{21} & P_{21} & P_{22} & P_{21} & P_{22} \\ P_{21} & P_{21} & P_{22} & P_{21} & P_{21} & P_{22} \\ P_{21} & P_{21} & P_{22} & P_{21} & P_{22} \\ P_{21} & P_{21} & P_{22} & P_{22} & P_{21} & P_{22} \\ P_{21} & P_{22} & P_{21} & P_{22} & P_{22} \\ P_{21} & P_{22} & P_{22} & P_{22} & P_{22} \\ P_{21} & P_{22} & P_{22} & P_{22} & P_{22} \\ P_{21} & P_{22} & P_{22} & P_{22} & P_{22} \\ P_{21} & P_{22} & P_{22} & P_{22} & P_{22} \\ P_{21} & P_{22} & P_{22} & P_{22} & P_{22} \\ P_{21} & P_{22} & P_{22} & P_{22} & P_{22} \\ P_{21} & P_{22} & P_{22} & P_{22} \\ P_{22} & P_{22} & P_{22} \\ P_{22} & P_{22} & P_{22} \\ P_{22} & P_{22} & P_{22}$$

$$\chi_{n} = (b_{n} - C_{n} | \chi_{1} - \dots - C_{n} | \chi_{n-1} - \chi_{n-1})/C_{n}$$

$$\int_{n}^{\infty} (1-i) = \int_{i=1}^{n-1} i = \frac{n(n-i)}{2}$$

$$\int_{i=2}^{n} (1-i) = \int_{i=1}^{n-1} i = \frac{n(n-i)}{2}$$

$$\int_{i=2}^{n} (1-i) = \int_{i=1}^{n-1} i = \frac{n(n-i)}{2} \in O(n^{2})$$

# Costs: Forward/backward substitution

→ boardForward substitution requires

$$\frac{n(n-1)}{2}$$
 multiplications/additions,  
*n* divisons.

Overall:  $\sim n^2$  floating point operations (flops)  $\rightsquigarrow$  costs scale as  $\mathcal{O}(n^2)$ 

Similarly, backward substitution has costs that scale as  $O(n^2)$ 

We count flops to estimate the computational time/effort. What else matters?

# Costs: Forward/backward substitution

→ boardForward substitution requires

$$\frac{n(n-1)}{2}$$
 multiplications/additions,  
*n* divisons.

Overall:  $\sim n^2$  floating point operations (flops)  $\rightsquigarrow$  costs scale as  $\mathcal{O}(n^2)$ 

Similarly, backward substitution has costs that scale as  $\mathcal{O}(n^2)$ 

We count flops to estimate the computational time/effort. What else matters? Besides floating point operations, computer memory access has a significant influence on the efficiency of numerical methods.

### Costs

For forward [backward] substitution at step k there are  $\approx k [(n - k)]$  multiplications and subtractions plus a few divisions. The total over all n steps is

$$\sum_{k=1}^n k \in \mathcal{O}(n^2)$$

 $\rightsquigarrow$  the number of floating-point operations (FLOPs) scales as  $\mathcal{O}(n^2)$ 

For Gaussian elimination, at step k, there are  $\approx (n - k)^2$  operations. Thus, the total scales as

$$\sum_{k=1}^n (n-k)^2 \in \mathcal{O}(n^3)$$

 $\mathcal{O}(n^3)$ 

Computing LU decomposition scales as

 $\mathcal{O}(n^3)$ 

Computing LU decomposition scales as

 $\mathcal{O}(n^3)$ 

Forward/backward substitution scales as

 $\mathcal{O}(n^3)$ 

Computing LU decomposition scales as

 $\mathcal{O}(n^3)$ 

Forward/backward substitution scales as

 $\mathcal{O}(n^2)$ 

LU + forward/backward scales as

 $\mathcal{O}(n^3)$ 

Computing LU decomposition scales as

 $\mathcal{O}(n^3)$ 

Forward/backward substitution scales as

 $\mathcal{O}(n^2)$ 

LU + forward/backward scales as

 $\mathcal{O}(n^3)$ 

 $\rightsquigarrow$  why useful?

 $\mathcal{O}(n^3)$ 

Computing LU decomposition scales as

 $\mathcal{O}(n^3)$ 

Forward/backward substitution scales as

 $\mathcal{O}(n^2)$ 

LU + forward/backward scales as

 $\mathcal{O}(n^3)$ 

 $\rightsquigarrow$  why useful? can reuse LU for other b

### Choleski factorization

A matrix is symmetric positive definite (spd), if  $A = A^T$  and for all  $\mathbf{x} \in \mathbb{R}^n$ ,  $\mathbf{x} \neq 0$ , the inner product  $\langle A\mathbf{x}, \mathbf{x} \rangle > 0$ .

For spd matrices, we can compute the factorization:

 $A = LDL^T$ ,

where L is a lower triangular matrix with 1's on the diagonal, and D is a positive diagonal matrix.

The Choleski factorization is obtained by multiplying the square root of D (which exists!) with L:

$$A=\bar{L}\bar{L}^{T}.$$

Algorithms for Choleski factorization are about twice as fast as Gaussian elimination but also scale as  $\mathcal{O}(n^3)$ .

```
1: >> A = randn(1000, 1000)*diag(linspace(1, 10, 1000))*
        randn(1000, 1000); A = A'*A;
2: >> tic; chol(A); toc
3: Elapsed time is 0.004863 seconds.
4: >> tic; lu(A); toc
5: Elapsed time is 0.010114 seconds.
```

## Special matrices in Matlab

Matlab tests for special matrices automatically and chooses a good decomposition/solver



### Special matrices in Matlab

Matlab tests for special matrices automatically and chooses a good decomposition/solver



## Special matrices in Matlab

Matlab tests for special matrices automatically and chooses a good decomposition/solver



# Conclusions/summary

The condition of solving a linear system Ax = b is determined by the condition number of the matrix A

$$\kappa(\boldsymbol{A}) = \|\boldsymbol{A}\|\|\boldsymbol{A}^{-1}\| \ge 1$$

Gaussian elimination can be used to solve general square linear systems and produces a factorization, if it exists

$$A = LU$$

Partial pivoting is sufficient for existence and stability of the LU decomposition

$$PA = LU, \quad A = \tilde{L}U$$

- The Cholesky factorization A = LL<sup>T</sup> exists if A is spd and then it is the better choice (cheaper) than LU
- Rely on the highly optimized routines in Matlab (LAPACK) and other software packages than implementing these algorithms yourself ~>> take the course on HPC next spring to learn more about the efficient *implementation* of these algorithms

Sparse matrices

### Sparse matrix

A matrix where a substantial fraction of the entries are zero is called a sparse matrix. Typically, only O(N) non-zero entries in an N × N matrix are allowed for sparse algorithms to show benefit over dense linear algebra routines.

► If we have only O(N) non-zero entries, then store only those; in contrast to dense matrices. Exploiting sparsity is important (life saving) for large matrices

The structure of a sparse matrix refers to the set of indices i, j such that |a<sub>ij</sub>| > 0 and is visualized in Matlab with spy

The structure of sparse matrices comes from the nature of the problem, e.g., in an inter-city road transportation problem it corresponds to the pairs of cities connected by a road.

In fact, just counting the number of non-zero elements is not enough: the sparsity structure is the most important property that determines whether an efficient method exists
48/61

### Banded matrices

Banded matrices are a very special but common type of sparse matrices, e.g., tridiagonal matrices

$$\begin{bmatrix} a_1 & c_1 & 0 \\ b_2 & a_2 & & \\ & \ddots & c_{n-1} \\ 0 & b_n & a_n \end{bmatrix}$$

For example, think of the Laplace problem u''(x) = f(x) on the unit interval and a finite-difference discretization

$$u''(x) \approx \frac{u(x+h) - 2u(x) + u(x-h)}{h^2}$$

on an equidistant grid. This leads to a system of equations with a tridiagonal matrix ~> Numerical Methods II (Spring semester)

There exist special techniques for banded matrices that are much faster than the general case, e.g., only 8n FLOPs

### Decomposing sparse matrices

There also are general methods for dealing with sparse matrices, such as the sparse LU factorization.

How well they work depends on the structure of the matrix. What could go wrong?

### Decomposing sparse matrices

There also are general methods for dealing with sparse matrices, such as the sparse LU factorization.

How well they work depends on the structure of the matrix. What could go wrong?

When factorizing sparse matrices, the factors, e.g., L and U, can be much less sparse than  $A \rightsquigarrow \text{fill-in}$ 

For many sparse matrices, there is a large fill-in

- Pivoting can help to reduce fill-in
- However, often "good" pivoting for sparsity leads to less stable behavior and vice versa

# Sparse matrices in Matlab

| 1:         | % S = sparse | e(i,j,v) g   | enerates a  | sparse   | matrix S |       |
|------------|--------------|--------------|-------------|----------|----------|-------|
| 2:         | % from the t | triplets i   | , j, v with | n S(i(k) | ,j(k)) = | v(k). |
| 3:         | >> A = spars | se([1 2 2    | 4 4], [3 1  | 4 2 3],  | 1:5)     |       |
| 4:         | A =          |              |             |          |          |       |
| 5:         | (2,1)        | 2            |             |          |          |       |
| 6:         | (4,2)        | 4            |             |          |          |       |
| 7:         | (1,3)        | 1            |             |          |          |       |
| 8:         | (4,3)        | 5            |             |          |          |       |
| 9:         | (2,4)        | 3            |             |          |          |       |
| 10:        | >> whos A    |              |             |          |          |       |
| 11:        | Name         | Size         | Byte        | es Clas  | S        |       |
| Attributes |              |              |             |          |          |       |
| 12:        | А            | $4 \times 4$ | 12          | 20 doub  | le spa   | arse  |
| 13:        | >> nnz(A)    |              |             |          |          |       |
| 14:        | ans =        |              |             |          |          |       |
| 15:        | 5            |              |             |          |          |       |

1: % S = sparse(i,j,v,m,n,nz) allocates space for nz nonzero elements.

- 2: % Use this syntax to allocate extra space for nonzero values to be filled in after construction.
- 3: >> A = sparse([], [], [], 4, 4, 5); 4: >> A(2, 1) = 2; A(4, 2) = 4; A(1, 3) = 1; A(4, 3) = 5; A(2, 4) = 3; 5: >> full(A) 6: 7: ans = 8: 9: 0 0 1 0

3

0

0

0

0

5

0

0

4

10:

11:

12:

2

0

0

```
1: % generate a random sparse matrix with density 10% and size 100x100
```

```
2: >> B = sprand(100, 100, 0.1);
```

```
3: % the sparse block tridiagonal matrix of order n^2
    resulting from discretizing Poisson's equation with
    the 5-point operator on an n-by-n mesh.
4: >> X = gallery('poisson', 10);
```

- 5: >> spy(B);
- 6: >> spy(X);



```
1: >> [L, U, P] = lu(B);
2: >> spy(L);
3: >> spy(U);
4:
5: >> [L, U, P] = lu(X);
6: >> spy(L);
7: >> spy(U);
```



A lot of fill-in! Factors L and U are not sparse, even though matrix B is sparse


Though better than for matrix B with random sparsity structure, there still are many more non-zero entries in the factors of X than in X itself.

Changing the sparsity structure via re-ordering the matrix can help to reduce fill-in. For example, in Matlab the sparse reverse Cuthill-McKee ordering is implemented.

The re-ordered matrix tends to have its nonzero elements closer to the diagonal. This is a good preordering for LU or Cholesky factorization of matrices.

```
1: >> p = symrcm(B);
2: >> spy(B(p, p));
3: >> [L, U, P] = lu(B(p, p));
4: >> spy(L);
 5: >> spy(U);
6:
7: >> p = symrcm(X)
8: >> spy(X(p, p));
9: >> [L, U, P] = lu(X(p, p));
10: >> spy(L);
11: >> spy(U);
```



#### (a) re-ordered *B* matrix

(b) factor L of re-ordered B

- Notice how the non-zero elements tend to be closer to the diagonal of the re-ordered B compared to the original B
- $\blacktriangleright$  The fill-in is reduced from  $\sim$  3500 to  $\sim$  3200 non-zero entries; reduction of <10%
- It is hard to find a good ordering for matrix with a random sparsity structure



(a) re-ordered X matrix

(b) factor L of re-ordered X

Non-zero entries of re-ordered X are closer to the diagonal than for the original X
 Fill-in is reduced by a roughly 20% from ~ 1000 to ~ 800 non-zero entries

While there are general techniques for dealing with sparse matrices that help greatly, it all depends on the structure of the matrix

Pivoting has a dual, sometimes conflicting goal:

- 1. Reduce fill-in, i.e., improve memory use: Still active subject of research!
- 2. Reduce roundoff errors, i.e., improve stability. Typically some threshold pivoting is used only when needed

For many sparse matrices *iterative methods* (later) are required when large fill-in.

- Upload slides before class
- Neater handwriting and going slower when writing on board

Upload slides before class

Neater handwriting and going slower when writing on board

Define terms clearly instead of assuming everyone knows

- Neater handwriting and going slower when writing on board
- Define terms clearly instead of assuming everyone knows
- More intuitive explanations and motivations

- Neater handwriting and going slower when writing on board
- Define terms clearly instead of assuming everyone knows
- More intuitive explanations and motivations
- Show examples in Matlab rather than just on slides

- Neater handwriting and going slower when writing on board
- Define terms clearly instead of assuming everyone knows
- More intuitive explanations and motivations
- Show examples in Matlab rather than just on slides
- TA sessions

- Neater handwriting and going slower when writing on board
- Define terms clearly instead of assuming everyone knows
- More intuitive explanations and motivations
- Show examples in Matlab rather than just on slides
- TA sessions
- Code examples are interesting

#### Given data points/measurements

$$(t_i, b_i), \quad i=1,\ldots,m$$

and a model function  $\phi$  that relates t and b:

$$b = \phi(t; x_1, \ldots, x_n),$$

where  $x_1, \ldots, x_n$  are model function parameters. If the model is supposed to describe the data, the deviations/errors

$$\Delta_i = b_i - \phi(t_i, x_1, \ldots, x_n)$$

should be small. Thus, to fit the model to the measurements, one must choose  $x_1, \ldots, x_n$  appropriately.

 $\rightsquigarrow$  visualization on board



Least squares: Find  $x_1, \ldots, x_n$  such that

$$rac{1}{2}\sum_{i=1}^m\Delta_i^2
ightarrow \mathsf{min}$$

Weighted least squares: Find  $x_1, \ldots, x_n$  such that

$$\frac{1}{2}\sum_{i=1}^{m}\left(\frac{\Delta_{i}}{\delta b_{i}}\right)^{2}\rightarrow\min,$$

where  $\delta b_i > 0$  contain information about how much we trust the *i*th data point.

Least-squares problems (cont'd)

Alternatives to using squares:

 $L^1$  error: Find  $x_1, \ldots, x_n$  such that

$$\sum_{i=1}^m |\Delta_i| \to \min$$

Result can be very different, other statistical interpretation, more stable with respect to outliers.

 $L^{\infty}$  error: Find  $x_1, \ldots, x_n$  such that

$$\max_{1\leq i\leq m} |\Delta_i| \to \min$$

Keeps the worst-case error small (risk averse)

# Numerical Methods I MATH-GA 2010.001/CSCI-GA 2420.001

Benjamin Peherstorfer Courant Institute, NYU

Based on slides by G. Stadler and A. Donev

## Today

#### Last time

- Cost analysis of LU decomposition
- Solving linear systems with sparse matrices
- Least-squares problems

#### Today

Least-squares problems

#### Announcements

► Homework 2 has been posted; is due next week Mon, Oct 7 *before class* 

### Recap: Least-squares problems

Given data points/measurements

$$(t_i, b_i), \quad i=1,\ldots,m$$

and a model function  $\phi$  that relates t and b:

$$b=\phi(t;x_1,\ldots,x_n),$$

where  $x_1, \ldots, x_n$  are model function parameters. If the model is supposed to describe the data, the deviations/errors

$$\Delta_i = b_i - \phi(t_i, x_1, \ldots, x_n)$$

should be small. Thus, to fit the model to the measurements, one must choose  $x_1, \ldots, x_n$  appropriately.

## Recap: Least-squares problems

Least squares: Find  $x_1, \ldots, x_n$  such that

$$rac{1}{2}\sum_{i=1}^m\Delta_i^2
ightarrow \mathsf{min}$$

Weighted least squares: Find  $x_1, \ldots, x_n$  such that

$$\frac{1}{2}\sum_{i=1}^{m}\left(\frac{\Delta_{i}}{\delta b_{i}}\right)^{2}\rightarrow\min,$$

where  $\delta b_i > 0$  contain information about how much we trust the *i*th data point.

#### Linear least-squares

We assume (for now) that the model depends linearly on  $x_1, \ldots, x_n$ , e.g.:

$$\phi(t; x_1, \ldots x_n) = a_1(t)x_1 + \ldots + a_n(t)x_n$$

 $\rightsquigarrow$  board

$$\phi(t_{i}, x_{i}, x_{2}) = x_{i}t^{2} + x_{2} \exp(t) \quad ; \text{ doto points } (t_{i}, b_{i}), i=0.3$$

$$\Delta_{i} = b_{i} - (x_{i} + t_{i}^{2} + x_{2} \exp(t_{i}))$$

$$\Delta_{2} = b_{2} - (x_{i} + t_{2}^{2} + x_{2} \exp(t_{2}))$$

$$\Delta_{3} = b_{3} - (x_{i} + t_{3}^{2} + x_{2} \exp(t_{3}))$$

$$\min \sum_{x_{i} \times 2}^{3} \Delta_{i}^{2} \qquad 2 \text{ unknows}$$

$$x_{i} \times 2 \quad z = 0$$

### Linear least-squares

Choosing the least square error, this results in

$$\min_{\mathbf{x}} ||A\mathbf{x} - \mathbf{b}||^2,$$
  
where  $\mathbf{x} = (x_1, \dots, x_n)^T$ ,  $\mathbf{b} = (b_1, \dots, b_m)^T$ , and  $a_{ij} = a_j(t_i)$ .  
In the following, we study the overdetermined case, i.e.,  $m \ge n \rightsquigarrow$  board

$$A = \begin{pmatrix} f_1^2 & exp(f_1) \\ f_2^2 & exp(f_2) \\ f_3^2 & exp(f_3) \end{pmatrix} \times = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$
$$\in \mathbb{R}^{3\times 2} \quad \in \mathbb{R}^2 \quad \in \mathbb{R}^3$$
$$m = 3, n = 2$$

#### Linear least-squares

#### Different perspective:

Consider non-square matrices  $A \in \mathbb{R}^{m \times n}$  with  $m \ge n$  and rank(A) = n. Then the system

$$A\mathbf{x} = \mathbf{b}$$

does not necessarily have a solution (more equations than unknowns). We thus instead solve a minimization problem

$$\min_{\boldsymbol{x}} \|A\boldsymbol{x} - \boldsymbol{b}\|^2 = \min_{\boldsymbol{x}} \Phi(\boldsymbol{x})$$

How can we solve this optimization problem?

Because we consider the Euclidean norm  $\|.\|_2$ , we obtain

$$\Phi(\mathbf{x}) = (\mathbf{A}\mathbf{x} - \mathbf{b})^{\mathsf{T}}(\mathbf{A}\mathbf{x} - \mathbf{b}) = \mathbf{x}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} - \dots$$

which is quadratic in  $\boldsymbol{x}$  if  $\boldsymbol{A}$  has full rank  $\rightsquigarrow$  convex in  $\boldsymbol{x}$ 

Therefore, the critical point is the global optimum

$$\nabla \Phi(\boldsymbol{x}) = \boldsymbol{A}^T (2(\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b})) = \boldsymbol{0}$$

which satisfies the *normal equations* 

$$\boldsymbol{A}^{\mathsf{T}}\boldsymbol{A}\boldsymbol{x}=\boldsymbol{A}^{\mathsf{T}}\boldsymbol{b}.$$

If **A** is full rank, rank( $\mathbf{A}$ ) = n, then  $\mathbf{A}^T \mathbf{A}$  is positive definite and the normal equations can be solved with the Cholesky factorization

Because we consider the Euclidean norm  $\|.\|_2$ , we obtain

$$\Phi(\mathbf{x}) = (\mathbf{A}\mathbf{x} - \mathbf{b})^{\mathsf{T}}(\mathbf{A}\mathbf{x} - \mathbf{b}) = \mathbf{x}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} - \dots$$

which is quadratic in  $\boldsymbol{x}$  if  $\boldsymbol{A}$  has full rank  $\rightsquigarrow$  convex in  $\boldsymbol{x}$ 

Therefore, the critical point is the global optimum

$$\nabla \Phi(\boldsymbol{x}) = \boldsymbol{A}^T (2(\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b})) = \boldsymbol{0}$$

which satisfies the *normal equations* 

$$\boldsymbol{A}^{\mathsf{T}}\boldsymbol{A}\boldsymbol{x}=\boldsymbol{A}^{\mathsf{T}}\boldsymbol{b}.$$

If **A** is full rank, rank( $\mathbf{A}$ ) = n, then  $\mathbf{A}^T \mathbf{A}$  is positive definite and the normal equations can be solved with the Cholesky factorization (warning: we shouldn't do this, can you already see why?)

A geometry perspective on the normal equations

min 
$$(|Ax-b||_{2}^{2}, A \in \mathbb{R}^{n \times 2}, m > n, ron \Re(A) = n$$
  
 $K \in \mathbb{R}^{n}$ 

$$\int_{\mathbb{R}} \int_{\mathbb{R}} \int$$

This unique UEU is called the onthogonal projection of v onto U U = P(v)P is (inear. thus (finite-dim), there exists matrix P Soch Kapf 0= 10 Now opply geometric interpretation to find normal equations  $\overline{X} = \Theta rg mig || Ax - b||_{2}^{L}$  $x \in \mathbb{R}^{m}$  $V = \mathbb{R}^{m}, \quad V = \mathbb{R}(A) \subset V$ 116-Ax112 = min (=> < b-Ax, Ax'>=0 Vx'elle L=> < AT(6-Ax), x'>=0 &x'ell' E-> ATAX = ATB  $2 = 7 \times = (A^T A)^{-1} A^T b$ A (ATA) AT projector outo column spore of A solve: Ax=Pb = A(A'A)'A'b => x=(A'A)'A'b

Linear least-squares problems

Solving the normal equations

$$A^{T}A\bar{\boldsymbol{x}} = A^{T}\boldsymbol{b}$$

requires:

• computing 
$$A^T A$$
 (which is  $O(mn^2)$ )

• condition number of  $A^T A$ ?  $\rightsquigarrow$  board

Becouse 
$$f_2(A^TA) = f_2(A)^2$$
 we should  
not compute with  $A^TA$  even

->

## Linear least-squares problems

Solving the normal equations

$$A^{\mathsf{T}}A\bar{\boldsymbol{x}}=A^{\mathsf{T}}\boldsymbol{b}$$

requires:

• computing 
$$A^T A$$
 (which is  $O(mn^2)$ )

Condition number of A<sup>T</sup>A? → board is square of condition number of A; (problematic for the Choleski factorization)

# Numerical Methods I MATH-GA 2010.001/CSCI-GA 2420.001

Benjamin Peherstorfer Courant Institute, NYU

Based on slides by G. Stadler and A. Donev
## Today

#### Last time

Least-squares problems

#### Today

Least-squares problems

#### Announcements

Homework 2 has been posted; is due next week Mon, Oct 7 before class

#### Recap: Linear least-squares

Consider non-square matrices  $A \in \mathbb{R}^{m \times n}$  with  $m \ge n$  and rank(A) = n. Then the system

$$A\mathbf{x} = \mathbf{b}$$

does not necessarily have a solution (more equations than unknowns). We thus instead solve a minimization problem

$$\min_{\boldsymbol{x}} \|A\boldsymbol{x} - \boldsymbol{b}\|^2 = \min_{\boldsymbol{x}} \Phi(\boldsymbol{x})$$

#### Recap: Linear least-squares

Consider non-square matrices  $A \in \mathbb{R}^{m \times n}$  with  $m \ge n$  and rank(A) = n. Then the system

$$A\mathbf{x} = \mathbf{b}$$

does not necessarily have a solution (more equations than unknowns). We thus instead solve a minimization problem

$$\min_{\boldsymbol{x}} \|A\boldsymbol{x} - \boldsymbol{b}\|^2 = \min_{\boldsymbol{x}} \Phi(\boldsymbol{x})$$

Solving the normal equations

$$A^T A \bar{\mathbf{x}} = A^T \mathbf{b}$$

requires:

• computing 
$$A^T A$$
 (which is  $O(mn^2)$ )

Condition number of A<sup>T</sup>A? → is square of condition number of A; (problematic for the Choleski factorization)

#### Recap: Least-squares problems



# Recap: Linear least-squares problems

Conditioning

Solving the normal equation is equivalent to computing Pb, the orthogonal projection of **b** onto the subspace V spanned by columns of A.

Let  $P : \mathbb{R}^m \to V$  be an orthogonal projection onto  $V \subseteq \mathbb{R}^n$ . For  $b \in \mathbb{R}^m$ , denote by  $\theta$  the angle between b and V defined by

$$\sin(\theta) = \frac{\|b - Pb\|_2}{\|b\|_2}$$

The relative condition number of projecting b onto V with P with respect to the 2-norm (b is input) is

$$\kappa_{\mathsf{rel}}(b) = rac{1}{\cos( heta(b))} \|P\|_2 \,.$$

 $\rightsquigarrow$  board

P: R" -> V ogthogonal proj cento V SIR" For b ell', denote angle v between b and V that is defined as Sin(v) = (16-P61/2 1101/2 Then the relative conditions number of (P,b) w.r.f. 2- horn Bred = L (1P112 Def: f: X-> 7 differentisble Brel = 1 P(x) 11 [1 P'(x)] Projection : Pis Cineon => differitioble Rerd (b) = 11611 (P'(6)) (1) P'(b) = P6-P6 1 P6 11 P 611 (2) $(|Pb||^2 = ||b||^2 - ||b-Pb||^2$  $||b||^2$ 





#### Linear least-squares problems

Now for the least-squares problem  $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2$ . The relative condition number  $\kappa$  in the Euclidean norm is bounded by

► With respect to perturbations in **b**:

$$\kappa \leq \frac{\kappa_2(A)}{\cos(\theta)}$$

► With respect to perturbations in **A**:

$$\kappa \leq \kappa_2({\mathsf A}) + \kappa_2({\mathsf A})^2 an( heta)$$

Proof → next week What are these bounds telling us?

#### Linear least-squares problems

Now for the least-squares problem  $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2$ . The relative condition number  $\kappa$  in the Euclidean norm is bounded by

► With respect to perturbations in **b**:

$$\kappa \leq \frac{\kappa_2(A)}{\cos(\theta)}$$

► With respect to perturbations in **A**:

$$\kappa \leq \kappa_2({\mathsf A}) + \kappa_2({\mathsf A})^2 an( heta)$$

Proof  $\rightsquigarrow$  next week What are these bounds telling us? Small residual problems, small angle  $\theta \cos(\theta) \approx 1$ ,  $\tan(\theta) \approx 0$ : behavior similar to linear system. Large residual problems, large angle  $\theta \cos(\theta) \ll 1$ ,  $\tan(\theta) \approx 1$ : behavior very different from linear system because  $\kappa_2(A)^2$  shows up

## How should we solve least-squares problems numerically?

We know from the previous slide that if the residual is large, then the condition  $\kappa$  is much larger than  $\kappa_2(A)$  (closer to  $\kappa_2(A)^2$ )

This is a poorly condition problem; however, do we care?

## How should we solve least-squares problems numerically?

We know from the previous slide that if the residual is large, then the condition  $\kappa$  is much larger than  $\kappa_2(A)$  (closer to  $\kappa_2(A)^2$ )

- This is a poorly condition problem; however, do we care?
- ▶ If the residual is large, then our **Ax** won't explain well the right-hand side **b**
- This means that "our curve doesn't fit well the data" and we probably should try to find another space in which to search for a solution (another **A** with a range that better approximates the projected right-hand side **b**)

More relevant is the situation with a small residual and then  $\kappa \approx \kappa_2(A)$ 

Here we have a well condition problem; so what could go wrong?

More relevant is the situation with a small residual and then  $\kappa \approx \kappa_2(A)$ 

- Here we have a well condition problem; so what could go wrong?
- If we choose a numerical method that solves the normal equations

$$oldsymbol{A}^{ op}oldsymbol{A} oldsymbol{x} = oldsymbol{A}^{ op}oldsymbol{b}$$

then our problem becomes the problem of solving the linear system with matrix  $\mathbf{A}^{T}\mathbf{A}$ , which has condition number

$$\kappa_2(\boldsymbol{A}^T\boldsymbol{A}) = \kappa_2(\boldsymbol{A})^2$$

More relevant is the situation with a small residual and then  $\kappa \approx \kappa_2(A)$ 

- Here we have a well condition problem; so what could go wrong?
- If we choose a numerical method that solves the normal equations

$$oldsymbol{A}^{ op}oldsymbol{A} oldsymbol{x} = oldsymbol{A}^{ op}oldsymbol{b}$$

then our problem becomes the problem of solving the linear system with matrix  $\mathbf{A}^{T}\mathbf{A}$ , which has condition number

$$\kappa_2(\boldsymbol{A}^T\boldsymbol{A}) = \kappa_2(\boldsymbol{A})^2$$

 $\rightsquigarrow$  we are back in the situation of a poorly condition problem ("solving a linear system with  $\mathbf{A}^{T}\mathbf{A}$ ") even though our original problem (least-squares problem) is well condition

Can we do better and solve the least-squares problem (the problem we are actually interested in) without having to solve a problem with condition that grows with κ<sub>2</sub>(**A**)<sup>2</sup> on the way?

### The QR decomposition

Recall that projecting **b** onto the column span (range) of **A** was the key step  $\rightsquigarrow$  let's try to find a numerical method that computes an orthonormal basis  $q_1, \ldots, q_n$  of the rank-*n* column span of **A** 



with an invertible matrix  $\boldsymbol{R}$  so that

 $\operatorname{span}(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_k)=\operatorname{span}(\boldsymbol{q}_1,\ldots,\boldsymbol{q}_k), \qquad k=1,\ldots,n$ 



What process does this motivate?

This motivates a process for computing the basis  $\boldsymbol{q}_1, \ldots, \boldsymbol{q}_n$ 

- At step *j*, we have  $\boldsymbol{q}_1, \ldots, \boldsymbol{q}_{j-1}$  that span span $(\boldsymbol{a}_1, \ldots, \boldsymbol{a}_{j-1})$
- We want to find  $\boldsymbol{q}_j$  orthonormal to  $\boldsymbol{q}_1, \ldots, \boldsymbol{q}_{j-1}$  so that  $\boldsymbol{q}_1, \ldots, \boldsymbol{q}_j$  spans span $(\boldsymbol{a}_1, \ldots, \boldsymbol{a}_j)$

► Thus, set

$$oldsymbol{v}_j = oldsymbol{a}_j - (oldsymbol{q}_1^Toldsymbol{a}_j)oldsymbol{q}_1 - (oldsymbol{q}_2^Toldsymbol{a}_j)oldsymbol{q}_2 - \cdots - (oldsymbol{q}_{j-1}^Toldsymbol{a}_j)oldsymbol{q}_{j-1}$$

and normalize

$$oldsymbol{q}_j = rac{oldsymbol{v}_j}{\|oldsymbol{v}_j\|_2}$$

Notice that at step j, the quantities  $\boldsymbol{q}_1^T \boldsymbol{a}_j, \boldsymbol{q}_2^T \boldsymbol{a}_j, \dots, \boldsymbol{q}_{j-1}^T \boldsymbol{a}_j$  are the values  $r_{j,1}, \dots, r_{j,j-1}$  and  $r_{jj}$  is responsible for the normalization and set to

$$r_{jj} = \|a_j - \sum_{i=1}^{j-1} r_{ij}q_i\|_2$$

This process is the *classical Gram-Schmidt* procedure to compute the *QR* factorization

This motivates a process for computing the basis  $\boldsymbol{q}_1, \ldots, \boldsymbol{q}_n$ 

- At step *j*, we have  $\boldsymbol{q}_1, \ldots, \boldsymbol{q}_{j-1}$  that span span $(\boldsymbol{a}_1, \ldots, \boldsymbol{a}_{j-1})$
- We want to find q<sub>j</sub> orthonormal to q<sub>1</sub>,..., q<sub>j-1</sub> so that q<sub>1</sub>,..., q<sub>j</sub> spans span(a<sub>1</sub>,..., a<sub>j</sub>)

► Thus, set

$$oldsymbol{v}_j = oldsymbol{a}_j - (oldsymbol{q}_1^Toldsymbol{a}_j)oldsymbol{q}_1 - (oldsymbol{q}_2^Toldsymbol{a}_j)oldsymbol{q}_2 - \cdots - (oldsymbol{q}_{j-1}^Toldsymbol{a}_j)oldsymbol{q}_{j-1}$$

and normalize

$$oldsymbol{q}_j = rac{oldsymbol{v}_j}{\|oldsymbol{v}_j\|_2}$$

Notice that at step j, the quantities  $\boldsymbol{q}_1^T \boldsymbol{a}_j, \boldsymbol{q}_2^T \boldsymbol{a}_j, \dots, \boldsymbol{q}_{j-1}^T \boldsymbol{a}_j$  are the values  $r_{j,1}, \dots, r_{j,j-1}$  and  $r_{jj}$  is responsible for the normalization and set to

$$r_{jj} = \|a_j - \sum_{i=1}^{j-1} r_{ij}q_i\|_2$$

This process is the *classical Gram-Schmidt* procedure to compute the *QR* factorization However, this process is numerically unstable!

Instead of directly computing

$$\mathbf{v}_j = \mathbf{a}_j - (\mathbf{q}_1^T \mathbf{a}_j) \mathbf{q}_1 - (\mathbf{q}_2^T \mathbf{a}_j) \mathbf{q}_2 - \cdots - (\mathbf{q}_{j-1}^T \mathbf{a}_j) \mathbf{q}_{j-1}$$

Instead of directly computing

$$\mathbf{v}_j = \mathbf{a}_j - (\mathbf{q}_1^T \mathbf{a}_j) \mathbf{q}_1 - (\mathbf{q}_2^T \mathbf{a}_j) \mathbf{q}_2 - \cdots - (\mathbf{q}_{j-1}^T \mathbf{a}_j) \mathbf{q}_{j-1}$$

based on  $a_j$ , the modified Gram-Schmidt procedure computes  $v_j$  iteratively

$$\begin{aligned} \mathbf{v}_{j}^{(1)} &= \mathbf{a}_{j}, \\ \mathbf{v}_{j}^{(2)} &= \mathbf{v}_{j}^{(1)} - \mathbf{q}_{1}\mathbf{q}_{1}^{T}\mathbf{v}_{j}^{(1)}, & \text{"subtract from } \mathbf{v}_{j}^{(1)} \text{ what is already in } \mathbf{q}_{1}^{"} \\ \mathbf{v}_{j}^{(3)} &= \mathbf{v}_{j}^{(2)} - \mathbf{q}_{2}\mathbf{q}_{2}^{T}\mathbf{v}_{j}^{(2)}, & \text{"subtract from } \mathbf{v}_{j}^{(2)} \text{ what is already in } \mathbf{q}_{2}^{"} \\ &\vdots \\ \mathbf{v}_{j} &= \mathbf{v}_{j}^{(j)} = \mathbf{v}_{j}^{(j-1)} - \mathbf{q}_{j-1}\mathbf{q}_{j-1}^{T}\mathbf{v}_{j}^{(j-1)} \end{aligned}$$

Computing a QR factorization with the modified Gram-Schmidt procedure is stabler than with the classical Gram-Schmidt procedure. However, even the modified Gram-Schmidt procedure can lead to vectors  $q_1, \ldots, q_n$  that are far from orthogonal if the condition number of A is large (see, Golub et al., Matrix Computations, Section 5.2.9) Let's recall what the Gram-Schmidt procedure is doing: It is applying a succession of triangular matrices  $R_k$  on the right of A so that the resulting matrix

$$A\underbrace{R_1R_2\ldots R_n}_{R^{-1}}=Q$$

has orthonormal columns and R is upper-triangular.

Let's recall what the Gram-Schmidt procedure is doing: It is applying a succession of triangular matrices  $R_k$  on the right of A so that the resulting matrix

$$A\underbrace{R_1R_2\ldots R_n}_{R^{-1}}=Q$$

has orthonormal columns and R is upper-triangular.

Instead, we could try to find orthonormal matrices  $(\mathbf{X}^T \mathbf{X} = \mathbf{X} \mathbf{X}^T = \mathbf{I})$  so that

$$\underbrace{\frac{\boldsymbol{Q}_n\ldots\boldsymbol{Q}_2\boldsymbol{Q}_1}}_{\boldsymbol{Q}}\boldsymbol{A}=\boldsymbol{R}$$

is upper-triangular. The product  $Q_n \dots Q_2 Q_1 = Q^T$  is orthonormal too and thus A = QR a QR factorization of A.

The Householder method judiciously finds the matrices  $Q_1, Q_2, \ldots, Q_n$  via so-called Householder reflectors  $\rightsquigarrow$  board. The Householder method is backward stable.

All these three algorithms (classical Gram-Schmidt, modified Gram-Schmidt, Householder triangularization) have roughly the FLOPs of  $2mn^2$  for an  $m \times n$  matrix

Why would we ever want to use (modified) Gram-Schmidt instead of Householder triangularization?

Transform A by multiplications with Orthogonal matrices A ~> Q, A ~> Q, Q A ~> ...  $k_{2}(Q) = ||Q|| ||Q^{-1}|| = ( de(Q)) = ($ What are basic orknogonal transformations is 122 reflections (del=-1) votation (del=1) reflect at a hyper plane 07 volate (Coste) sirce) -sirce) coste) rojation D'EVestection D'EVestection go calo v => Grivens votations to construct Q with A=QR projection  $\partial \mapsto \left( I - \frac{v_{v}}{v_{l_{a}}} \right) \partial$ => tex busis reflection  $\sigma \mapsto (1 - 2 \frac{\upsilon u}{\upsilon t})$ => Householder v eflections

Householder transformation







distance of reflection -> Vohing the reflection corresponding to the longer distance is numerically mon starble.

All these three algorithms (classical Gram-Schmidt, modified Gram-Schmidt, Householder triangularization) have roughly the FLOPs of  $2mn^2$  for an  $m \times n$  matrix

Why would we ever want to use (modified) Gram-Schmidt instead of Householder triangularization? Gram-Schmidt can be easier to parallelize, for example (Recall that best algorithm depends also on what hardware we want to implement it on.)

Every matrix  $A \in \mathbb{R}^{m \times n}$  with  $m \ge n$  has a QR factorization. It is unique if we require the diagonal elements of R to be positive.

If m > n and  $Q \in \mathbb{R}^{m \times n}$ , then we speak of a reduced QR factorization. Otherwise, we have  $Q \in \mathbb{R}^{m \times m}$  and we speak of a full QR factorization.

```
1: >> A = randn(10, 10); [Q, R] = qr(A);
2: >> size(Q)
3: ans =
4: 10 10
5: >> size(R)
6: ans =
7: 10 10
```

```
1: >> A = randn(10, 4); [Q, R] = qr(A)
2: >> size(Q)
3: ans =
4: 10 10
5: >> size(R)
6: ans =
7: 10
         4
8: >>
9: >> [Q, R] = qr(A, 0); \% reduced QR
10: >> size(Q)
11: ans =
12: 10 4
13: >> size(R)
14: ans =
15: 4
             4
```

#### Back to our least-squares problem

One would like to avoid the multiplication  $A^T A$  and use a suitable factorization of A that avoids solving the normal equation directly:

$$A = QR = \begin{bmatrix} Q_1, Q_2 \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix} = Q_1 R_1,$$

where  $Q \in \mathbb{R}^{m \times m}$  is an orthonormal matrix  $(QQ^T = I)$ , and  $R \in \mathbb{R}^{m \times n}$  consists of an upper triangular matrix and a block of zeros.

How can the QR factorization be used to solve the least-squares problem?

#### Back to our least-squares problem

One would like to avoid the multiplication  $A^T A$  and use a suitable factorization of A that avoids solving the normal equation directly:

$$A = QR = \begin{bmatrix} Q_1, Q_2 \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix} = Q_1 R_1,$$

where  $Q \in \mathbb{R}^{m \times m}$  is an orthonormal matrix  $(QQ^T = I)$ , and  $R \in \mathbb{R}^{m \times n}$  consists of an upper triangular matrix and a block of zeros.

How can the QR factorization be used to solve the least-squares problem?

$$\begin{split} \min_{\boldsymbol{x}} \|A\boldsymbol{x} - \boldsymbol{b}\|^2 &= \min_{\boldsymbol{x}} \|Q^T (A\boldsymbol{x} - \boldsymbol{b})\|^2 &= \min_{\boldsymbol{x}} \|\begin{bmatrix} \boldsymbol{b}_1 - R_1 \boldsymbol{x} \\ \boldsymbol{b}_2 \end{bmatrix} \|^2, \\ &= \min_{\boldsymbol{x}} \|\boldsymbol{b}_1 - R_1 \boldsymbol{x}\|^2 + \|\boldsymbol{b}_2\|^2 \end{split}$$
where  $Q^T \boldsymbol{b} = \begin{bmatrix} \boldsymbol{b}_1 \\ \boldsymbol{b}_2 \end{bmatrix}.$ 

Thus, the least squares solution is  $\mathbf{x} = R^{-1}\mathbf{b}_1$  and the residual is  $\|\mathbf{b}_2\|$ .

# Stability of solving least-squares problem with Householder triangularization

Solving a least-squares problem with  $A \in \mathbb{R}^{m \times n}$ ,  $m \ge n$  and rank(A) = n via QR factorization computed with Householder triangularization is backward stable.



# Numerical Methods I MATH-GA 2010.001/CSCI-GA 2420.001

Benjamin Peherstorfer Courant Institute, NYU

Based on slides by G. Stadler and A. Donev

**Eigen decomposition** 

#### Eigen decomposition

For a square matrix  $\mathbf{A} \in \mathbb{C}^{n \times n}$ , there exists at least one  $\lambda$  such that

$$Ax = \lambda x \implies (A - \lambda I)x = 0$$

Putting the eigenvectors  $x_j$  as columns in a matrix X, and the eigenvalues  $\lambda_j$  on the diagonal of a diagonal matrix  $\Lambda$ , we get

$$AX = X\Lambda$$

A matrix is non-defective or diagonalizable if there exist *n* linearly independent eigenvectors, which means that *X* is invertible

$$oldsymbol{X}^{-1}oldsymbol{A}oldsymbol{X}=oldsymbol{\Lambda}\ oldsymbol{A}=oldsymbol{X}oldsymbol{\Lambda}oldsymbol{X}^{-1}$$

► The transformation from **A** to  $\Lambda = X^{-1}AX$  is called a similarity transformation and it preserves the eigenvalues.
A matrix is unitarily diagonalizable if there exist n linearly independent orthogonal eigenvectors, i.e., if the matrix X can be chosen to be unitary (orthonormal),
 X = U, where U<sup>-1</sup> = U<sup>H</sup>

#### $A = U \Lambda U^H$

Note that unitary matrices generalize orthogonal matrices to the complex domain, so we use adjoints (conjugate transpose) instead of transpose throughout

Theorem: A matrix is unitarily diagonlizable iff it is normal, i.e., it commutes with its adjoint:

$$\mathbf{A}^{H}\mathbf{A}=\mathbf{A}\mathbf{A}^{H}$$

► Theorem: Hermitian (symmetric) matrices,  $A^H = A$ , are unitarily diagonalizable and have *real* eigenvalues.

The usual eigenvectors are more precisely called *right* eigenvectors. There are also *left* eigenvectors corresponding to a given eigenvalue λ

$$oldsymbol{y}^Holdsymbol{A} = \lambdaoldsymbol{y}^H \Longrightarrow oldsymbol{A}^Holdsymbol{y} = ar{\lambda}oldsymbol{y} \,,$$
 $oldsymbol{Y}^Holdsymbol{A} = oldsymbol{\Lambda}oldsymbol{Y}^H$ 

with conjugate  $\bar{\lambda}$  of  $\lambda$ 

► For a matrix that is diagonalizable, observe that

$$\boldsymbol{Y}^{H} = \boldsymbol{X}^{-1}$$

and so the left eigenvectors provide no new information

For unitarily diagonalizable matrices, Y = (X<sup>-1</sup>)<sup>H</sup> = (X<sup>H</sup>)<sup>H</sup> = X = U, so that the left and right eigenvectors coincide.

# Numerically finding eigenvalues

For a matrix  $A \in \mathbb{C}^{n \times n}$  (potentially real), we want to find  $\lambda \in \mathbb{C}$  and  $\mathbf{x} \neq 0$  such that

$$A\mathbf{x} = \lambda \mathbf{x}.$$

Most relevant problems:

- A symmetric (and large)
- A spd (and large)
- A stochastic matrix, i.e., all entries  $0 \le a_{ij} \le 1$  are probabilities, and thus  $\sum_j a_{ij} = 1$ .

► This is a nonlinear problem.

► This is a nonlinear problem.

► How difficult is this?

► This is a nonlinear problem.

How difficult is this? Eigenvalues are the roots of the characteristic polynomial. Also, any polynomial is the characteristic polynomial of a matrix ~>> For matrices larger than 4 × 4, eigenvalues cannot be computed in closed form (Abel's theorem).

► This is a nonlinear problem.

How difficult is this? Eigenvalues are the roots of the characteristic polynomial. Also, any polynomial is the characteristic polynomial of a matrix ~>> For matrices larger than 4 × 4, eigenvalues cannot be computed in closed form (Abel's theorem).

Must use an iterative algorithm

► This is a nonlinear problem.

How difficult is this? Eigenvalues are the roots of the characteristic polynomial. Also, any polynomial is the characteristic polynomial of a matrix ~>> For matrices larger than 4 × 4, eigenvalues cannot be computed in closed form (Abel's theorem).

## Condition of finding eigenvalues of a matrix

The absolute condition number of determining a simple eigenvalue  $\lambda_0$  of a matrix  $\mathbf{A} \in \mathbb{C}^{n \times n}$  with respect to the  $\| \cdot \|_2$  is

$$\kappa_{\mathsf{abs}} = rac{1}{|\cos(\angle(oldsymbol{x},oldsymbol{y}))|}, \qquad \cos(\angle(oldsymbol{x},oldsymbol{y})) = rac{|\langleoldsymbol{x},oldsymbol{y}
angle|}{\|oldsymbol{x}\|\|oldsymbol{y}\|}$$

and the relative condition number is

$$\kappa_{\mathsf{rel}} = rac{\|\mathbf{A}\|}{|\lambda_0 \cos(\angle(\mathbf{x}, \mathbf{y}))|},$$

where  $\boldsymbol{x}$  is an eigenvector of  $\boldsymbol{A}$  for the eigenvalue  $\lambda_0$  ( $\boldsymbol{A}\boldsymbol{x} = \lambda_0 \boldsymbol{x}$ ) and  $\boldsymbol{y}$  an adjoint eigenvector ( $\boldsymbol{A}^H \boldsymbol{y} = \bar{\lambda}_0 \boldsymbol{y}$ ).

Sketch of proof  $\rightsquigarrow$  board  $\rightsquigarrow$  next time

(see also Deuflhard, Theorem 5.2)

#### Interpretation

Perturbations of order  $\delta$  in entries of matrix **A** induce changes of the order  $\delta \lambda = \delta / \cos(\angle(\mathbf{x}_0, \mathbf{y}_0))$ 

In particular, for normal matrices<sup>\*</sup>  $(\mathbf{A}\mathbf{A}^{H} = \mathbf{A}^{H}\mathbf{A})$ , we have  $\mathbf{x}_{0} = \mathbf{y}_{0}$  and thus  $\angle(\mathbf{x}_{0}, \mathbf{y}_{0}) = 0$  and thus  $\cos(\angle(\mathbf{x}_{0}, \mathbf{y}_{0})) = 1$ , which means  $\kappa_{abs} = 1$ , which can be considered well conditioned

Finding non-simple eigenvalues can have very high absolute condition number (but can still be done numerically). For a detailed treatment have a look at textbook by Golub et al. on Matrix Computations.

<sup>\*</sup>Equivalent: Have orthonormal eigenbasis of  $\mathbb{C}$ ; diagonalizable by unitary matrix.

#### Bounding error in eigenvalue computation

Let  $\mathbf{A} \in \mathbb{C}^{n \times n}$  be a Hermitian matrix and let  $(\hat{\lambda}, \hat{\mathbf{x}})$  be a computed approximation of an eigenvalue/eigenvector pair  $(\lambda, \mathbf{x})$  of  $\mathbf{A}$ . Defining the residual

$$\hat{m{r}}=m{A}\hat{m{x}}-\hat{\lambda}\hat{m{x}}\,,\qquad \hat{m{x}}
eqm{0}\,,$$

it then follows that

$$\min_{\lambda_i \in \sigma(\boldsymbol{A})} |\hat{\lambda} - \lambda_i| \leq \frac{\|\hat{\boldsymbol{r}}\|_2}{\|\hat{\boldsymbol{x}}\|_2},$$

where  $\sigma(\mathbf{A}) = \{\lambda | \lambda \text{ is an eigenvalue of } \mathbf{A}\}$  is the spectrum of  $\mathbf{A}$ .

Proof  $\rightsquigarrow$  board

What is special about this bound?

Let 
$$A \in C^{1+n}$$
 Hermite , let  $(\hat{\lambda}, \hat{\lambda})$  oppresidents  
of eigenpair  $(\lambda_{1} \hat{\lambda})$ . Define resident  
 $\hat{\gamma} = A \hat{\lambda} - \hat{\lambda} \hat{\lambda}$  ,  $\hat{\lambda} \neq 0$   
if  $follows$   
min  $|\hat{\lambda} - \hat{\lambda}_{1}| \leq \frac{\|\hat{\gamma}\|}{\|\hat{\lambda}\||}$   
 $A$  is Hermite , exists on onthegenal eigenbasis of  $C^{1}$   
 $\hat{\lambda} = \sum_{i=1}^{n} \alpha_{i} \psi_{i}$  with  $\alpha_{i} = \psi_{i}^{H} \hat{x}$   
 $\hat{\gamma} = A \hat{x} - \hat{\lambda} \hat{x} = A(\sum_{i=1}^{n} \omega_{i}) - \hat{\lambda} \sum_{i=1}^{n} \omega_{i}$   
 $= \sum_{i=1}^{n} \alpha_{i} \psi_{i} - \hat{\lambda} \sum_{i=1}^{n} \omega_{i}$   
 $= \sum_{i=1}^{n} \alpha_{i} (\lambda_{i} - \hat{\lambda}) \psi_{i}$   
 $= \sum_{i=1}^{n} \alpha_{i} (\lambda_{i} - \hat{\lambda}) \psi_{i}$   
 $\frac{\|\hat{Y}\||^{2}}{\|\hat{y}\|^{2}} = \frac{\sum_{i=1}^{n} (\alpha_{i})^{2} (\lambda_{i} - \hat{\lambda})^{2} (\|\psi_{i}\||^{2}}{\sum_{i=1}^{n} (\alpha_{i})^{2} (|\psi_{i}||^{2})} (\lambda_{i} - \hat{\lambda})^{2} = \sum_{i=1}^{n} h_{i}^{i} (\lambda_{i} - \hat{\lambda})^{2}$ 

Now note that 
$$(5; \ge 0)$$
  

$$\sum_{i=1}^{n} p_{i}^{i} = \sum_{i=1}^{n} \frac{(\pi_{i})^{2}}{\sum_{j=1}^{n} (\pi_{j})^{2}} = 1$$
Thus  

$$\frac{||\hat{r}||^{2}}{|\hat{x}||^{2}} = \sum_{i=1}^{n} \beta_{i}^{i} (\lambda_{i}^{i} - \hat{x})^{2} \ge \sum_{i=1}^{n} \beta_{i}^{i} \min(\lambda_{j}^{i} - \hat{x})^{2}$$

$$= \min(\lambda_{j}^{i} - \hat{x})^{2} \sum_{i=1}^{n} \beta_{i}^{i} = \min(\lambda_{j}^{i} - \hat{x})^{2}$$

$$= \min(\lambda_{j}^{i} - \hat{x}) \ge \beta_{i}^{i} = \min(\lambda_{j}^{i} - \hat{x})^{2}$$

$$= \min(\lambda_{j}^{i} - \hat{x}) \ge \beta_{i}^{i} = \min(\lambda_{j}^{i} - \hat{x})^{2}$$

#### Bounding error in eigenvalue computation

Let  $\mathbf{A} \in \mathbb{C}^{n \times n}$  be a Hermitian matrix and let  $(\hat{\lambda}, \hat{\mathbf{x}})$  be a computed approximation of an eigenvalue/eigenvector pair  $(\lambda, \mathbf{x})$  of  $\mathbf{A}$ . Defining the residual

$$\hat{m{r}}=m{A}\hat{m{x}}-\hat{\lambda}\hat{m{x}}\,,\qquad \hat{m{x}}
eqm{0}\,,$$

it then follows that

$$\min_{\lambda_i \in \sigma(\boldsymbol{A})} |\hat{\lambda} - \lambda_i| \leq \frac{\|\hat{\boldsymbol{r}}\|_2}{\|\hat{\boldsymbol{x}}\|_2},$$

where  $\sigma(\mathbf{A}) = \{\lambda | \lambda \text{ is an eigenvalue of } \mathbf{A}\}$  is the spectrum of  $\mathbf{A}$ .

Proof  $\rightsquigarrow$  board

#### What is special about this bound?

- This is an a posteriori bound that bounds the error after we have computed the result
- We will see many more residual-based a posteriori bounds (broadly speaking: the residual is something we can compute, and if the problem is "well-behaved" then the norm of the residual is a reasonable bound of the norm of the error.)

## Condition of computing eigenvectors

The condition of computing eigenvector  $x_i$  for an eigenvalue  $\lambda_i$  depends on the separation between the eigenvalues

$$\kappa = rac{1}{\min_{i 
eq j} |\lambda_i - \lambda_j|}$$

(Quarteroni et al., Section 5)

- Computing  $x_i$  can be ill-conditioned if some eigenvalue  $\lambda_j$  is "very close" to the eigenvalue  $\lambda_i$
- This indicates that multiple eigenvalues require care. Even for Hermitian matrices eigenvectors can be hard to compute

The Power Method

Let  $\mathbf{A} \in \mathbb{C}^{n \times n}$  be diagonalizable matrix and  $\lambda_1$  be a simple eigenvalue with

 $|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_n|$ 

Let  $\mathbf{x}_0$  be an initial guess that is not orthogonal to the eigenspace of  $\lambda_1$ , then  $\mathbf{x}_k$  obtained via the iterations

$$z_{k+1} = A x_k$$
(1)  
$$x_{k+1} = z_{k+1} / ||z_{k+1}||_2$$
(2)

will converge to the normalized eigenvector of **A** corresponding to  $\lambda_1$  for  $k \to \infty$ .

This process is called the power method.

 $\mathsf{Proof} \rightsquigarrow \mathsf{board}$ 

Power method  
Ly first 
$$x_{R} = \frac{A^{R} x_{o}}{\|A^{R} x_{o}\|_{2}}$$
  
Ly Because  $A$  is diagonalizable, have vectors  
 $\begin{cases} v_{i} \\ j_{i=1}^{n} \end{cases}$   
with  
 $x_{o} = \sum_{i=1}^{n} v_{i}, \quad q_{i} \neq 0$ 

Because  $|\frac{2i}{\lambda_1}| \leq 1$  per definition of  $\lambda_1$ , the vector  $A^2 x_0$  assumes on increasingly significant component in direction  $v_1$ 

$$\begin{aligned} \chi_{R} &= \frac{\chi_{1}^{R} \chi_{1}^{R} (V_{1} + \gamma^{(R)})}{(|\alpha_{1} \chi_{1}^{R} (V_{1} + \gamma^{(R)})||_{2}} = \chi_{R}^{V_{1}} \frac{V_{1} + \gamma^{(R)}}{||V_{1} + \gamma^{(R)}||_{2}} \\ \text{where } \chi_{R}^{L} \text{ is the sign of } \alpha_{1} \chi_{1}^{R} . \end{aligned}$$

$$\begin{aligned} \text{with} \qquad &||Y^{(R)}|| \implies \text{for } R \Rightarrow \infty \\ \chi_{R}^{L} \longrightarrow \frac{V_{1}}{|V_{1}||} \gamma \\ \text{Convergence speed} \\ \text{component } (n \notin \text{direction } V_{2}^{L} \text{ converges} \\ \text{slowest } \text{with} & \mathcal{O}\left(\left[\frac{\pi}{2}\right]^{R}\right] \\ \Rightarrow \text{ the bigger the gap } \mathcal{L}_{1} \Leftrightarrow \mathcal{L}_{2}^{L} \text{ for } \\ \text{Joslo} \\ \Rightarrow \text{ agoin , well separated } EV \text{ ore , easiest } \psi_{1}^{K} \text{ for } \\ \text{Comparts eigenvalue } \mathcal{L}_{1}^{(R)} = \chi_{1}^{R} \chi_{1}^{R} = \mathcal{L} \quad \text{if } \Psi \text{ is EV with} \\ \mathcal{L}_{1}^{(R)} &= \frac{\chi_{1}^{R} \mathcal{L}_{2}}{\chi_{1}^{T} \chi} = \mathcal{L} \quad \text{if } \Psi \text{ is EV with} \\ \mathcal{L}_{1}^{(R)} &= \frac{\chi_{1}^{R} \mathcal{L}_{2}}{\chi_{1}^{R} \chi_{1}^{R}} \end{aligned}$$

# Power method (cont'd)

Start with initial guess  $x_0$  and then iterate

Compute matrix-vector product and normalize it

$$oldsymbol{x}_k = rac{oldsymbol{A}oldsymbol{x}_{k-1}}{\|oldsymbol{A}oldsymbol{x}_{k-1}\|}$$

▶ Obtain eigenvalue estimate (note that  $||\mathbf{x}_k|| = 1$ )

$$\lambda_1^{(k)} = \boldsymbol{x}_k^H \boldsymbol{A} \boldsymbol{x}_k$$

► Test for convergence? How?

## Power method (cont'd)

Start with initial guess  $x_0$  and then iterate

Compute matrix-vector product and normalize it

$$oldsymbol{x}_k = rac{oldsymbol{A}oldsymbol{x}_{k-1}}{\|oldsymbol{A}oldsymbol{x}_{k-1}\|}$$

• Obtain eigenvalue estimate (note that  $\|\boldsymbol{x}_k\| = 1$ )

$$\lambda_1^{(k)} = \boldsymbol{x}_k^H \boldsymbol{A} \boldsymbol{x}_k$$

Test for convergence? How? Compute residual

$$m{r}_k = m{A}m{x}_k - \lambda_1^{(k)}m{x}_k$$

and terminate if the error estimate is small enough (bound if **A** Hermitian, heuristic otherwise)

$$\min_{i} |\lambda_{i} - \lambda_{1}^{(k)}| \leq \frac{\|\boldsymbol{r}_{k}\|}{\|\boldsymbol{x}_{k}\|} < \epsilon$$

Let us recall the condition humber

11 f(x) - f(x) = leabs 11x - x11, x->x We define " i' to mean  $q(x) \stackrel{\scriptstyle }{\leq} h(x), x \rightarrow x_0 \stackrel{\scriptstyle }{=} g(x) \stackrel{\scriptstyle }{=} h(x) + O(1h(x)(1)) = x \xrightarrow{\scriptstyle }{\to} 0$ Sometine you see  $g(x) \leq h(x) + O(11 hA) \|^{e}$ Thus, the condition number tells vs; 11 f(x15x) - f(x)11 & Eabs 11 Sx11 + O(Sx), St NO This is a porturbation bound. With condition number, leave or receipt how to berive porturbation bounds O formalate problem vion function f @ establish & is differentiable 3 toke derivative of four compute the norm Let us start with "Ax=b' Bound for perfurbation in 6 f: 12 -> 12, 6-> 16)= A'b O

Function f is linear -> differentiable @ Derivotive P'(b) = A' will norm 11A'11 3 Oblain 1 × - ~11 ≤ ((A'(1 (1561) + o (11361)), 11361-00 Now bound for "Ax=b" with perfurbations in A  $f: GL(h) \rightarrow R'', A \mapsto P(A) = A'b$  $\bigcirc$ Devif Chord Villerentiable Lo Cromer's rule Lo Neumonn series Now show: The morping g: GL (m) -> GL (4) with g(A) = A is differnhiable and C E 12 44 g'(A)C = -A'CA'Toke derivative of (A+tc) (A+tc) = I  $O = C(A + tc)^{-1} + (A + tc) = \frac{d}{dt} (A + tc)^{-1}$  $\frac{d}{dt} (A+tc)' = -(A+tc)' C (A+tc)''$  $g'(4)C = g'(A+tc)^{-1}|_{t=0} = -A^{-1}CA^{-1}$ 

Now bock to our condition humber f(A) = A'bf'(A)C = -A'CA'b = -A'Cx $P_{ere}( = \frac{|| A||}{|| P(A)||} || P'(A)||_{Op}$  $= \frac{||A||}{||\times||} \sup_{||C||=1} ||-A^{-1}C_{X}|| \leq$  $\leq \frac{||A(1)|}{||X(1)|} \sup_{||X(1)|} ||A^{-1}|| ||C|| ||X||$  $= (|A|| ||A^{'}|| = h(A)$ Perforbation bound  $\frac{\|x-\bar{x}\|}{\|x\|} \leq \|A\| \|A^{-r}\| \frac{\|A-\bar{A}\|}{\|A\|} + o(\|\delta A\|)$ 115H1 ->0 Now level squares Let A Elkman, man, full rank (A) = n, and x the unique solution 116-Ax112 = min Assume x ×0 our define ongle v between b one R(1) of 1 os  $Sin(v) = \frac{||b-Ax||_2}{||b||_2} = \frac{||v||_2}{||b||_2}$ 

Then  
(a) rel condition number W.r.t. perturbations it bis  

$$\frac{l}{lrel} \leq \frac{l_{2}(A)}{cos(v)}$$
(b) rel cond. number W.r.t. A  

$$\frac{l}{lrel} \leq \frac{l_{2}(A)}{los(v)} + \frac{l_{2}(A)^{2}}{lon(v)}$$
(c)'s cond. (a) first:  
Solution  

$$\times = \phi(b) = (A^{T}A)^{T}A^{T}b \qquad (b)$$

$$\phi(b) = (A^{T}A)^{T}A^{T} \qquad (c)$$

$$\phi'(b) = (A^{T}A)^{T}A^{T} \qquad (c)$$
Assemble condition number  

$$\frac{l|b|l}{l|x|l} || \phi'(b)||$$

$$= \frac{l|b|l}{l|x|l} || \phi'(b)||$$

$$= \frac{l|b|l}{l|x|l} || \phi'(b)||$$
For on full codume nonly in A  

$$\frac{l_{2}(A) = ||A||_{2} || (A^{T}A)^{T}A^{T}||_{2}$$
Pecoll  

$$\frac{l|b|l}{l|Pb|l} = \frac{L}{cos(v)} P = A(A^{T}A)^{T}A^{T}$$

$$\begin{aligned} & \mathcal{E}_{rel} = \frac{\|b\|}{\|A\|} \|_{x|l} \\ & \leq \frac{\|b\|}{\|A\|} \|_{x|l} \\ & \leq \frac{\|b\|}{\|A\times\|} \|_{2}(A) = \frac{\|(b\|)}{\|A(A^{T}_{A})'A^{T}_{b}\|} \\ & = \frac{\|b\|}{\|Pb\|} \|_{2}(A) = \frac{\mathcal{E}_{2}(A)}{(\omega(v))} \end{aligned}$$

Perturbation bound  $\frac{|1 \times - \tilde{\times}|^{2}}{|1 \times ||} \leq \frac{|2}{\cos(\omega)} \frac{|1 \times |1|}{|1 \times ||} + \sigma (|1 \times |1|), |1 \times |1| - so$ Now (b): Our function  $\phi(A) = (A^{T}A)^{-1}A^{T}b$   $\phi(A) = (A^{T}A)^{-1}A^{T}b$   $\phi = 1s$  differentiable, convinced us already earlier e(oustruct derivative by using equation that defines  $\phi$  $(A+tc)^{T}(A+tc) \phi(A+tc) = (A+tc)^{T}b$ 

Tole dorivative  $c^{T}(A+tc) q(A+tc) +$   $(A+tc)^{T}c q(A+tc) +$   $(A+tc)^{T}(A+tc) q(A+tc) = c^{T}b$ Now for t=0 dotain t=0  $q(A+tc) = c^{T}b$ Now for t=0  $q(A+tc) = c^{T}b$  $c^{T}A q(A) + A^{T}C q(A) + A^{T}A q'(A)c = c^{T}b$ 

$$c^{T}Ax + A^{T}Cx + A^{T}A \phi(A)C = c^{T}b$$
  
$$\phi'(A)C = (A^{T}A)^{-1}(c^{T}(b-Ax) - AEx)$$
  
$$= (A^{T}A)^{-1}c^{T}(b-Ax) - (A^{T}A)^{2}A^{T}Cx$$

Estimate norm

Now eigenvolues  
Let 20 cd be a simple eigenvolue of AEC<sup>44</sup>.  
Then there is a could differ mapping  
2: V C C<sup>444</sup> -> C, B to 2(B)  
from a neighborhood V of A in C<sup>444</sup> such Khat  

$$Z(A) = Z_0$$
  
and  $Z(B)$  is a simple eigenvolue of B for all BeV.  
If xo is an eigenvector of A for Zo and Yo  
is a (left) eigenvector of A for Zo and Yo  
 $Z_0$ 

So that  

$$A \times o = Z_0 \times o$$
 and  $A^* Y_0 = \overline{Z_0 Y_0}$ ,  
then the derivative of Z oil A satisfies  
 $Z'(A)C = \frac{\zeta C \times o_1 Y_0}{\langle \times o_1 Y_0 \rangle}$  for oll  $C \in C^{max}$ .

Similar to before, we consider the matrix A+tC, CEC<sup>4+4</sup> and would to understand the solution map 2(t).

A e C<sup>NXV</sup> has is eigenvolues of which of the  
ore distinct, then the chan polymial is  

$$X_{A}(A) = det(A - \lambda I) = \prod_{i=1}^{m} (A_{i} - \lambda)$$

$$= \prod_{i=1}^{d} (A_{i}' - \lambda)^{M(A_{i}')}$$
With  $M(A_{i}')$  being the algebraic multiplicity  
of the eigenvolue  $A_{i}'$ .  
Simple means  
 $M(A_{0}) = 1$   
Because we have a simple eigenvalue  
 $X_{A}'(A_{0}) \neq 0$   
Define function  
 $F(t, \lambda) = X_{A+tc}(A)$   
Apply implicit function theorem to show  
 $\lambda : Ce_{i}e_{i} = C$  is cont. of  $f(i)$ , with  $\lambda(a) = 2a$   
 $\lambda(A_{0}) = 0$   
 $\lambda : F(t_{0}, A_{0}) = X_{A}(A_{0}) = 0$ 

Γ

L>  $\frac{\partial}{\partial A} F(t,A)\Big|_{to,A_0} = \chi'_{A+tc}(A)\Big|_{to,A_0} = \chi'_{A}(A) \neq 0$ => there exists  $\mathcal{Z}: (-e, e) \rightarrow c \rightarrow s$  shoked above. Similarly, use that  $\mathcal{Z}_0$  is simple to determine Coult diff  $\chi: (-e, e) \rightarrow C'_{1}$   $f \mapsto \chi(t)$ Such that  $\chi(0) = \chi_0$  and  $\chi(t)$  is eigenvector of Aitc for eigenvalue  $\mathcal{Z}(t)$ . Now we can differentiate with the equation

 $(A+tc) \times (+) = \mathcal{A}(+) \times (+)$ 

# Numerical Methods I MATH-GA 2010.001/CSCI-GA 2420.001

Benjamin Peherstorfer Courant Institute, NYU

Based on slides by G. Stadler and A. Donev

# Today '

#### Last time

- Computing eigenvalues
- Perturbation bounds

#### Today

More on computing the eigenvalues

#### Announcements

► Homework 3 posted, is due Mon, Oct 21 before class

# Numerically finding eigenvalues

For a matrix  $A \in \mathbb{C}^{n \times n}$  (potentially real), we want to find  $\lambda \in \mathbb{C}$  and  $\mathbf{x} \neq 0$  such that

$$A\mathbf{x} = \lambda \mathbf{x}.$$

Most relevant problems:

- A symmetric (and large)
- A spd (and large)
- A stochastic matrix, i.e., all entries  $0 \le a_{ij} \le 1$  are probabilities, and thus  $\sum_j a_{ij} = 1$ .

► This is a nonlinear problem.
► This is a nonlinear problem.

► How difficult is this?

► This is a nonlinear problem.

How difficult is this? Eigenvalues are the roots of the characteristic polynomial. Also, any polynomial is the characteristic polynomial of a matrix ~>> For matrices larger than 4 × 4, eigenvalues cannot be computed in closed form (Abel's theorem).

► This is a nonlinear problem.

How difficult is this? Eigenvalues are the roots of the characteristic polynomial. Also, any polynomial is the characteristic polynomial of a matrix ~>> For matrices larger than 4 × 4, eigenvalues cannot be computed in closed form (Abel's theorem).

Must use an iterative algorithm

► This is a nonlinear problem.

How difficult is this? Eigenvalues are the roots of the characteristic polynomial. Also, any polynomial is the characteristic polynomial of a matrix ~>> For matrices larger than 4 × 4, eigenvalues cannot be computed in closed form (Abel's theorem).

## Condition of finding eigenvalues of a matrix

The absolute condition number of determining a simple eigenvalue  $\lambda_0$  of a matrix  $\mathbf{A} \in \mathbb{C}^{n \times n}$  with respect to the  $\| \cdot \|_2$  is

$$\kappa_{\mathsf{abs}} = rac{1}{|\cos(\angle(oldsymbol{x},oldsymbol{y}))|}, \qquad \cos(\angle(oldsymbol{x},oldsymbol{y})) = rac{|\langleoldsymbol{x},oldsymbol{y}
angle|}{\|oldsymbol{x}\|\|oldsymbol{y}\|}$$

and the relative condition number is

$$\kappa_{\mathsf{rel}} = rac{\|\mathbf{A}\|}{|\lambda_0 \cos(\angle(\mathbf{x}, \mathbf{y}))|},$$

where  $\boldsymbol{x}$  is an eigenvector of  $\boldsymbol{A}$  for the eigenvalue  $\lambda_0$  ( $\boldsymbol{A}\boldsymbol{x} = \lambda_0 \boldsymbol{x}$ ) and  $\boldsymbol{y}$  an adjoint eigenvector ( $\boldsymbol{A}^H \boldsymbol{y} = \bar{\lambda}_0 \boldsymbol{y}$ ).

Sketch of proof  $\rightsquigarrow$  board  $\rightsquigarrow$  finish proof sketch

(see also Deuflhard, Theorem 5.2)

Last time to looped A+tC, C Elin Lo cont. diff 2: (-8, 8) ->4 So that 2(0)= to ond 2(t) is a simple FU of A+tC Ly cont. diff  $\times : (-\epsilon, \epsilon) \to \mathbb{C}^{n}$ So that x(0) = x, and x(1) is EV of A+tc Now we can differentiate w.r.l. T the equation  $(A+tC) \times (t) = -2(t) \times (t)$ 

to obtain

$$C \times (t) + (A + tc) \times '(t) = \lambda'(t) \times (t) + \lambda(t) \times (t)$$
  
At t=0

 $C \times_{o} + A \times (0) = \lambda'(0) \times_{o} + \lambda_{o} \times (0)$   $Mu(fip(y from right with y_{o}$   $(C \times_{o}, Y_{o} > + (A \times (0), Y_{o}) = (\lambda'(0) \times_{o}, Y_{o}) + (\lambda_{o} \times (0), Y_{o})$ 

Now use that

and

$$\angle Ax'(0), \forall_0 ? = \angle x'(0), A^{+1}y_0 ?$$
  
=  $\angle x'(0), \bar{z_0}y_0 ?$   
=  $\angle Ax'(0), \bar{z_0}y_0 ?$ 

Obtain dorivotive

$$\lambda'(0) = \frac{2(x_{0}, 7_{0})}{(x_{0}, 7_{0})}$$

$$\lambda'(A)C = \lambda'(0) = \frac{\lambda(x_0, x_0)}{\lambda(x_0, x_0)}$$

The absolute condition number of determining a simple eigenvalue 20 of a matrix Accus with respect to the 2-norm is

$$P_{abs} = \left| \left| -\frac{1}{2} (A) \right| \right| = \frac{\left| \frac{1}{2} (A) \right|}{\left| \frac{1}{2} + \frac{1}{2} \right|} = \frac{1}{\left| \cos(\frac{1}{2} (A) \right|}$$

Out the vel. condition number  $e_{vel} = \frac{||A||}{||A_0||} ||(A'(A))|| = \frac{||A||}{|A_0||A_0||}$ where x is eigenvector of A for 20 Y is left eigenvector....

For all C E Chin, we have 12 (x, 7>1 = 11 Cx 11 11 411 = (1 C11 11+11 1141) Equality of C= yx H  $\| \mathcal{X}'(4)C\| = \sup_{C \neq 0} \frac{|\mathcal{L}(x, y)/(x, y)|}{\|C\|}$ C=yxH (27x+x,7>/(x,7>) 11 yx HI [= 11×11 11/17] = | ||yx+||2/ <×(7>1 11711 (1211  $= \frac{\|\gamma\|^{2} \|x\|^{2}}{\|\gamma\|} \frac{1}{|x||^{2}} \frac{1}{|x||^{2}}$  $= \frac{||x|| ||y||}{|(x,y)|} = \frac{1}{\cos(3(x,y))}$ 

The Power Method

## Recap: Power method

Let  $\mathbf{A} \in \mathbb{C}^{n \times n}$  be diagonalizable matrix and  $\lambda_1$  be a simple eigenvalue with

 $|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_n|$ 

Let  $\mathbf{x}_0$  be an initial guess that is not orthogonal to the eigenspace of  $\lambda_1$ , then  $\mathbf{x}_k$  obtained via the iterations

$$\boldsymbol{z}_{k+1} = \boldsymbol{A}\boldsymbol{x}_k \tag{3}$$

$$\mathbf{x}_{k+1} = \mathbf{z}_{k+1} / \|\mathbf{z}_{k+1}\|_2$$
 (4)

will converge to the normalized eigenvector of **A** corresponding to  $\lambda_1$  for  $k \to \infty$ .

This process is called the power method.

 $\mathsf{Proof} \rightsquigarrow \mathsf{last} \ \mathsf{week}$ 

## Recap Power method (cont'd)

Start with initial guess  $x_0$  and then iterate

Compute matrix-vector product and normalize it

$$oldsymbol{x}_k = rac{oldsymbol{A}oldsymbol{x}_{k-1}}{\|oldsymbol{A}oldsymbol{x}_{k-1}\|}$$

• Obtain eigenvalue estimate (note that  $\|\boldsymbol{x}_k\| = 1$ )

$$\lambda_1^{(k)} = \boldsymbol{x}_k^H \boldsymbol{A} \boldsymbol{x}_k$$

► Test for convergence? How? Compute residual

$$m{r}_k = m{A}m{x}_k - \lambda_1^{(k)}m{x}_k$$

and terminate if the error estimate is small enough (bound if **A** Hermitian, heuristic otherwise)

$$\min_{i} |\lambda_{i} - \lambda_{1}^{(k)}| \leq \frac{\|\boldsymbol{r}_{k}\|}{\|\boldsymbol{x}_{k}\|} < \epsilon$$

The power method converges linearly

$$\|\boldsymbol{x}_k - (\pm \boldsymbol{v}_1)\| \in \mathcal{O}((|\lambda_2|/|\lambda_1|)^k)$$

▶ If A is normal, then the eigenvalue estimate converges a bit faster but still linearly

$$|\lambda_1^{(k)} - \lambda_1| \in \mathcal{O}((|\lambda_2|/|\lambda_1|)^{2k})$$

- The power method is fast when the dominant eigenvalue is well separated from the rest
- This conclusion is rather general for all iterative methods, convergence is often good if eigenvalues are well separated and bad otherwise

The power method is typically too slow to be used in practice

We have that eigenvector convoges as  

$$\frac{|| \times q - (\pm v_i) || \in O(|\frac{2}{2}|^{R})}{|| \times q - (\pm v_i) || \in O(|\frac{2}{2}|^{R})}$$
linear convergence:  $\exists c > 0$   

$$\lim_{R \to \infty} \frac{|| \times - \times q_{+i} ||}{|| \times - \times q ||} \perp C_{i} \quad C_{i} < 1$$
quadratic convergence  

$$\lim_{R \to \infty} \frac{|| \times - \times q_{+i} ||}{|| \times - \times q ||^{2}} \perp C$$



$$\begin{aligned} \text{Try quadratic} \\ \lim_{h \to \infty} \frac{|1 \times_{h+1} - (\pm \vee_{i})||}{|1 \times e_{i} - (\pm \vee_{i})||^{2}} &= \lim_{h \to \infty} \frac{|\frac{2}{2}|A_{i}|^{k}}{|\frac{2}{2}|A_{i}|^{2}} \\ &= \lim_{h \to \infty} \frac{|\frac{2}{2}|A_{i}|}{|\frac{2}{2}|A_{i}|^{k}} \quad \text{olivages} \end{aligned}$$

Now eigenvolue  $\|\mathcal{A}_{1}^{(n)} - \mathcal{A}_{1}\| \in \mathcal{O}\left(\left|\frac{2g}{2}\right|^{2R}\right)$ 





## The inverse power method

For any  $\mu$  not an eigenvalue of **A**:

- The eigenvectors of  $(\mathbf{A} \mu \mathbf{I})^{-1}$  are the same as the eigenvectors of  $\mathbf{A}$
- ► The eigenvalues of  $(\mathbf{A} \mu \mathbf{I})^{-1}$  are  $\{(\lambda_j \mu)^{-1}\} \rightsquigarrow$  why useful?

## The inverse power method

For any  $\mu$  not an eigenvalue of **A**:

- ▶ The eigenvectors of  $(\mathbf{A} \mu \mathbf{I})^{-1}$  are the same as the eigenvectors of  $\mathbf{A}$
- ► The eigenvalues of  $(\mathbf{A} \mu \mathbf{I})^{-1}$  are  $\{(\lambda_j \mu)^{-1}\} \rightsquigarrow$  why useful?

Thus, if we have a good estimate  $\mu$  of an eigenvalue  $\lambda_J$  of matrix **A**, then

$$\frac{|\lambda_j - \mu|^{-1}}{|\lambda_J - \mu|^{-1}} \ll 1, \qquad j \neq J$$

and thus the power method applied to  $(\mathbf{A} - \mu \mathbf{I})^{-1}$  converges rapidly to  $\mathbf{v}_J$ :

$$(\mathbf{A} - \mu \mathbf{I}) \mathbf{y}_{k+1} = \mathbf{x}_k$$
(5)  
$$\mathbf{x}_{k+1} = \mathbf{y}_{k+1} / ||\mathbf{y}_{k+1}||$$
(6)

What do we need to keep in mind?

## The inverse power method

For any  $\mu$  not an eigenvalue of **A**:

- The eigenvectors of  $(\mathbf{A} \mu \mathbf{I})^{-1}$  are the same as the eigenvectors of  $\mathbf{A}$
- ► The eigenvalues of  $(\mathbf{A} \mu \mathbf{I})^{-1}$  are  $\{(\lambda_j \mu)^{-1}\} \rightsquigarrow$  why useful?

Thus, if we have a good estimate  $\mu$  of an eigenvalue  $\lambda_J$  of matrix **A**, then

$$\frac{|\lambda_j - \mu|^{-1}}{|\lambda_J - \mu|^{-1}} \ll 1, \qquad j \neq J$$

and thus the power method applied to  $(\mathbf{A} - \mu \mathbf{I})^{-1}$  converges rapidly to  $\mathbf{v}_J$ :

$$(\boldsymbol{A} - \boldsymbol{\mu} \boldsymbol{I}) \boldsymbol{y}_{k+1} = \boldsymbol{x}_k \tag{5}$$

$$\mathbf{x}_{k+1} = \mathbf{y}_{k+1} / \|\mathbf{y}_{k+1}\|$$
 (6)

- What do we need to keep in mind? Costs: Requires matrix solve in every iteration; same matrix, different right-hand sides (~> LU and Cholesky decompositions)
- This algorithm is used in practice to find eigenvectors if the eigenvalues are already known

# Rayleigh quotient iterations

The convergence speed of the inverse power method increases with a better eigenvalue estimate ~> what could we do?

## Rayleigh quotient iterations

- The convergence speed of the inverse power method increases with a better eigenvalue estimate ~> what could we do?
- Combine estimating eigenvalue and eigenvector ~> Rayleigh quotient iteration

Accelerated version of the inverse power method using changing shifts:

- Choose starting vector  $\mathbf{x}^0$  with  $\|\mathbf{x}^0\| = 1$ . Compute  $\lambda^{(0)} = (\mathbf{x}^0)^T A \mathbf{x}^0$ .
- For i = 0, 1, ... do

$$(A - \lambda^{(k)}I)\mathbf{x}^{k+1} = \mathbf{x}^{k}, \quad \mathbf{y}^{k+1} = \mathbf{x}^{k+1}/\|\mathbf{x}^{k+1}\|.$$

• Compute 
$$\lambda^{(k+1)} = (\mathbf{y}^{k+1})^T A \mathbf{y}^{k+1}$$
, and go back.

If it converges (depends on starting point), then it converges *cubically*  $\rightsquigarrow$  details in Trefethen & Bau (This is the only method we will see that converges so quickly!)

The QR algorithm

# The QR algorithm

The power method is not well suited for finding all eigenvalues of a matrix **A** 

Idea of the QR method: Build a matrix A' that shares the eigenvalues of **A** via similarity transformations

 $\mathbf{A}' = \mathbf{P}^{-1} \mathbf{A} \mathbf{P}$ ,  $\mathbf{A}, \mathbf{A}'$  have the same eigenvalues

and for which we know the eigenvalues.  $\rightsquigarrow$  What matrix would we like A' to be?

# The QR algorithm

The power method is not well suited for finding all eigenvalues of a matrix **A** 

Idea of the QR method: Build a matrix A' that shares the eigenvalues of **A** via similarity transformations

 $\mathbf{A}' = \mathbf{P}^{-1} \mathbf{A} \mathbf{P}$ ,  $\mathbf{A}, \mathbf{A}'$  have the same eigenvalues

and for which we know the eigenvalues.  $\rightarrow$  What matrix would we like A' to be?

The QR algorithm for finding eigenvalues is as follows (A<sub>0</sub> := A), and for k = 0, 1, ...:
▶ Compute QR decomposition of A<sub>k</sub>, i.e., A<sub>k</sub> = Q<sub>k</sub>R<sub>k</sub>.
▶ A<sub>k+1</sub> := R<sub>k</sub>Q<sub>k</sub>, k := k + 1 and go back.

All iterates  $A_1, A_2, \ldots$  have the same eigenvalues because

$$Q_k A_{k+1} Q_k^T = Q_k R_k Q_k Q_k^T = Q_k R_k = A_k$$

and  $A_k$  converges to a *diagonal* matrix if A is Hermitian and eigenvalues well separated

# Intuition why QR method converges

Think of it as the power method applied to many linearly independent vectors  $z_1^{(0)}, \ldots, z_n^{(0)}$  at once

Define

$$Z^{(0)} = \begin{bmatrix} | & & | \\ z_1^{(0)} & \dots & z_n^{(0)} \\ | & & | \end{bmatrix}$$

and define

$$Z^{(k)} = A^{k} Z^{(0)} = \begin{bmatrix} | & & | \\ z_{1}^{(k)} & \dots & z_{n}^{(k)} \\ | & & | \end{bmatrix}$$

Recall that in the power method we had to re-normalize after each step  $\rightsquigarrow$  now we have multiple vectors and therefore also need to orthogonalize  $\rightsquigarrow$  QR

With orthogonalization after each iteration, we obtain the algorithm

- 1.  $Z^{(k)} = A\bar{Q}^{(k-1)}$ 2.  $\bar{Q}^{(k)}R^{(k)} = Z^{(k)}$
- 2.  $Q^{(k)}R^{(k)} \equiv Z^{(k)}$ 3.  $A^{(k)} = (\bar{Q}^{(k)})^T A \bar{Q}^{(k)}$
- $\rightsquigarrow$  equivalent to the QR method

Summary: Let the QR algorithm be applied to a symmetric real matrix A with well separated eigenvalues

$$\lambda_1| > |\lambda_2| > \cdots > |\lambda_n|$$

and eigenvectors matrix V that has nonsingular leading principal submatrices (all upper-left  $1 \times 1$ ,  $2 \times 2$ , ... submatrices). Then, for  $k \to \infty$ , the iterates  $A^{(k)}$  converge linearly in

$$\mathcal{O}\left(\max_{j}\frac{|\lambda_{j+1}|^{k}}{|\lambda_{j}|^{k}}\right)$$

to diag $(\lambda_1, \ldots, \lambda_n)$  and  $\overline{Q}^{(k)}$  to V (up to  $\pm$ )

- The convergence of the QR algorithm is closely related to that of the power method: It is only fast if all eigenvalues are well separated
- For more general (e.g., non-symmetric) matrices in complex arithmetic, the algorithm converges to the Schur decomposition A = UTU<sup>H</sup> with triangular matrix T and unitary matrix U ~~ read eigenvalues from diagonal of T
- The work per iteration of the basic QR algorithm that we discussed is in O(n<sup>3</sup>) because of the QR factorization in each step; the power method has cost O(n<sup>2</sup>) (mat-vec) per iteration
- ► There are several key improvements to the basic QR algorithm that bring down the cost per iteration to  $O(n^2)$  (Hessenberg matrices)
- There also can be shifts (compare power method) to accelerate the convergence
- As always with linear algebra routines, the "best" are implemented in LAPACK and can be called via Matlab, numpy, etc

# Eigenvalues in Matlab

• In MATLAB, sophisticated variants of the **QR algorithm** (LAPACK library) are implemented in the function *eig*:

 $\Lambda = eig(A)$ 

$$[X,\Lambda] = eig(A)$$

• For large or sparse matrices, iterative methods based on the **Arnoldi iteration** (ARPACK library), can be used to obtain a few of the largest/smallest/closest-to- $\mu$  eigenvalues:

$$\Lambda = eigs(A, n_{eigs})$$

$$[X,\Lambda] = eigs(A, n_{eigs})$$

• The Schur decomposition is provided by [U, T] = schur(A).

# Conclusions/summary

- Eigenvalues are **well-conditioned** for **unitarily diagonalizable matrices** (includes Hermitian matrices), but ill-conditioned for nearly non-diagonalizable matrices.
- Eigenvectors are **well-conditioned** only when eigenvalues are **well-separated**.
- Eigenvalue algorithms are **always iterative**.
- The **power method** and its variants can be used to find the **largest** or smallest eigenvalue, and they converge fast if there is a **large** separation between the target eigenvalue and nearby ones.
- Estimating **all eigenvalues and/or eigenvectors** can be done by combining the power method with *QR* factorizations.
- MATLAB has high-quality implementations of sophisticated variants of these algorithms.

# Numerical Methods I MATH-GA 2010.001/CSCI-GA 2420.001

Benjamin Peherstorfer Courant Institute, NYU

Based on slides by G. Stadler and A. Donev

# Today

#### Last time

Computing eigenvalues

### Today

Singular value decomposition

#### Announcements

► Homework 3 posted, is due Mon, Oct 21 before class

## Recap: Power method for computing eigenvectors and eigenvalues

Let  $\mathbf{A} \in \mathbb{C}^{n \times n}$  be diagonalizable matrix and  $\lambda_1$  be a simple eigenvalue with

 $|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_n|$ 

Let  $\mathbf{x}_0$  be an initial guess that is not orthogonal to the eigenspace of  $\lambda_1$ , then  $\mathbf{x}_k$  obtained via the iterations

will converge to the normalized eigenvector of **A** corresponding to  $\lambda_1$  for  $k \to \infty$ .

This process is called the power method.

## Recap: The QR algorithm

The power method is not well suited for finding all eigenvalues of a matrix **A** 

Idea of the QR method: Build a matrix A' that shares the eigenvalues of **A** via similarity transformations

 $\mathbf{A}' = \mathbf{P}^{-1} \mathbf{A} \mathbf{P}$ ,  $\mathbf{A}, \mathbf{A}'$  have the same eigenvalues

and for which we know the eigenvalues.  $\rightsquigarrow$  What matrix would we like A' to be?

## Recap: The QR algorithm

The power method is not well suited for finding all eigenvalues of a matrix **A** 

Idea of the QR method: Build a matrix A' that shares the eigenvalues of **A** via similarity transformations

 $\mathbf{A}' = \mathbf{P}^{-1} \mathbf{A} \mathbf{P}$ ,  $\mathbf{A}, \mathbf{A}'$  have the same eigenvalues

and for which we know the eigenvalues.  $\rightarrow$  What matrix would we like A' to be?

The QR algorithm for finding eigenvalues is as follows (A<sub>0</sub> := A), and for k = 0, 1, ...:
▶ Compute QR decomposition of A<sub>k</sub>, i.e., A<sub>k</sub> = Q<sub>k</sub>R<sub>k</sub>.
▶ A<sub>k+1</sub> := R<sub>k</sub>Q<sub>k</sub>, k := k + 1 and go back.

All iterates  $A_1, A_2, \ldots$  have the same eigenvalues because

$$Q_k A_{k+1} Q_k^T = Q_k R_k Q_k Q_k^T = Q_k R_k = A_k$$

and  $A_k$  converges to a *diagonal* matrix if A is Hermitian and eigenvalues well separated

Singular Value Decomposition (SVD)

Let  $A \in \mathbb{C}^{m \times n}$ . A singular value decomposition of A is a factorization

 $A = U\Sigma V^H,$ 

where

$$egin{aligned} & U \in \mathbb{C}^{m imes m} ext{ is unitary} & (9) \ & V \in \mathbb{C}^{n imes n} ext{ is unitary} & (10) \ & \Sigma \in \mathbb{R}^{m imes n} ext{ is diagonal.} & (11) \end{aligned}$$

Additionally, the diagonal entries  $\sigma_j$  of  $\Sigma$  are non-negative and in non-decreasing order so that  $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_p \ge 0$  where  $p \in \min(m, n)$ .

The diagonal matrix Σ is real and has the same shape as A even when A is not square



[Edited from figure by Georg-Johann, Wikipedia]

The image of the unit sphere under a map A is a hyperellipse (in  $\mathbb{R}^m$ ). Thus, with  $A = U\Sigma V^H$ , have

- The unitary map V<sup>H</sup> preserves the sphere (rotating a sphere is a sphere)
- The diagonal matrix Σ stretches the sphere into a hyperellipse aligned with the canonical basis
- The unitary map U rotates or reflects the hyperellipse without changing shape

## Existence and uniqueness of SVD

Theorem: Every matrix  $A \in \mathbb{C}^{m \times n}$  has a singular value decomposition. Furthermore, the singular values  $\{\sigma_j\}$  are uniquely determined, and, if A is square and the  $\sigma_j$  are distinct, the left and right singular vectors  $\{u_j\}$  and  $\{v_j\}$  are uniquely determined up to complex signs (i.e., complex scalar factors of absolute value 1.) Proof in Trefethen & Bau.

Reduced SVD


## SVD vs. eigenvalue decomposition

SVD expresses a matrix in proper bases for domain and range space to represent it as a diagonal matrix

$$A = U \Sigma V^H$$

We have seen something similar with eigenvectors: A non-defective square matrix A can be expressed as a diagonal matrix of eigenvalues  $\Lambda$  if the range and domain are presented in a basis of eigenvectors

$$A = X \Lambda X^{-1}$$

There are fundamental differences between the SVD and eigenvalue decomposition

- SVD uses two different bases (left and right singular vectors); eigenvalue decomposition uses just one (eigenvectors)
- SVD uses orthonormal bases, whereas eigenvalue basis generally is not orthogonal
- Not all matrices (even square ones) have an eigendecomposition, but all matrices (even rectangular ones) have a singular value decomposition

Typically, eigenvalues tell us something about the behavior of iterative processes that involve the matrix A such as  $A^k$  and  $e^{tA}$ 

Singular values tend to tell us something about A itself

## The SVD and matrix properties

In the following:

- The matrix A is of dimension  $m \times n$
- $\blacktriangleright$   $p = \min(m, n)$
- $\triangleright$   $r \leq p$  is the number of non-zero singular values of A

We now list how the SVD is related to fundamental properties of the matrix A

- ▶ The rank of A is r, the number of non-zero singular values.
- ▶ The range (column span) of A is span $(u_1, \ldots, u_r)$ , the kernel is span $(v_{r+1}, \ldots, v_n)$

• 
$$||A||_2 = \sigma_1$$
 and  $||A||_F = \sqrt{\sigma_1^2 + \dots + \sigma_r^2}$ 

- For square A,  $|\det(A)| = \prod_{i=1}^{m} \sigma_i$
- The non-zero singular values of A are the square roots of the non-zero eigenvalues of A<sup>H</sup>A and AA<sup>H</sup> ~ proof

$$A^{H}A = (U \leq V^{H})^{H} (U \leq V^{H})$$

$$= V \leq {}^{H} \bigcup_{i}^{H} \bigcup_{i}^{H} \bigcup_{i}^{i} \leq V^{H}$$

$$= V \leq {}^{H} \leq V^{H} \bigcup_{i}^{H} \bigcup_{i}^{i} \leq V^{H}$$
Need that  $\leq {}^{H} \leq is diagonal$ , then we have  
discontant of  $A^{H}A$ 

$$\leq {}^{H} \leq has size have and the
diagonal  $G_{1}^{2} \bigcup_{i}^{i} G_{p}^{2}$ 

$$A = \left( {}^{G_{1}^{2}} \bigcup_{p}^{2} \right) = 2 {}^{H} \leq i$$$$

Full SVD

 $[\mathbf{A}] = [\mathbf{U}] [\mathbf{\Sigma}] [\mathbf{V}^{H}]$ 

 $m \times n$   $m \times m m \times n n \times n$ 

Reduced SVD

**U Σ V**<sup>H</sup>

 $m \times n$   $m \times n$   $n \times n$   $n \times n$ 

Rank-revealing SVD of a rank r matrix with dimension  $m \times n$ 

 $= \underbrace{\boldsymbol{U}}_{\boldsymbol{\Sigma}} \underbrace{\boldsymbol{\Sigma}}_{\boldsymbol{V}} \underbrace{\boldsymbol{V}}_{\boldsymbol{U}}^{\boldsymbol{H}}$ A

 $m \times n$   $m \times r$   $r \times r$   $r \times n$ 

### Representing matrices via sums of rank-one matrices

Represent A as a sum of M rank-one matrices

$$A = \sum\nolimits_{j=1}^M A^{(j)}$$

There are many possibilities of choosing  $A^{(j)}$ 

- Let  $A^{(j)}$  contain the *j*-th of the *m* rows of *A*
- Let  $A^{(j)}$  contain the *j*-th of the *n* columns of A
- Let  $A^{(j)}$  contain one of the *mn* entries of A

What is a property of a "sum representation" that we like to see in numerical analysis?

### Representing matrices via sums of rank-one matrices

Represent A as a sum of M rank-one matrices

$$A = \sum\nolimits_{j=1}^M A^{(j)}$$

There are many possibilities of choosing  $A^{(j)}$ 

- Let  $A^{(j)}$  contain the *j*-th of the *m* rows of *A*
- Let  $A^{(j)}$  contain the *j*-th of the *n* columns of A
- Let  $A^{(j)}$  contain one of the *mn* entries of A

What is a property of a "sum representation" that we like to see in numerical analysis? ~ we can truncate it after a few terms and get a good approximation

$$A pprox \sum_{j=1}^{M'} A^{(j)}$$

with  $M' \ll M$ 

### SVD for low-rank approximation

Consider the SVD  $A = U\Sigma V^H$ , then

$$A = \sum_{j=1}^{r} \sigma_j u_j v_j^H$$

Let us truncate the sum after  $1 \le q \le r$  terms and define

$$A_q = \sum_{j=1}^q \sigma_j u_j v_j^H.$$

Then,  $A_q$  is a best rank q approximation of A in the  $\|\cdot\|_2$  norm

$$\|A - A_q\|_2 = \inf_{\substack{B \in \mathbb{C}^{m \times n} \\ \operatorname{rank}(B) \le q}} \|A - B\|_2$$

→ proof

Best von Q Gyproximation:  
Consider 
$$A = U \leq V^{H}$$
  
 $A_{r} = \sum_{j=1}^{r} \sigma_{j} v_{j} v_{j}^{H}$   
Word show  $\begin{cases} (1) \quad || A - A_{q} ||_{2} = \sigma_{q+1} \\ (2) \quad || A - A_{q} ||_{2} = \inf_{\substack{B \in C^{m, rn} \\ Von A(B) \leq q}} (|A - B||_{2}) \end{cases}$ 

(1) 
$$A - A_{\eta} = \sum_{i=\eta+1}^{r} \sigma_{i} \upsilon_{i} \vee_{i}^{H}$$

$$\mathcal{A} - \mathcal{A}_{o} = \begin{bmatrix} 1 & 1 \\ U_{q_{H}} & \dots & U_{n} \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ & & & \\ & & & \\ \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ & & & \\ & & & \\ \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ & & \\ & & & \\ \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ & & \\ & & \\ \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ & & \\ & & \\ \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ & & \\ & & \\ \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ & & \\ & & \\ \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ & & \\ & & \\ \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ & & \\ & & \\ \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ & & \\ & & \\ \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ & & \\ & & \\ \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ & & \\ & & \\ \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ & & \\ & & \\ \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ & & \\ & & \\ \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ & & \\ & & \\ \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ & & \\ & & \\ \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ & & \\ & & \\ \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ & & \\ & & \\ \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ & & \\ & & \\ \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ & & \\ & & \\ \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ & & \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ & & \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ & & \\ \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ & & \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ & & \\ \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ & & \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ & & \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ & & \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ & & \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ & & \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ & & \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ & & \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ & & \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ & & \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ & & \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ & & \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ & & \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ & & \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ & & \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} U_{q_{H}} & \\$$

Because ||2112= mon(2)

$$\left\| \mathcal{A} - \mathcal{A}_{q} \right\|_{2} = \mathcal{C}_{q+1}$$

Suppose there is B with rank(B) = 9 and  $\|A - B\|_2 \leq \|A - A_q\|_2 = \sigma_{qH}$ (\*) Bewanse BECht has rank =9, frere is on n-q dimensional hull spice WEC Such Klock weW => Bw =0 for any we whave Aw = (A - B)wand  $||Aw||_{2} = ||(A-B)w|_{2} \leq ||A-B||_{2} ||w||_{2}$ L Gy+1 llwll2 Now take V; then

Now take  $V_{i}$ , then  $A v_{i} = U \leq V \stackrel{H}{V_{i}} = = U \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = U \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = U_{i} \cap_{i}^{*}$ The vectors  $V_{1, \dots, V_{q+1}} = V_{i} \stackrel{0}{\int_{i}^{*}} = U_{i} \cap_{i}^{*}$ The vectors  $V_{1, \dots, V_{q+1}} = V_{q+1} = V_{i} \stackrel{0}{\int_{i=1}^{*}} = U_{i} \cap_{i}^{*}$   $\forall z \in Z : \quad z = \sum_{i=1}^{q_{H}} v_{i} \quad , \quad || \geq ||_{z} = \sqrt{\sum_{i=1}^{q_{H}} |v_{i}|^{2}}$ 

$$Az = \sum_{i=1}^{q+i} \sigma_i \upsilon_i \sigma_i$$

with  

$$(|Az||_{2} = \sqrt{\sum_{i=1}^{p+1} \sigma_{i}^{2} ||u_{i}||^{2}} = \sigma_{p+1} ||z||_{2}$$

However, the subspore Z has tim g+1 and the subspace W has time h-g, thus there must be or non-zero inforsetion, which contraticts that twew: [I Awll C Bg+, Hully

### SVD for low-rank approximation

Consider the SVD  $A = U\Sigma V^H$ , then

$$A = \sum_{j=1}^{r} \sigma_j u_j v_j^H$$

Let us truncate the sum after  $1 \le q \le r$  terms and define

$$A_q = \sum_{j=1}^q \sigma_j u_j v_j^H.$$

Then,  $A_q$  is a best rank q approximation of A in the  $\|\cdot\|_2$  norm

$$\|A - A_q\|_2 = \inf_{\substack{B \in \mathbb{C}^{m \times n} \\ \operatorname{rank}(B) \le q}} \|A - B\|_2 = \sigma_{q+1}$$

The error is the first left out singular value  $\sigma_{q+1}! \rightsquigarrow \text{proof}$ 

Furthermore, in the Frobenius norm  $\|\cdot\|_F$ , for any  $0 \le q \le r$ , the matrix  $A_q$  from the previous slide also satisfies

$$\|A - A_q\|_F = \inf_{\substack{B \in \mathbb{C}^{m \times n} \\ \operatorname{rank}(B) \le q}} \|A - B\|_F = \sqrt{\sigma_{q+1}^2 + \dots + \sigma_r^2}$$

## SVD and pseudo inverse

The (Moore-Penrose) pseudo inverse of an  $m \times n$  matrix that is regular and square is  $A^+ = A^{-1}$ .

Otherwise, the pseudo inverse is given by

$$A^+ = V \Sigma^+ U^H \,,$$

where

$$\Sigma^+ = \mathsf{diag}(\sigma_1^{-1}, \sigma_2^{-1}, \dots, \sigma_r^{-1}, 0, \dots, 0)$$

Thus, we can solve least-squares problems  $\min_x ||b - Ax||_2$  by taking the SVD of A, computing  $A^+$ , and setting  $x = A^+b$  for the minimal norm solution w.r.t.  $|| \cdot ||_2$ 

The approach we discussed via the QR decomposition is cheaper but the approach via the SVD is sometimes preferred because it allows to easily regularize the problem by truncating small singular values.

The SVD of an  $m \times n$  ( $m \ge n$ ) matrix A is related to the eigenvalue decomposition of  $A^H A$ 

$$A^{H}A = V\Sigma^{H}\Sigma V^{H},$$

The SVD of an  $m \times n$  ( $m \ge n$ ) matrix A is related to the eigenvalue decomposition of  $A^H A$ 

$$A^H A = V \Sigma^H \Sigma V^H \,,$$

Since we know how to numerically compute the eigendecomposition, we could compute the SVD of A as follows

- 1. Form  $A^H A$
- 2. Compute the eigendecomposition  $A^{H}A = V\Lambda V^{H}$  (Notice that  $Z = A^{H}A$  is normal because  $Z^{H}Z = ZZ^{H}$ )
- 3. Let  $\Sigma$  be the  $m \times n$  non-negative diagonal square root of  $\Lambda$
- 4. Solve the system  $U\Sigma = AV$  for unitary U

Is this a good idea?

The SVD of an  $m \times n$  ( $m \ge n$ ) matrix A is related to the eigenvalue decomposition of  $A^H A$ 

$$A^H A = V \Sigma^H \Sigma V^H \,,$$

Since we know how to numerically compute the eigendecomposition, we could compute the SVD of A as follows

- 1. Form  $A^H A$
- 2. Compute the eigendecomposition  $A^{H}A = V\Lambda V^{H}$  (Notice that  $Z = A^{H}A$  is normal because  $Z^{H}Z = ZZ^{H}$ )
- 3. Let  $\Sigma$  be the  $m \times n$  non-negative diagonal square root of  $\Lambda$
- 4. Solve the system  $U\Sigma = AV$  for unitary U

Is this a good idea?  $\rightsquigarrow$  as we have seen before, it is typically dangerous<sup>†</sup> from a stability perspective to compute something of the matrix A via the matrix  $A^HA$  (think of least-squares regression)  $\rightsquigarrow$  board

<sup>†</sup>https://nhigham.com/2022/10/11/seven-sins-of-numerical-linear-algebra/

Mobivate why computing SV Vior EV is not your iden Lyporturbation of EV of Hermiter AHA  $|\lambda_{g}(A^{H}A + SB) - \lambda_{g}(A^{H}A)| \leq ||SB||_{2}$ Losimilor perturbation bound hold for SV"  $|\mathcal{G}_{R}(A + \mathcal{J}_{A}) - \mathcal{G}_{R}(A)| \leq ||\mathcal{J}_{A}||$ Backword sholde obyo for SV computes Of that satisfies  $\frac{\|SA\|}{\|A\|} \in \mathcal{O}(\epsilon)$  $\widetilde{\sigma}_{e} = \sigma_{n}(A + \delta A)$ (mplies  $|\tilde{c}_{2} - \tilde{c}_{3}| \leq ||SA||$  with  $||SA|| \in O(\varepsilon ||A||)$ Now let us compute 2g (AHA). With borchword stable algo  $\widetilde{\mathcal{A}}_{R} = \mathcal{A}_{R} (A^{H}A + 5B), \quad \frac{\beta B}{\beta} \in O(2)$  $|\tilde{\lambda}_{e_1} - \lambda_{e_1}| \leq || \delta ||$ E O(E(|A<sup>H</sup>AII) = O(E||AII<sup>2</sup>)



| Gen - Gal behaves as O(E (1411))

worse by Jochen <u>11 All</u>, than previous result

=> " no" problem for Congo la Miky le allAllo but big problem for le 26 llAllo

### How we actually compute the SVD

For the sake of the argument, assume that A is a square  $m \times m$  (following is applicable to rectangular matrices too)  $\rightsquigarrow$  board

vs

USC

Instead of AHA, let  $H = \begin{bmatrix} O & A^{H} \\ A & O \end{bmatrix}$ 

Lorger motrix -> ignore for your

$$\begin{bmatrix} 0 & A^{H} \\ 4 & 0 \end{bmatrix} \begin{bmatrix} V & V \\ U & -U \end{bmatrix} = \begin{bmatrix} V & V \\ U & -U \end{bmatrix} \begin{bmatrix} \varepsilon & 0 \\ 0 & -\varepsilon \end{bmatrix}$$

# Numerical Methods I MATH-GA 2010.001/CSCI-GA 2420.001

Benjamin Peherstorfer Courant Institute, NYU

Based on slides by G. Stadler and A. Donev

## Today

#### Last time

Singular value decomposition

#### Today

- Singular value decomposition
- Iterative methods for solving linear systems

#### Announcements

Homework 3 posted, is due Mon, Oct 21 before class

Recap

Let  $A \in \mathbb{C}^{m \times n}$ . A singular value decomposition of A is a factorization

 $A = U \Sigma V^H,$ 

where

| $U \in \mathbb{C}^{m 	imes m}$ is unitary        | (12) |
|--------------------------------------------------|------|
| $V \in \mathbb{C}^{n 	imes n}$ is unitary        | (13) |
| $\Sigma \in \mathbb{R}^{m 	imes n}$ is diagonal. | (14) |

Additionally, the diagonal entries  $\sigma_j$  of  $\Sigma$  are non-negative and in non-decreasing order so that  $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_p \ge 0$  where  $p \in \min(m, n)$ .

- The diagonal matrix Σ is real and has the same shape as A even when A is not square
- The matrices U and V are always square



#### Full SVD



Reduced SVD



Rank-revealing SVD of a rank r matrix with dimension  $m \times n$ 



## Recap: The SVD and matrix properties

In the following:

- The matrix A is of dimension  $m \times n$
- $\blacktriangleright$   $p = \min(m, n)$
- $\triangleright$   $r \leq p$  is the number of non-zero singular values of A

We now list how the SVD is related to fundamental properties of the matrix A

- ▶ The rank of A is r, the number of non-zero singular values.
- ▶ The range (column span) of A is span $(u_1, \ldots, u_r)$ , the kernel is span $(v_{r+1}, \ldots, v_n)$
- $||A||_2 = \sigma_1$  and  $||A||_F = \sqrt{\sigma_1^2 + \dots + \sigma_r^2}$
- For square A,  $|\det(A)| = \prod_{i=1}^{m} \sigma_i$
- The non-zero singular values of A are the square roots of the non-zero eigenvalues of A<sup>H</sup>A and AA<sup>H</sup>

### Recap: SVD for low-rank approximation

Consider the SVD  $A = U \Sigma V^{H}$ , then

$$A = \sum_{j=1}^{r} \sigma_j u_j v_j^H$$

Let us truncate the sum after  $1 \le q \le r$  terms and define

$$A_q = \sum_{j=1}^q \sigma_j u_j v_j^H.$$

Then,  $A_q$  is a best rank q approximation of A in the  $\|\cdot\|_2$  norm

$$\|A - A_q\|_2 = \inf_{\substack{B \in \mathbb{C}^{m \times n} \\ \operatorname{rank}(B) \le q}} \|A - B\|_2 = \sigma_{q+1}$$

The error is the first left out singular value  $\sigma_{q+1}$ !

Furthermore, in the Frobenius norm  $\|\cdot\|_F$ , for any  $0 \le q \le r$ , the matrix  $A_q$  from the previous slide also satisfies

$$\|A - A_q\|_F = \inf_{\substack{B \in \mathbb{C}^{m \times n} \\ \operatorname{rank}(B) \le q}} \|A - B\|_F = \sqrt{\sigma_{q+1}^2 + \dots + \sigma_r^2}$$

## Recap: SVD and pseudo inverse

The (Moore-Penrose) pseudo inverse of an  $m \times n$  matrix that is regular and square is  $A^+ = A^{-1}$ .

Otherwise, the pseudo inverse is given by

$$A^+ = V \Sigma^+ U^H \,,$$

where

$$\Sigma^+ = \mathsf{diag}(\sigma_1^{-1}, \sigma_2^{-1}, \dots, \sigma_r^{-1}, 0, \dots, 0)$$

Thus, we can solve least-squares problems  $\min_x ||b - Ax||_2$  by taking the SVD of A, computing  $A^+$ , and setting  $x = A^+b$  for the minimal norm solution w.r.t.  $|| \cdot ||_2$ 

The approach we discussed via the QR decomposition is cheaper but the approach via the SVD is sometimes preferred because it allows to easily regularize the problem by truncating small singular values.

The SVD of an  $m \times n$  ( $m \ge n$ ) matrix A is related to the eigenvalue decomposition of  $A^H A$ 

$$A^{H}A = V\Sigma^{H}\Sigma V^{H},$$

The SVD of an  $m \times n$  ( $m \ge n$ ) matrix A is related to the eigenvalue decomposition of  $A^H A$ 

$$A^H A = V \Sigma^H \Sigma V^H \,,$$

Since we know how to numerically compute the eigendecomposition, we could compute the SVD of A as follows

- 1. Form  $A^H A$
- 2. Compute the eigendecomposition  $A^{H}A = V\Lambda V^{H}$  (Notice that  $Z = A^{H}A$  is normal because  $Z^{H}Z = ZZ^{H}$ )
- 3. Let  $\Sigma$  be the  $m \times n$  non-negative diagonal square root of  $\Lambda$
- 4. Solve the system  $U\Sigma = AV$  for unitary U

Is this a good idea?

The SVD of an  $m \times n$  ( $m \ge n$ ) matrix A is related to the eigenvalue decomposition of  $A^H A$ 

$$A^H A = V \Sigma^H \Sigma V^H \,,$$

Since we know how to numerically compute the eigendecomposition, we could compute the SVD of A as follows

- 1. Form  $A^H A$
- 2. Compute the eigendecomposition  $A^{H}A = V\Lambda V^{H}$  (Notice that  $Z = A^{H}A$  is normal because  $Z^{H}Z = ZZ^{H}$ )
- 3. Let  $\Sigma$  be the  $m \times n$  non-negative diagonal square root of  $\Lambda$
- 4. Solve the system  $U\Sigma = AV$  for unitary U

Is this a good idea?  $\rightsquigarrow$  as we have seen before, it is typically dangerous<sup>†</sup> from a stability perspective to compute something of the matrix A via the matrix  $A^HA$  (think of least-squares regression)  $\rightsquigarrow$  board

<sup>†</sup>https://nhigham.com/2022/10/11/seven-sins-of-numerical-linear-algebra/

### How we actually compute the SVD

For the sake of the argument, assume that A is a square  $m \times m$  (following is applicable to rectangular matrices too)  $\rightsquigarrow$  board

Instead of  $A^{H}A$ , let us use  $H = \begin{bmatrix} 0 & A^{H} \\ A & 0 \end{bmatrix}$ Because  $A = U \leq V^{H}$  have

$$AV = U \Sigma ,$$
  

$$A^{H}U = V \Sigma^{H} U^{H} U = V \Sigma^{H} = V \Sigma ,$$

$$\begin{bmatrix} 0 & A^{H} \\ A & 0 \end{bmatrix} \begin{bmatrix} V & V \\ U & -U \end{bmatrix} = \begin{bmatrix} A^{H}U & -A^{H}U \\ AV & AV \end{bmatrix}$$

$$= \begin{bmatrix} V & -V \\ U & V \end{bmatrix} = \begin{bmatrix} V & V \\ U & -U \end{bmatrix} \begin{bmatrix} S & 0 \\ 0 & -S \end{bmatrix}$$

$$\begin{bmatrix} V & V \\ U & -U \end{bmatrix}^{H} \begin{bmatrix} V & V \\ U & -U \end{bmatrix} = \begin{bmatrix} 2I & 0 \\ 0 & 2I \end{bmatrix}$$

$$\begin{bmatrix} V & V \\ U & -U \end{bmatrix}^{H} \begin{bmatrix} V & V \\ U & -U \end{bmatrix} = \begin{bmatrix} 2I & 0 \\ 0 & 2I \end{bmatrix}$$

$$Would like to find the eigende con position of 
$$\begin{bmatrix} 0 & A^{H} \\ A & 0 \end{bmatrix}$$

$$A (gorither the uses this iden 
$$\begin{bmatrix} 0 & A^{H} \\ A & 0 \end{bmatrix}$$

$$but overds assending H notriv$$$$$$

### How we actually compute the SVD

For the sake of the argument, assume that A is a square  $m \times m$  (following is applicable to rectangular matrices too)  $\rightsquigarrow$  board

Consider the  $2m \times 2m$  Hermitian matrix

$$\mathcal{H} = \begin{bmatrix} 0 & \mathcal{A}^{\mathcal{H}} \\ \mathcal{A} & 0 \end{bmatrix}$$

Since  $A = U \Sigma V^H$ , we have

 $AV = U\Sigma$  and  $A^{H}U = V\Sigma^{H} = V\Sigma$  (recall that singular values are real)

which we write in matrix form as

$$\begin{bmatrix} 0 & A^{H} \\ A & 0 \end{bmatrix} \begin{bmatrix} V & V \\ U & -U \end{bmatrix} = \begin{bmatrix} V & V \\ U & -U \end{bmatrix} \begin{bmatrix} \Sigma & 0 \\ 0 & -\Sigma \end{bmatrix}$$

which is the eigendecomposition of  $H \rightsquigarrow$  avoids using  $A^H A$  and  $A A^H$  and is stable
Computing the SVD is typically a two-phase procedure:

First, reduce the matrix A to bidiagonal form, then diagonalize the bidiagonal matrix



- ▶ Phase 1 involves a finite number of operations that scale as  $\mathcal{O}(mn^2)$
- Phase 2 (recall eigenvalue problems) is iterative but converges very quickly; in practice achieves convergence in O(n) to machine precision
- ▶ Thus, state-of-the-art computation of the SVD has costs that scale as  $\mathcal{O}(mn^2)$

This is the celebrated Golub-Kahan approach from the 1960s

How can we bidiagonalize a matrix? Recall that we already know how to triangualize a matrix via (unitary) Householder reflection



How can we bidiagonalize a matrix? Recall that we already know how to triangualize a matrix via (unitary) Householder reflection



Now, we apply interleaved Householder reflection from left and right  $\begin{bmatrix}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & & & \\
* & * & * & & & \\
* & & * & & & \\
* & & & & & & \\$ 

At the end, *n* reflectors are applied from the left and n-2 from the right

A variant of the QR algorithm is then applied to the bidiagonal matrix (or other eigendecomposition algorithms)  $\rightsquigarrow$  details in Golub et al., Matrix Computations.

# Visualizing SVD computation



Video: http://youtu.be/R9UoFyqJca8

# SVD saves the universe

The first Star Trek movie came out in 1979. The producers had asked Los Alamos for computer graphics to run on the displays on the bridge of the Enterprise:



#### [Figure: Paramount Pictures]

Link: https://blogs.mathworks.com/cleve/2012/12/10/1976-matrix-singular-value-decomposition-film/

#### Matlab

```
1: >> X = randn(10, 4);
2: >> [U, S, V] = svd(X); % full SVD
3: >> [Ur, Sr, Vr] = svd(X, 0); % reduced (economic) SVD
4: >> size(S)
5: >> size(Sr)
6: ans =
7: 10 4
8: ans =
9: 4 4
```

In most cases, we want the reduced SVD and then we should explicitly compute it:

$$1: >> X = randn(10000, 50);$$

3: Elapsed time is 6.746243 seconds.

5: Elapsed time is 0.064572 seconds.

For very large and sparse matrices, or if the matrix is unavailable and we only have a procedure that returns the matrix-vector product, we can iteratively compute the first few singular vectors via svds

1: >> X = gallery('poisson', 100); 2: >> whos X3: Name Size Class Bytes Attributes 4: 5: Х  $10000 \times 10000$ 1033608 double sparse 6: 7: >> tic; [U, S, V] = svds(X, 1); toc 8: 9: Elapsed time is 0.307015 seconds.

SVD is great because its computation is (very) stable  $\rightsquigarrow$  building block for computing many basic linear algebra quantities

#### type 'edit rank.m' in Matlab

```
1: function r = rank(A, tol)
2: %RANK
          Matrix rank.
3: %
      RANK(A) provides an estimate of the number of linearly
4: %
      independent rows or columns of a matrix A.
5: %
6: %
      RANK(A,TOL) is the number of singular values of A
      that are larger than TOL. By default, TOL = max(size(A)) * eps(norm(A))
7: %
       ).
8: %
9: %
      Class support for input A:
10: %
          float: double, single
11:
12: %
      Copyright 1984-2015 The MathWorks, Inc.
13:
14: s = svd(A);
15: if nargin==1
      tol = max(size(A)) * eps(max(s));
16:
17: end
18: r = sum(s > tol);
```

#### type 'edit pinv.m' in Matlab

```
1: function X = pinv(A, tol)
2: %PINV
           Pseudoinverse.
3: %
       X = PINV(A) produces a matrix X of the same dimensions
4: %
       as A' so that A*X*A = A, X*A*X = X and A*X and X*A
5: %
       are Hermitian. The computation is based on SVD(A) and any
6: %
        singular values less than a tolerance are treated as zero.
7: %
8: %
       PINV(A, TOL) treats all singular values of A that are less than TOL as
9: %
        zero. By default, TOL = max(size(A)) * eps(norm(A)).
10: %
11: %
        Class support for input A:
12: %
           float: double, single
13: %
14: %
       See also RANK.
15:
16: %
        Copyright 1984-2015 The MathWorks, Inc.
17:
18: [U, S, V] = svd(A, 'econ');
19: s = diag(S);
20: if nargin < 2
       tol = max(size(A)) * eps(norm(s, inf));
21:
22: end
23: r1 = sum(s > tol)+1;
24: V(:, r1:end) = [];
25: U(:, r1:end) = [];
26: s(r1:end) = [];
27: s = 1./s(:);
28: X = (V.*s.')*U';
```

#### type 'edit orth.m' in Matlab

```
1: function Q = orth(A)
 2: %ORTH Orthogonalization.
 3: %
       Q = ORTH(A) is an orthonormal basis for the range of A.
4: %
     That is, Q'*Q = I, the columns of Q span the same space as
 5: %
      the columns of A, and the number of columns of Q is the
6: %
      rank of A.
7: %
8: %
       Class support for input A:
9: %
          float: double, single
10: %
11: %
      See also SVD, RANK, NULL.
12:
13: %
       Copyright 1984-2015 The MathWorks, Inc.
14:
15: [Q,S] = svd(A, econ'); \%S is always square.
16: s = diag(S);
17: tol = max(size(A)) * eps(max(s));
18: r = sum(s > tol);
19: Q(:, r+1:end) = [];
```

# Application of SVD for image compression

```
1: >> A = rgb2gray(imread('llama.jpg'));
2: >> figure; imshow(A);
3: >> [U, S, V] = svd(double(A));
4: >> figure; semilogy(diag(S)/S(1, 1), '-o');
5: >> xlabel('index');ylabel('normalized sing value');
6:
7: >> r = 50;
8: >> Aapprx = U(:, 1:r)*S(1:r, 1:r)*V(:, 1:r)';
9: >> figure; imshow(uint8(Aapprx));
```





#### Original picture and singular values





#### Original picture (left) and reduced picture (right)

# **Outlook:** Model reduction and latent dynamics

#### SPRINGER BRIEFS IN MATHEMATICS

Jan S. Hesthaven Gianluigi Rozza **Benjamin Stamm** 

**Certified Reduced Basis Methods** for Parametrized Partial Differential Equations



Arch Comput Methods Eng manuscript No. (will be inserted by the editor)

#### G. Rozza · D.B.P. Huynh · A.T. Patera

Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations

Application to transport and continuum mechanics

#### Received: August 2007 / Accepted: Date

Abstract In this paper we consider (hierarchical, La- imation, a posteriori error estimation, reduced basis, grange) reduced basis approximation and a posteriori reduced order model, sampling strategies, POD, greedy tions. The essential ingredients are (primal-dual) Galer- real-time computation, many-query, kin projection onto a low-dimensional space associated with a smooth "parametric manifold" - dimension reduction; efficient and effective greedy sampling meth- 1 Introduction and Motivation ods for identification of optimal and numerically stable approximations — rapid convergence; a posteriori er- In this work we describe reduced basis (RB) approxima ror estimation procedures — rigorous and sharp bounds tion and a posteriori error estimation methods for rapid for the linear-functional outputs of interest; and Offline- and reliable evaluation of input-output relationships in Online computational decomposition strategies — min-which the *output* is expressed as a functional of a *field* imum marginal cost for high performance in the real-variable that is the solution of an input-parametrized time/embedded (e.g., parameter-estimation, control) and partial differential equation (PDE). In this particular many-query (e.g., design optimization, multi-model/ scale) contexts. We present illustrative results for heat affinely parametrized linear elliptic coercive PDEs; howconduction and convection-diffusion, inviscid flow, and ever the methodology is much more generally applicable, linear elasticity; outputs include transport rates, added as we discuss in Section 2. mass and stress intensity factors

Keywords Partial differential equations, parameter variation, affine geometry description, Galerkin approx-

This work was supported by DARPA/AFOSR Grants FA9550-05-1-0114 and FA-9550-07-1-0425, the Singapore-MIT Alliance, the Pappalardo MIT Mechanical Engineering titative disciplines (e.g., finance).) The input-parameter Graduate Monograph Fund, and the Progetto Roberto Rocca tion, the physical properties, and the boundary condi-Politectico di Milano-MIT. We acknowledge many helpful tions and sources. The *outputs of interest* might be the discussions with Professor Yvon Maday of University Paris6.

cient, a crack stress intensity factor, an effective constivariables that connect the input parameters to the outrozza@mit.edu puts can represent a distribution function, temperature

D B P. Huynh National University of Singapore, Singapore-MIT Alliance, E4-04-10, 4 Eng. Drive, Singapore, 117576. Tel.: +65 91324387 E-mail: baophuong@nus.edu.sg.

A.T. Paters 8122; E-mail: patera@mit.edu

ticular contexts: the real-time context (e.g., parameter-Massachusetts Institute of Technology, Room 3-266, 77 Mass estimation [54,96,154] or control [124]); and the many-Avenue, Cambridge MA, 02142-4307, USA. Tel.: +1 617-253-guery context (e.g., Jesien ontimization [107] or multiquery context (e.g., design optimization [107] or multimodel/scale simulation [26,49]). Both these contexts are

error estimation for linear functional outputs of affinely techniques, offline-online procedures, marginal cost, parametrized elliptic coercive partial differential equa- coercivity lower bound, successive constraint method

> paper we shall focus on linear output functionals and We emphasize applications in transport and mechan-

ics: unsteady and steady heat and mass transfer; acoustics;

and solid and fluid mechanics. (Of course we do not pre-

clude other domains of inquiry within engineering (e.g. electromagnetics) or even more broadly within the quan-

vector typically characterizes the geometric configura-

maximum system temperature, an added mass coeffi-

or concentration, displacement, pressure, or velocity.

The methodology we describe in this paper is mo-

tivated by, optimized for, and applied within two par-

#### Model Reduction and Approximation Theory and Algorithms



Iterative methods for solving systems of linear equations

# Why iterative methods for linear systems?

Costs of solving a linear system with direct method are  $\mathcal{O}(n^3)$ . This is too much! If *n* gets large, then  $n^3$  is huge and costs become intractable.

History of matrix computations over the years (according to Trefethen & Bau) 1950: m = 20

1965: *m* = 200

1980: *m* = 2000

1995: *m* = 20000

This is an increase of a factor  $10^3$ . However, computing power (FLOP/sec) increased by about  $10^9$ . Notice that  $(10^3)^3 = 10^9$ , which reflects the  $\mathcal{O}(n^3)$  bottleneck

 (Side remark: There are direct methods that beat the complexity O(n<sup>3</sup>) (think of Strassen's algorithm); however,

### Why iterative methods for linear systems?

Costs of solving a linear system with direct method are  $\mathcal{O}(n^3)$ . This is too much! If *n* gets large, then  $n^3$  is huge and costs become intractable.

History of matrix computations over the years (according to Trefethen & Bau) 1950: m = 20

1965: *m* = 200

1980: *m* = 2000

1995: *m* = 20000

This is an increase of a factor  $10^3$ . However, computing power (FLOP/sec) increased by about  $10^9$ . Notice that  $(10^3)^3 = 10^9$ , which reflects the  $\mathcal{O}(n^3)$  bottleneck

(Side remark: There are direct methods that beat the complexity O(n<sup>3</sup>) (think of Strassen's algorithm); however, the numerical stability of these algorithms is not well understood and the constants hidden in the complexity results are huge so that we "never" see the improved rate in practice.)



▶ Direct methods make no progress at all until  $O(n^3)$  work is done, and then lead to residual on the order of machine precision



- Iterative methods can converge geometrically until residual is below machine precision
- ▶ Direct methods make no progress at all until  $O(n^3)$  work is done, and then lead to residual on the order of machine precision

# Why iterative methods for linear systems? (cont'd)

- Classical direct methods (e.g., Gauss elimination) follow the pattern of taking  $\mathcal{O}(n)$  steps and each step costs  $\mathcal{O}(n^2)$  but don't exploit properties of the matrix
- lterative methods reduce the number of steps and the costs of each step, depending on properties of the problem at hand (e.g., spectral properties of A in Ax = b)
- ▶ The ideal iterative method requires O(1) steps and O(n) costs per step to reach machine precision (think of multigrid and pre-conditioned CG)
- Iterative methods, even in the absence of rounding errors, do not deliver the exact answer (recall that LU, QR give us exact answer in finite number of steps if we are in exact arithmetic).
- However, we only can be as accurate as machine precision anyway if we do calculations on a computer. Furthermore, often matrices are stemming from discretizations of PDEs and then we need the solution only up to the discretization error.

## Iterative solution of linear systems

Target problems: very large ( $n = 10^5, 10^6, ...$ ), A is usually sparse and has specific properties.

To solve

$$A\mathbf{x} = \mathbf{b}$$

we construct a sequence

 $\boldsymbol{x}_1, \boldsymbol{x}_2, \dots$ 

of iterates that converges fast to the solution x, where  $x_{k+1}$  can be cheaply computed from  $\{x_1, \ldots, x_k\}$  (e.g., one matrix-vector multiplication).

Thought experiment: If we can compute one iteration with cost  $\mathcal{O}(n)$  (e.g., one matrix-vector multiplication with a sparse matrix) and need a constant  $\mathcal{O}(1)$  number of iterations to reach desired precision, then we solve Ax = b with costs  $\mathcal{O}(n)$ . Intuitively, we cannot do better than that because we solve for n quantities and thus need to touch each at least once.

#### Prototype of iterative method

Let's start by trying to write Ax = b more generally as

 $\boldsymbol{x} = f(\boldsymbol{x})$ 

For example set  $f(\mathbf{x}) = (\mathbf{I} - \mathbf{A})\mathbf{x} + \mathbf{b}$  to obtain

$$\boldsymbol{x} = f(\boldsymbol{x}) = (\boldsymbol{I} - \boldsymbol{A})\boldsymbol{x} + \boldsymbol{b}$$

We can now try to solve this via a fixed-point iteration

$$\boldsymbol{x}_{k+1} = f(\boldsymbol{x}_k)$$

which is in our case

$$\boldsymbol{x}_{k+1} = (\boldsymbol{I} - \boldsymbol{A})\boldsymbol{x}_k + \boldsymbol{b}$$

Instead of picking a specific f, let's look at the prototype

$$\boldsymbol{x}_{k+1} = \boldsymbol{G}\boldsymbol{x}_k + \boldsymbol{c}$$

where G is an iteration matrix somehow related to A and c is related to b.

We must have the actual solution  $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$  as a unique fixed point of the iteration:

x = Gx + c

And we need that the sequence  $(\mathbf{x}_k)$  converges

Theorem: The fixed point method  $\mathbf{x}_{k+1} = G\mathbf{x}_k + \mathbf{c}$  with an invertible G converges for each starting point  $\mathbf{x}_o$  if and only if

$$\rho(G) < 1,$$

where  $\rho(G) = \max_j |\lambda_j|$  is the largest magnitude of all eigenvalue of G (i.e., the spectral radius).  $\rightsquigarrow$  proof

Symmetric 
$$G_{1}$$
, ver(  
There is an orthogonal  $Q$   
 $QGQT = D = \begin{bmatrix} z_{1} \\ z_{2} \end{bmatrix}$   
with eigenvolves

Becouse 
$$|Z_i| \leq p(G_i) \leq 1$$
 for all  $i = l_{1} + m_{i}$  we have  

$$\lim_{h \to \infty} \left( \frac{Z_{i}^{h}}{Z_{i}} \right) = 0$$

$$\lim_{h \to \infty} \left( \frac{Z_{i}^{h}}{D_{i}} \right) = 0$$

Thus 
$$G^{k} = \lim_{h \to D} Q D^{k} Q^{T} = O$$

$$\begin{aligned} \| \times_{q_{+m}} - \times_{q} \| &= \| G \times_{q_{+m-1}} + c - G \times_{q_{-1}} - c \| \\ &= \| G (\times_{q_{+m-1}} - \times_{q_{-1}}) \| \\ &= \dots = \\ &= \| G (\times_{m} - \times_{0}) \| \end{aligned}$$

We offen ose for 11G11 21, which implies  $p(G_1) < 1$ Decouse  $p(G_1) \leq ||G_1|$  for  $||\cdot||$  14 durid by Divelor norm.

Theorem: The fixed point method  $\mathbf{x}_{k+1} = G\mathbf{x}_k + \mathbf{c}$  with an invertible G converges for each starting point  $\mathbf{x}_o$  if and only if

$$\rho(G) < 1,$$

where  $\rho(G) = \max_j |\lambda_j|$  is the largest magnitude of all eigenvalue of G (i.e., the spectral radius).  $\rightsquigarrow$  proof

In particular, for any induced matrix norm  $\|\cdot\|$  we have  $\rho(G) \leq \|G\|$  and thus  $\|G\|$  is a sufficient criterion for convergence. We then obtain

$$||x_k - x|| \le ||G||^k ||x_0 - x||$$

Let Q be invertible, then

$$A\mathbf{x} = \mathbf{b} \Leftrightarrow Q^{-1}(\mathbf{b} - A\mathbf{x}) = 0$$
  
$$\Leftrightarrow (I - Q^{-1}A)\mathbf{x} + Q^{-1}\mathbf{b} = \mathbf{x}$$
  
$$\Leftrightarrow G\mathbf{x} + \mathbf{c} = \mathbf{x}$$

Leads to fixed-point iteration with  $\boldsymbol{G} = (I - Q^{-1}A)$  and  $c = Q^{-1}b$ 

$$oldsymbol{x}_{k+1} = oldsymbol{G}oldsymbol{x}_k + oldsymbol{c}$$

and  $\boldsymbol{x} = \boldsymbol{A}^{-1} \boldsymbol{b}$  is stationary point

$$Gx + c = (I - Q^{-1}A)x + Q^{-1}b = x - Q^{-1}b + Q^{-1}b = x$$

### Extreme cases for selecting Q

What are two extreme cases for selecting Q (recall: Q needs to be invertible)?

#### Extreme cases for selecting Q

What are two extreme cases for selecting Q (recall: Q needs to be invertible)?

Choose Q = A, then our iteration

$$x_{k+1} = Gx_k + c$$
,  $G = I - Q^{-1}A$ ,  $c = Q^{-1}b$ 

becomes

$$(I - A^{-1}A)\mathbf{x}_k + \underbrace{A^{-1}\mathbf{b}}_{\mathbf{x}} = \mathbf{x}_{k+1}$$

$$\mathbf{0} + \mathbf{x} = \mathbf{x}_{k+1}$$

and we are done in just a single step

$$x_{k+1} = x$$

Thus, if we "know the solution" (in form of having the inverse  $A^{-1}$ ) then no further work is needed here because we already did all the work when finding  $A^{-1}$ 

The other extreme is setting Q = I, this leads to the Richardson method

$$\boldsymbol{x}_{k+1} = (\boldsymbol{I} - \boldsymbol{A})\boldsymbol{x}_k + \boldsymbol{b}$$

We have invested zero costs in finding Q (and  $Q^{-1}$ ) and so we can expect that Q = I will require high costs in terms of number of iterations to converge in general, if it converges at all

When does Richardson method converge? ~> board

Let A be spol, then  

$$p(G_1) = p(I-A) = mat S|I-2moll, |-2minl]$$
  
thus need  
 $Zmat(A) < 2$   
 $=> rowely usoble, but imported building block$ 

# Numerical Methods I

# MATH-GA 2010.001/CSCI-GA 2420.001

Benjamin Peherstorfer Courant Institute, NYU

Based on slides by G. Stadler and A. Donev

# Today

#### Last time

Iterative methods for systems of linear equations

#### Today

Iterative methods for systems of linear equations

#### Announcements

Homework 4 is due Mon, Nov 4, 2024 before class

# Recap



- Iterative methods can converge geometrically until residual is below machine precision
- ► Direct methods make no progress at all until  $\mathcal{O}(n^3)$  work is done, and then lead to residual on the order of machine precision 14/65

Recap: Iterative solution of linear systems

Target problems: very large ( $n = 10^5, 10^6, ...$ ), A is usually sparse and has specific properties.

To solve

$$A\mathbf{x} = \mathbf{b}$$

we construct a sequence

 $\boldsymbol{x}_1, \boldsymbol{x}_2, \dots$ 

of iterates that converges fast to the solution x, where  $x_{k+1}$  can be cheaply computed from  $\{x_1, \ldots, x_k\}$  (e.g., one matrix-vector multiplication).

Thought experiment: If we can compute one iteration with cost  $\mathcal{O}(n)$  (e.g., one matrix-vector multiplication with a sparse matrix) and need a constant  $\mathcal{O}(1)$  number of iterations to reach desired precision, then we solve Ax = b with costs  $\mathcal{O}(n)$ . Intuitively, we cannot do better than that because we solve for n quantities and thus need to touch each at least once.

## Recap

Instead of picking a specific f, let's look at the prototype

$$\boldsymbol{x}_{k+1} = \boldsymbol{G}\boldsymbol{x}_k + \boldsymbol{c}$$

where G is an iteration matrix somehow related to A and c is related to b.

We must have the actual solution  $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$  as a unique fixed point of the iteration:

$$x = Gx + c$$

And we need that the sequence  $(x_k)$  converges
## Recap

Let Q be invertible, then

$$A\mathbf{x} = \mathbf{b} \Leftrightarrow Q^{-1}(\mathbf{b} - A\mathbf{x}) = 0$$
  
$$\Leftrightarrow (I - Q^{-1}A)\mathbf{x} + Q^{-1}\mathbf{b} = \mathbf{x}$$
  
$$\Leftrightarrow G\mathbf{x} + \mathbf{c} = \mathbf{x}$$

Leads to fixed-point iteration with  $\boldsymbol{G} = (I - Q^{-1}A)$  and  $c = Q^{-1}b$ 

$$\boldsymbol{x}_{k+1} = \boldsymbol{G}\boldsymbol{x}_k + \boldsymbol{c}$$

and  $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$  is stationary point

$$Gx + c = (I - Q^{-1}A)x + Q^{-1}b = x - Q^{-1}b + Q^{-1}b = x$$

### Recap: Extreme cases for selecting Q

What are two extreme cases for selecting Q (recall: Q needs to be invertible)?

Choose Q = A, then our iteration

$$x_{k+1} = Gx_k + c$$
,  $G = I - Q^{-1}A$ ,  $c = Q^{-1}b$ 

becomes

$$(I - A^{-1}A)\mathbf{x}_k + \underbrace{A^{-1}\mathbf{b}}_{\mathbf{x}} = \mathbf{x}_{k+1}$$

$$\mathbf{0} + \mathbf{x} = \mathbf{x}_{k+1}$$

and we are done in just a single step

$$x_{k+1} = x$$

Thus, if we "know the solution" (in form of having the inverse  $A^{-1}$ ) then no further work is needed here because we already did all the work when finding  $A^{-1}$ 

## Recap

The other extreme is setting Q = I, this leads to the Richardson method

$$\boldsymbol{x}_{k+1} = (\boldsymbol{I} - \boldsymbol{A})\boldsymbol{x}_k + \boldsymbol{b}$$

We have invested zero costs in finding Q (and  $Q^{-1}$ ) and so we can expect that Q = I will require high costs in terms of number of iterations to converge in general, if it converges at all

When does Richardson method converge?  $\rightsquigarrow$  if  $\lambda_{max} < 2$ , very restrictive

The Richardson method is consistent (solution is a stationary point) but it may not converge or converge very slowly

$$\boldsymbol{x}_{k+1} = (\boldsymbol{I} - \boldsymbol{A})\boldsymbol{x}_k + \boldsymbol{b}$$

What could we do instead of Richardson method?

The Richardson method is consistent (solution is a stationary point) but it may not converge or converge very slowly

$$\boldsymbol{x}_{k+1} = (\boldsymbol{I} - \boldsymbol{A})\boldsymbol{x}_k + \boldsymbol{b}$$

What could we do instead of Richardson method? Let us think of Q as a preconditioner of the Richardson method:

$$oldsymbol{Q}^{-1}pproxoldsymbol{A}^{-1}$$

and transform

$$Q^{-1}Ax = Q^{-1}b$$

Applying the Richardson iteration to this modified system gives

$$x_{k+1} = (I - Q^{-1}A)x_k + Q^{-1}b = Gx_k + c$$

Thus, with an iteration matrix  $I - Q^{-1}A \approx 0$ , expect more rapid convergence

# Common choices for Q

Requirements on a good Q are

# Common choices for Q

Requirements on a good Q are

- ►  $Q^{-1}$  is representative of  $A^{-1}$
- We can numerically solve Qy = z much quicker than Ax = b because in each step we solve

$$\boldsymbol{Q}\boldsymbol{x}_{k+1} = (\boldsymbol{Q} - \boldsymbol{A})\boldsymbol{x}_k + b$$

## Common choices for Q

Requirements on a good Q are

- ►  $Q^{-1}$  is representative of  $A^{-1}$
- We can numerically solve Qy = z much quicker than Ax = b because in each step we solve

$$\boldsymbol{Q}\boldsymbol{x}_{k+1} = (\boldsymbol{Q} - \boldsymbol{A})\boldsymbol{x}_k + b$$

Split the matrix A as follows

$$A = L + D + U$$



## Jacobi method

Theorem: Select now  $Q = D \dots$  Jacobi method. The Jacobi method converges for any starting point  $x_o$  to the solution of Ax = b if A is strictly diagonal dominant, i.e.,

$$|a_{ii}| > \sum_{j \neq i} |a_{ij}|,$$
 for  $i = 1, \ldots, n.$ 

 $\rightsquigarrow$  board

## Jacobi method

Theorem: Select now  $Q = D \dots$  Jacobi method. The Jacobi method converges for any starting point  $x_o$  to the solution of Ax = b if A is strictly diagonal dominant, i.e.,

$$|a_{ii}| > \sum_{j \neq i} |a_{ij}|,$$
 for  $i = 1, \ldots, n.$ 

 $\rightsquigarrow$  board

Notice that Q = D is a good choice in terms of computational costs because we can very quickly solve Dy = z for the diagonal matrix D

## Gauss-Seidel method

Theorem: Choose Q = D + L... Gauss-Seidel method. The Gauss-Seidel method converges for any starting point  $x_o$  if A is symmetric positive definite (spd).  $\rightarrow$  board

Gouss - Seidel convogence  

$$\begin{aligned} \times_{R+1} &= (I - (D+L)^{-1}A) \times_{R} + (D+L)^{-1}b \\ &= ((D+L)^{-1}(D+L) - (D+L)^{-1}(D+L+R)) \times_{R} + (D+L)^{-1}b \\ &= -(D+L)^{-1}R \times_{R} + (D+L)^{-1}b \\ \end{aligned}$$
For any spd matrix A, we have a scolar gradet   

$$\begin{aligned} &(X_{1}7)_{A} &= (X_{1}A_{7})_{A} & \text{on } M^{n} \\ &\text{and for any matrix B \in R^{n+n}, we have the distributed \\ w.r.t. L_{1}^{-1} \times_{A} & given by \\ & B^{*} &= A^{-1}B^{T}A \\ \end{aligned}$$
So that 
$$\begin{aligned} &(B\times_{1}7)_{A} &= (X_{1}B^{T}A_{7} &= \times^{T}AB^{T}A_{7}) \\ &K &= (I^{-}ad_{1}a) \times_{A} &= X^{T}AB^{T}A_{7} &= X^{T}AB^{T}A_{7} \\ \end{aligned}$$
A self-adjoint matrix B = B^{\*} is positive \\ w.r.t. L\_{1}^{-2}A & if < BX\_{1} \times\_{A} &= 0 \\ \end{aligned}

First we show: Let G GIMMA with odjoint G\*  
W.r.t. L., >. Then, if B=I-G\*G is positive  
W.r.t. L., >, it follows 
$$p(G) \ge 1$$
.  
LS B positive =>  
 $\forall x \ne 0$   
 $0 \le CBr_1 x > = Cx_1 x > -CG^*G_{A,A} >$   
 $= Cx_1 x > -CG_{A,A} >$   
 $|x|| > ||G_{A}|| \quad \forall x \ne 0$   
 $||G_{A}|| = \sup_{\||A_{A}|| \le 1}$   
 $||M_{A}|| \le 1$   
 $||M_{A}|| = 1$   
 $||M_{A}$ 

L> Become 
$$A = d_1, A = L + D + R$$
, we have  

$$\begin{aligned}
\left( \prod_{i=1}^{T} = R^{-1} G^{T} A = \\
&= I - A^{-1} A^{T} (D + R)^{-1} A \\
&= I - (D + R)^{-1} A
\end{aligned}$$

$$\begin{aligned}
B = I - G^{*} G = \dots = (D + R)^{T} D (D + L)^{T} A \\
&= D now show that B pos. with  $L_{i}$ ,  $A = 2 \\
&= L \frac{D^{2} (D + L)^{-1} A \times I}{D + L} D^{2} (D + L)^{-1} A \times I = 2 \\
&= I D^{2} (D + L)^{-1} A \times I = 2 \\
&= I D^{2} (D + L)^{-1} A \times I = 2 \\
&= B is posifive and thus \\
&= P(G) - L \end{bmatrix}$$$

## Gauss-Seidel method

Theorem: Choose Q = D + L... Gauss-Seidel method. The Gauss-Seidel method converges for any starting point  $x_o$  if A is symmetric positive definite (spd).  $\rightsquigarrow$  board

Notice that Q = D + L is a good choice in terms of computational costs because we can very quickly solve (D + L)y = z for the lower triangular matrix D + L (forward substitution)

## Relaxation methods:

Use linear combination between new and previous iterate:

$$\boldsymbol{x}_{k+1} = \omega \underbrace{(\boldsymbol{G} \boldsymbol{x}_k + \boldsymbol{c})}_{\boldsymbol{x}'_{k+1}} + (1 - \omega) \boldsymbol{x}_k = \boldsymbol{G}_{\omega} \boldsymbol{x}_k + \omega \boldsymbol{c},$$

where  $\omega > 0$  is a damping/relaxation parameter (sometimes,  $\omega > 1$  is used, leading to overrelaxation). Target is to choose  $\omega$  such that  $\rho(G_{\omega})$  is minimal.

Def: A fixed point method  $\mathbf{x}_{k+1} = G\mathbf{x}_k + \mathbf{c}$  with G = G(A) is called *symmetrizable* if for any symmetric positive definite (spd) matrix A, the matrix I - G is similar to an spd matrix, i.e., there is a regular W such that  $W(I - G)W^{-1}$  spd.

#### board

Symmetrizable: need that I-G is similar to  
on spd matrix:  
G Richardson: 
$$G = I - A$$
  
 $= > I - G = A$  is spd if  
 $A = s_{1} = S_{1} = A$   
 $= > I - G = A$  is spd if  
 $A = s_{1} = S_{1} = A$   
 $(W(I - G)W^{-1} = S_{1} = A)$   
 $D^{2}(I - G)D^{-1/2} = I - I + D^{2}D^{-1/2}AD^{-1/2}$   
 $= D^{-1/2}AD^{-1/2}$   
Which is spd because D has  
non-zow the general eatries if A spd  
We have the following result for sym. schemes:  
 $Xq_{+1} = G \times q + C$ ,  $G = G(A)$ , A spod  
 $= O(G) - C(-\infty, 1)$  (P(G) = mat S(AB))  
 $= Z(A) = Z(A)$ 

Become I-G is similar to sponotria, O(l eigenvolues are veal and positive) => eigenvolues of G are I - 2g(G) > 0I = 2g(G) Finding the optimal damping parameter:  $\rightsquigarrow$  board

ð

Finding the optimal damping parameter:  $\rightarrow$  board

We obtain that

$$ar{\omega} = rac{2}{2 - \lambda_{\max}(G) - \lambda_{\min}(G)}$$

is the optimal damping parameter for symmetrizable iteration methods that minimizes the spectral radius. The spectral radius is

 $ho(G_{\bar{\omega}}) < 1$ 

This means that for a suitable choice  $\bar{\omega}$  we can make *any* symmetrizable iteration method convergent for an spd A!

Finding the optimal damping parameter:  $\rightsquigarrow$  board

We obtain that

$$\overline{\omega} = rac{2}{2-\lambda_{\sf max}({\sf G})-\lambda_{\sf min}({\sf G})}$$

is the optimal damping parameter for symmetrizable iteration methods that minimizes the spectral radius. The spectral radius is

 $ho(G_{\bar{\omega}}) < 1$ 

This means that for a suitable choice  $\bar{\omega}$  we can make *any* symmetrizable iteration method convergent for an spd A!

Optimal damping parameter for Richardson iteration  $\rightsquigarrow$  board

# Numerical Methods I MATH-GA 2010.001/CSCI-GA 2420.001

Benjamin Peherstorfer Courant Institute, NYU

Based on slides by G. Stadler and A. Donev

# Today

### Last time

Iterative methods for systems of linear equations

### Today

- Iterative methods for systems of linear equations
- Conjugate gradient method

### Announcements

Homework 4 is due Mon, Nov 4, 2024 before class

### Recap: Iterative methods

Let Q be invertible, then

$$A\mathbf{x} = \mathbf{b} \Leftrightarrow Q^{-1}(\mathbf{b} - A\mathbf{x}) = 0$$
  
$$\Leftrightarrow (I - Q^{-1}A)\mathbf{x} + Q^{-1}\mathbf{b} = \mathbf{x}$$
  
$$\Leftrightarrow G\mathbf{x} + \mathbf{c} = \mathbf{x}$$

Leads to fixed-point iteration with  $\boldsymbol{G} = (I - Q^{-1}A)$  and  $c = Q^{-1}b$ 

$$\boldsymbol{x}_{k+1} = \boldsymbol{G}\boldsymbol{x}_k + \boldsymbol{c}$$

and  $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$  is stationary point

$$Gx + c = (I - Q^{-1}A)x + Q^{-1}b = x - Q^{-1}b + Q^{-1}b = x$$

Recap: Common choices for Q

Requirements on a good Q are

## Recap: Common choices for Q

Requirements on a good Q are

- ►  $Q^{-1}$  is representative of  $A^{-1}$
- We can numerically solve Qy = z much quicker than Ax = b because in each step we solve

$$Qx_{k+1} = (Q - A)x_k + b$$

## Recap: Common choices for Q

Requirements on a good Q are

- ►  $Q^{-1}$  is representative of  $A^{-1}$
- We can numerically solve Qy = z much quicker than Ax = b because in each step we solve

$$\boldsymbol{Q}\boldsymbol{x}_{k+1} = (\boldsymbol{Q} - \boldsymbol{A})\boldsymbol{x}_k + b$$

Split the matrix *A* as follows

$$A = L + D + U$$

## Recap: Jacobi method

Theorem: Select now Q = D ... Jacobi method. The Jacobi method converges for any starting point  $x_o$  to the solution of Ax = b if A is strictly diagonal dominant, i.e.,

$$|a_{ii}| > \sum_{j \neq i} |a_{ij}|,$$
 for  $i = 1, \ldots, n.$ 

## Recap: Jacobi method

Theorem: Select now Q = D ... Jacobi method. The Jacobi method converges for any starting point  $x_o$  to the solution of Ax = b if A is strictly diagonal dominant, i.e.,

$$|a_{ii}| > \sum_{j \neq i} |a_{ij}|,$$
 for  $i = 1, \ldots, n.$ 

Notice that Q = D is a good choice in terms of computational costs because we can very quickly solve Dy = z for the diagonal matrix D

## Recap: Gauss-Seidel method

Theorem: Choose Q = D + L... Gauss-Seidel method. The Gauss-Seidel method converges for any starting point  $x_o$  if A is symmetric positive definite (spd).

## Recap: Gauss-Seidel method

Theorem: Choose  $Q = D + L \dots$  Gauss-Seidel method. The Gauss-Seidel method converges for any starting point  $\mathbf{x}_o$  if A is symmetric positive definite (spd).

Notice that Q = D + L is a good choice in terms of computational costs because we can very quickly solve (D + L)y = z for the lower triangular matrix D + L (forward substitution)

### Recap: Relaxation methods

Use linear combination between new and previous iterate:

$$\boldsymbol{x}_{k+1} = \omega \underbrace{(\boldsymbol{G} \boldsymbol{x}_k + \boldsymbol{c})}_{\boldsymbol{x}'_{k+1}} + (1 - \omega) \boldsymbol{x}_k = \boldsymbol{G}_{\omega} \boldsymbol{x}_k + \omega \boldsymbol{c},$$

where  $\omega > 0$  is a damping/relaxation parameter (sometimes,  $\omega > 1$  is used, leading to overrelaxation). Target is to choose  $\omega$  such that  $\rho(G_{\omega})$  is minimal.

Def: A fixed point method  $\mathbf{x}_{k+1} = G\mathbf{x}_k + \mathbf{c}$  with G = G(A) is called *symmetrizable* if for any symmetric positive definite (spd) matrix A, the matrix I - G is similar to an spd matrix, i.e., there is a regular W such that  $W(I - G)W^{-1}$  spd.

#### board

Finding the optimal damping parameter:  $\rightsquigarrow$  board

 $X_{g_{+1}} = W(G_{X_q} + c) + (1 - w) X_q$ = Grow × + WC, Grow = wG + (1-w) I Gool: find OCWEL with minimal p(Grow) The EV of Gw ore  $\mathcal{Z}_{i}(G_{\omega}) = \omega \mathcal{X}_{i}(G) + 1 - \omega$  $= | - \omega(1 - 2; (G))$ Bewere Imin (G) = 2mon (G) L)  $\mathcal{Z}_{i}(\mathcal{G}_{w}) \leq 1$ and  $p(G_w) = mot \left[ \left[ 1 - w(1 - 2min(G_i)) \right] \right]$  $\left[ 1 - w(1 - 2mot(G_i)) \right] 3$ Let's loop at winin = 1 1-2min(G) becomen OLI- Imod(G) = 1- Imin (G) with whin obtain  $|| - \omega_{min}(| - 2min(G))| = 0$ Similarly, for wman = 1-2mon (a) so that [1 - Wmox (1- 2mor (G))] = O

$$|I - w(I - 2w_{in})|$$

$$|I - w(I - 2w_{in})|$$
Spectral rodius  

$$P(G_{w}) = P(I - wA) =$$

$$= \frac{Z_{mat}(A) - Z_{min}(A)}{Z_{mat}(A) + Z_{min}(A)}$$

$$= \frac{Y_{A_{min}}}{Y_{A_{min}}} \frac{Z_{max} - Z_{min}(A)}{Z_{max} + Z_{min}(A)} = \frac{R_{2}(A) - 1}{R_{2}(A) + 1} \angle 1$$

$$= 3 \text{ Notice that the condition number of A elers}$$

$$= 3 \text{ Chifford from direct methods}$$

$$= 3 \text{ Chifford from direct methods}$$

$$= 3 \text{ If } R_{2}(A) \text{ is high}, \text{ then}$$

$$= \frac{R_{2}(A) - 1}{R_{2}(A) + 1} \approx 1$$

$$= 3 \text{ Nerg s(ow convergence)}$$

Finding the optimal damping parameter:  $\rightarrow$  board

We obtain that

$$ar{\omega} = rac{2}{2 - \lambda_{\max}(G) - \lambda_{\min}(G)}$$

is the optimal damping parameter for symmetrizable iteration methods that minimizes the spectral radius. The spectral radius is

 $ho(G_{\bar{\omega}}) < 1$ 

This means that for a suitable choice  $\bar{\omega}$  we can make *any* symmetrizable iteration method convergent for an spd A!

Finding the optimal damping parameter:  $\rightsquigarrow$  board

We obtain that

$$\overline{\omega} = rac{2}{2-\lambda_{\sf max}({\sf G})-\lambda_{\sf min}({\sf G})}$$

is the optimal damping parameter for symmetrizable iteration methods that minimizes the spectral radius. The spectral radius is

 $ho(G_{\bar{\omega}}) < 1$ 

This means that for a suitable choice  $\bar{\omega}$  we can make *any* symmetrizable iteration method convergent for an spd A!

Optimal damping parameter for Richardson iteration  $\rightsquigarrow$  board

Another interpretation of Richardson iterations?

$$\boldsymbol{x}_{k+1} = (I - A)\boldsymbol{x}_k + b$$

Another interpretation of Richardson iterations?

$$\boldsymbol{x}_{k+1} = (I - A)\boldsymbol{x}_k + b = \boldsymbol{x}_k + (b - A\boldsymbol{x}_k)$$

Another interpretation of Richardson iterations?

$$\boldsymbol{x}_{k+1} = (I - A)\boldsymbol{x}_k + b = \boldsymbol{x}_k + (b - A\boldsymbol{x}_k)$$

for  $k = 0, 1, \ldots$ for  $i = 0, 1, \ldots, n-1$ :  $x_{k+1}[i] = x_k[i] + r_k[i]$ where the residual  $\mathbf{r}_k$  at iteration k is given by

$$\boldsymbol{r}_k = \boldsymbol{b} - \boldsymbol{A} \boldsymbol{x}_k$$

What would we like to update  $x_k$  with?

Another interpretation of Richardson iterations?

$$\boldsymbol{x}_{k+1} = (I - A)\boldsymbol{x}_k + b = \boldsymbol{x}_k + (b - A\boldsymbol{x}_k)$$

for  $k = 0, 1, \ldots$ for  $i = 0, 1, \ldots, n-1$ :  $x_{k+1}[i] = x_k[i] + r_k[i]$ where the residual  $\mathbf{r}_k$  at iteration k is given by

$$\boldsymbol{r}_k = \boldsymbol{b} - \boldsymbol{A} \boldsymbol{x}_k$$

What would we like to update  $x_k$  with? We would like to update  $x_k$  in the direction of the error  $e_k = x - x_k$  because then

$$oldsymbol{x}_{k+1} = oldsymbol{x}_k + oldsymbol{e}_k = oldsymbol{x}$$

However, we don't have the error  $e_k$  and therefore it is reasonable to use the next best thing which is the residual in many situations

$$\mathbf{r}_k = \mathbf{b} - \mathbf{A}\mathbf{x}_k = \mathbf{A}\mathbf{x} - \mathbf{A}\mathbf{x}_k = \mathbf{A}(\mathbf{x} - \mathbf{x}_k) = \mathbf{A}\mathbf{e}_k$$

 $\rightsquigarrow$  Richardson iteration updates  $\boldsymbol{x}_k$  in the direction of the residual  $\boldsymbol{r}_k$ 

Jacobi iterations

$$\mathbf{x}_{k+1} = (I - D^{-1}A)\mathbf{x}_k + D^{-1}b$$

for k = 0, 1, ...  
for i = 0, 1, ..., n-1: 
$$y[i] = 1/a_{ii}r_k[i]$$
  
for i = 0, 1, ..., n-1:  $x_{k+1}[i] = x_k[i] + y[i]$ 

- ln every substep i of iteration k, an update y[i] is computed and stored
- Applied immediately, this would lead to the (momentary) disappearance of the *i*-th component of the residual r<sub>k</sub>
- Thus, with this current approximation, equation *i* would be solved exactly—an improvement that would be lost immediately in the following substep for the equation *i* + 1
- However, the updates of a component are not applied immediately but only at the end of an iteration step (second *i*-loop)

Gauss-Seidel iteration

$$\mathbf{x}_{k+1} = (I - (L+D)^{-1}A)\mathbf{x}_k + (L+D)^{-1}b$$

for k = 0, 1, ...  
for i = 0, 1, ..., n-1: 
$$r_k[i] = b[i] - \sum_{j=1}^{i-1} a_{ij} x_{k+1}[j] - \sum_{j=i}^n a_{ij} x_k[j]$$
  
 $y[i] = 1/a_{ii} r_k[i], \quad x_{k+1}[i] = x_k[i] + y[i]$ 

- In contrast to Jacobi method, the update is performed immediately
   Therefore the new modified values for components 1, ..., *i* 1 are already available
- for updating component *i*

Damping (mostly Jacobi) or over-relaxation (mostly Gauss-Seidel) means to take step lengths different from 1 in the direction of the residual

## The spectral radius of typical iterative matrices

- The spectral radius  $\rho$  determines convergence and speed; the smaller  $\rho$ , the faster the error decays. In practice,  $\rho$  is often very close to 1 so that even though  $\rho < 1$  it takes an unreasonable amount of iterations to get a reasonable answer
- An important sample scenario is the discretization of PDEs: It is typical that ρ depends on the dimension n of the matrix A, and thus in terms of PDE discretization it depends on the mesh width h of the underlying grid. For example

$$ho \in \mathcal{O}(1-h_l^2) = \mathcal{O}(1-rac{1}{4^l})$$

with mesh width  $h_l = 2^{-l}$  in one dimension ( $\mathcal{O}(1 - 16^{-l})$  in two spatial dimensions)

## The spectral radius of typical iterative matrices

- The spectral radius  $\rho$  determines convergence and speed; the smaller  $\rho$ , the faster the error decays. In practice,  $\rho$  is often very close to 1 so that even though  $\rho < 1$  it takes an unreasonable amount of iterations to get a reasonable answer
- An important sample scenario is the discretization of PDEs: It is typical that ρ depends on the dimension n of the matrix A, and thus in terms of PDE discretization it depends on the mesh width h of the underlying grid. For example

$$ho \in \mathcal{O}(1-h_l^2) = \mathcal{O}(1-rac{1}{4^l})$$

with mesh width  $h_l = 2^{-l}$  in one dimension  $(\mathcal{O}(1 - 16^{-l}))$  in two spatial dimensions)

This is a huge disadvantage: Why? the finer the grid is (and therefore the more accurate our approximation of the PDE solution should be), the slower these iterative methods get.

Consider the Laplace equation

$$\Delta u(x_1,x_2)=0\,,$$

in two dimensions and discretize with five-point second-order finite-difference stencil on  $N \times N$  grid points ( $\rightsquigarrow$  NM2)

Plot the spectral radius  $\rho(I - A)$  (Richardson interpolation) w.r.t. number of grid points

```
1: Nlist = 2.^(2:8);
2: eList = [];
3: for N=Nlist
4: X = gallery('poisson', N)*(1/N^2);
5: eList(end + 1) = eigs(speye(N^2) - X, 1);
6: end
```





Running Jacobi on a Poisson matrix with N = 10 and N = 100 grid points in each dimension:

```
1: A = gallery('poisson', N)*(1/N^2);
2: b = randn(N^2, 1);
3: x = randn(N^2, 1);
4: xTrue = A \setminus b;
5: M = speye(N^2) - spdiags(1./diag(A), 0, N^2, N^2)*A;
6: c = spdiags(1./diag(A), 0, N^2, N^2)*b;
7:
8: hist = [];
9: for iter=1:1000
10: x = M * x + c;
11:
       hist(iter, 1) = norm(x - xTrue)/norm(x);
12:
       hist(iter, 2) = norm(A * x - b);
13: end
```

### N = 10



N = 100

N = 100

N = 10



## First few iterations of Jacobi relaxation

```
1:
2: N = 30; A = gallery('poisson', N)*(1/N^2);
3: [X, Y] = meshgrid(linspace(1, N, N), linspace(1, N, N));
4: b = 10 * randn(N^2, 1);
5: x = randn(N^2, 1);
6: xTrue = A \setminus b;
7:
8: for i=1:5
       x = (speye(N^2) - spdiags(1./diag(A), 0, N^2, N^2)*A)*x + ...
9:
10:
                    spdiags(1./diag(A), 0, N^2, N^2)*b;
11: end
```



iteration 3

iteration 4

iteration 5

- Relaxation methods such as Jacobi and Gauss Seidel have a smoothing effect on the error
- ► Even if \(\rho \approx 1\), only a few iterations are necessary to obtain a smooth error; this means that high-frequency error is reduced very quickly whereas the low-frequency error is reduced slowly
- Multigrid methods exploit this effect and represent the smoothed error on a coarse grid, where it becomes high-frequency error again, which can be smoothed quickly



 $\rightsquigarrow$  Multigrid methods are among the most efficient solvers for PDE problems  $\rightsquigarrow$  NM 2 in Spring

Conjugate gradient method

In the following A is symmetric positive definite.

Formulate solving Ax = b as an optimization problem: Define

$$f(x) = \frac{1}{2}x^T A x - b^T x \, ,$$

and minimize

 $\min_{x\in\mathbb{R}^n}f(x)$ 

Because A is positive definite, the function f is convex. It is sufficient to look at the gradient

$$\nabla f(x) = \frac{1}{2}A^T x + \frac{1}{2}Ax - b = Ax - b = -r(x) = 0 \iff Ax = b$$

What is the benefit of this point of view?

In the following A is symmetric positive definite.

Formulate solving Ax = b as an optimization problem: Define

$$f(x) = \frac{1}{2}x^T A x - b^T x \, ,$$

and minimize

 $\min_{x\in\mathbb{R}^n}f(x)$ 

Because A is positive definite, the function f is convex. It is sufficient to look at the gradient

$$\nabla f(x) = \frac{1}{2}A^T x + \frac{1}{2}Ax - b = Ax - b = -r(x) = 0 \iff Ax = b$$

What is the benefit of this point of view? We now can let loose all what we know about optimization to solve Ax = b

Our first try is applying the method of steepest descent in the direction of the negative gradient

$$-\nabla f = r$$

which happens to be the residual

$$r_{k} = b - Ax_{k}$$
$$\alpha_{k} = \frac{r_{k}^{T} r_{k}}{r_{k}^{T} A r_{k}}$$
$$x_{k+1} = x_{k} + \alpha_{k} r_{k}$$

The step length  $\alpha_k$  minimizes  $f(x_k + \alpha_k r_k)$  as a function of  $\alpha_k \rightsquigarrow board$ 

(This is the same as Richardson iterations with damping  $\alpha_k$ ; what is the difference between  $\alpha_k$  and  $\overline{\omega}$ ?  $\rightsquigarrow$ 

Step Eangly  

$$f(x) = \frac{1}{2}x^{T}Ax - b^{T}x_{1} \quad \nabla f(x) = Ax - b$$
vnin 
$$f(x_{R} + g_{R}v_{R}) = \frac{1}{2}(x_{R} + g_{R}v_{R})^{T}A(x_{R} + g_{R}v_{R}) - b^{T}(x_{R} + g_{R}v_{R}) - b^{T}(x_{R} + g_{R}v_{R})$$

$$\xrightarrow{2} F(x_{R} + g_{R}v_{R}) = v_{R}^{T} \left[\nabla f(x_{R} + f_{R}v_{R})\right]$$

$$= v_{R}^{T} \left[Ax_{R} + Ag_{R}v_{R} - b\right] \stackrel{!}{=} 0$$

$$v_{R}^{T}Ax_{R} + g_{R}v_{R}^{T}Av_{R} - v_{R}^{T}b = 0$$

$$v_{R}^{T}(Ax_{R} - b) + g_{R}v_{R}^{T}Av_{R} = 0$$

$$\xrightarrow{2} g_{R}^{T} = \frac{v_{R}^{T}v_{R}}{v_{R}^{T}Av_{R}}$$

Our first try is applying the method of steepest descent in the direction of the negative gradient

$$-\nabla f = r$$

which happens to be the residual

$$r_{k} = b - Ax_{k}$$
$$\alpha_{k} = \frac{r_{k}^{T} r_{k}}{r_{k}^{T} A r_{k}}$$
$$x_{k+1} = x_{k} + \alpha_{k} r_{k}$$

The step length  $\alpha_k$  minimizes  $f(x_k + \alpha_k r_k)$  as a function of  $\alpha_k \rightsquigarrow \text{board}$ 

(This is the same as Richardson iterations with damping  $\alpha_k$ ; what is the difference between  $\alpha_k$  and  $\overline{\omega}$ ?  $\rightsquigarrow \alpha_k$  is computable with just mat-vec with A, whereas  $\overline{\omega}$  depends on eigenvalues of A) For steepest descent, if A is spd, we obtain

$$\|x^* - x_k\|_A \le \left(\frac{\kappa_2(A) - 1}{\kappa_2(A) + 1}\right)^k \|x^* - x_0\|_A,$$

where  $\langle x, y \rangle_A = x^T A y$  and  $\| \cdot \|_A = \sqrt{\langle \cdot, \cdot \rangle_A}$ .

Proof  $\rightsquigarrow$  board

$$\|\times_{\mathbf{R}} - \chi^{\mathbf{*}}\|_{\mathbf{A}} \leq \left(\frac{R_{\mathbf{C}}(\mathbf{A}) - 1}{R_{\mathbf{C}}(\mathbf{A}) + 1}\right)^{\mathbf{R}} \|\chi^{\mathbf{S}} - \chi_{\mathbf{O}}\|_{\mathbf{A}}$$

Consider  

$$\chi_{R+1}(\gamma) = \chi_{R} + \gamma_{R}$$
  
 $= \chi_{R} + \gamma_{R} + \chi_{R} = Ax^{*} - Ax_{R}$   
 $= \chi_{R} + \chi_{R} + \chi_{R} + \chi_{R}$ 

$$\frac{\chi^{*} - \chi_{q_{H}}(\varphi)}{= (1 - \varphi A)(\chi^{*} - \chi_{q})}$$

$$e_{g_{H}}(\alpha) = ((-\alpha A)e_{g_{H}})$$

$$\|e_{q_{H}}(\cdot)\|_{\mathcal{A}}^{2} = e_{q}^{T} (1 - \alpha \mathcal{A})^{T} \mathcal{A} (1 - \alpha \mathcal{A}) e_{q}$$

$$\frac{(1 - \alpha \mathcal{A})}{\mathcal{A}} e_{q}$$

$$\frac{(1 - \alpha \mathcal{A}$$

$$\| e_{\mathbf{q}+1}(\mathbf{x}) \|_{\mathcal{A}}^{2} = \dots = \sum_{j=1}^{N} \lambda_{j} \vartheta_{j}^{2} (1 - \alpha \lambda_{j})^{2}$$

# Numerical Methods I MATH-GA 2010.001/CSCI-GA 2420.001

Benjamin Peherstorfer Courant Institute, NYU

Based on slides by G. Stadler and A. Donev

# Today

### Last time

Iterative methods for systems of linear equations

## Today

Conjugate gradient method

#### Announcements

Homework 4 is due Mon, Nov 4, 2024 before class

In the following A is symmetric positive definite.

Formulate solving Ax = b as an optimization problem: Define

$$f(x) = \frac{1}{2}x^{T}Ax - b^{T}x,$$

and minimize

 $\min_{x\in\mathbb{R}^n}f(x)$ 

Because A is positive definite, the function f is convex. It is sufficient to look at the gradient

$$\nabla f(x) = \frac{1}{2}A^Tx + \frac{1}{2}Ax - b = Ax - b = -r(x) = 0 \iff Ax = b$$

What is the benefit of this point of view?

In the following A is symmetric positive definite.

Formulate solving Ax = b as an optimization problem: Define

$$f(x) = \frac{1}{2}x^T A x - b^T x \, ,$$

and minimize

 $\min_{x\in\mathbb{R}^n}f(x)$ 

Because A is positive definite, the function f is convex. It is sufficient to look at the gradient

$$\nabla f(x) = \frac{1}{2}A^Tx + \frac{1}{2}Ax - b = Ax - b = -r(x) = 0 \iff Ax = b$$

What is the benefit of this point of view? We now can let loose all what we know about optimization to solve Ax = b

Our first try is applying the method of steepest descent in the direction of the negative gradient

$$-\nabla f = r$$

which happens to be the residual

$$r_{k} = b - Ax_{k}$$
$$\alpha_{k} = \frac{r_{k}^{T} r_{k}}{r_{k}^{T} A r_{k}}$$
$$x_{k+1} = x_{k} + \alpha_{k} r_{k}$$

The step length  $\alpha_k$  minimizes  $f(x_k + \alpha_k r_k)$  as a function of  $\alpha_k \rightsquigarrow \text{last time}$ 

(This is the same as Richardson iterations with damping  $\alpha_k$ ; what is the difference between  $\alpha_k$  and  $\bar{\omega}$ ?  $\rightsquigarrow$ 

Our first try is applying the method of steepest descent in the direction of the negative gradient

$$-\nabla f = r$$

which happens to be the residual

$$r_{k} = b - Ax_{k}$$
$$\alpha_{k} = \frac{r_{k}^{T} r_{k}}{r_{k}^{T} A r_{k}}$$
$$x_{k+1} = x_{k} + \alpha_{k} r_{k}$$

The step length  $\alpha_k$  minimizes  $f(x_k + \alpha_k r_k)$  as a function of  $\alpha_k \rightsquigarrow \text{last time}$ 

(This is the same as Richardson iterations with damping  $\alpha_k$ ; what is the difference between  $\alpha_k$  and  $\overline{\omega}$ ?  $\rightsquigarrow \alpha_k$  is computable with just mat-vec with A, whereas  $\overline{\omega}$  depends on eigenvalues of A)

For steepest descent, if A is spd, we obtain

$$\|x^* - x_k\|_A \le \left(\frac{\kappa_2(A) - 1}{\kappa_2(A) + 1}\right)^k \|x^* - x_0\|_A$$

where  $\langle x, y \rangle_A = x^T A y$  and  $\| \cdot \|_A = \sqrt{\langle \cdot, \cdot \rangle_A}$ .

Proof  $\rightsquigarrow$  board


Steepest descent chooses  $q_q$  such that if minimizes  $f(x_{q+i}) = f(x_q + q_q x_q)$ all each step For the minimizer  $x^*$  we have  $f(x) = f(x^*) + \frac{1}{2} \|x^* - x\|_A^2$  and  $f(W_q)$ 

Thus

min 
$$f(x_n + q_n r_n) \not = \sum_{T_n} \min_{T_n} \frac{\int_{T_n} ||x^n - (x_n + q_n r_n)||_{f}^2}{e_{n+1}(q_n)}$$

$$\|e_{A_{H}}(a_{A})\|_{\mathcal{A}} = \min \|e_{A_{H}}(a)\|_{\mathcal{A}}$$

$$\leq \|e_{A_{H}}(a_{H})\|_{\mathcal{A}}$$

$$\leq \left(\frac{\lambda_{I}-\lambda_{N}}{\lambda_{I}+\lambda_{N}}\right)\|e_{A}\|_{\mathcal{A}}$$

By inductions  $\|e_{\alpha}\|_{\mathcal{A}} \leq \left(\frac{\lambda_{1} - \lambda_{N}}{\lambda_{1} + \lambda_{N}}\right)^{k} \left(\|e_{\alpha}\|_{\mathcal{A}}$   $\frac{R_{2}(\mathcal{A}) - 1}{R_{2}(\mathcal{A}) + 1} = \frac{\lambda_{1} - \lambda_{N}}{\lambda_{1} + \lambda_{N}} = \frac{\lambda_{1} - \lambda_{N}}{\lambda_{1} + \lambda_{N}}$ 



[Figure: Kuusela et al., 2009]

The convergence behavior of steepest descent in this context can be poor: we eventually get arbitrarily close to the minimum but we can always destroy something of the already achieved when applying the update  $\rightsquigarrow$  can we find better search directions?

### Conjugate gradient method

What do all iterative methods we looked at so far have in common?

### Conjugate gradient method

- What do all iterative methods we looked at so far have in common?
- All methods so far use information about x<sub>k-1</sub> to get x<sub>k</sub>. All information about earlier iterations is ignored.

### Conjugate gradient method

- What do all iterative methods we looked at so far have in common?
- All methods so far use information about x<sub>k-1</sub> to get x<sub>k</sub>. All information about earlier iterations is ignored.
- The conjugate gradient (CG) method is a variation of steepest descent that has a memory.

Let p<sub>1</sub>,..., p<sub>k</sub> be the directions up to step k, then CG uses the space x<sub>0</sub> + span{p<sub>1</sub>,..., p<sub>k</sub>}, x<sub>0</sub> starting point to find the next iterate x<sub>k</sub> and thus

$$x_k = x_0 + \sum_{i=1}^k \alpha_i p_i$$

• (Recall that steepest descent uses only the search direction  $p_k = r_{k-1} = -\nabla f(x_{k-1})$  to find the iterate  $x_k$ )

We want the following

a The search directions  $p_1, \ldots, p_k$  should be linearly independent ("we don't destroy what we have achieved")

b We have ("we do the best we can at each step")

$$f(x_k) = \min_{x \in x_0 + \operatorname{span}(p_1, \dots, p_k)} f(x)$$

c The step  $x_k$  can be calculated easily from  $x_{k-1}$ 

What do conditions (a) and (b) guarantee?

We want the following

a The search directions  $p_1, \ldots, p_k$  should be linearly independent ("we don't destroy what we have achieved")

b We have ("we do the best we can at each step")

$$f(x_k) = \min_{x \in x_0 + \operatorname{span}(p_1, \dots, p_k)} f(x)$$

c The step  $x_k$  can be calculated easily from  $x_{k-1}$ 

What do conditions (a) and (b) guarantee? Convergence in N steps because at the N-th step we have  $x_0 + \operatorname{span}(p_1, \ldots, p_N) = \mathbb{R}^N$  and thus we minimize f over  $\mathbb{R}^N$ 

Let's start by writing

$$x_k = x_0 + P_{k-1}y + \alpha p_k,$$
  
where  $P_{k-1} = [p_1, \dots, p_{k-1}] \in \mathbb{R}^{N \times (k-1)}, y \in \mathbb{R}^{k-1}, \alpha \in \mathbb{R}.$ 

Our aim is to determine y and  $\alpha$ . So let's look at minimizing  $f(x_k)$  w.r.t. y and  $\alpha$ 

$$f(x_k) = \cdots = \underbrace{f(x_0 + P_{k-1}y)}_{k-1} + \alpha p_k^T A P_{k-1}y + \underbrace{\frac{\alpha^2}{2} p_k^T A p_k - \alpha p_k^T r_0}_{2}$$

only depends on y not on  $\alpha$ 

only depends on  $\alpha$  not on y

(recall that  $f(x) = \frac{1}{2}x^T A x - b^T x$ ).

Let's start by writing

$$x_k = x_0 + P_{k-1}y + \alpha p_k$$
,  
where  $P_{k-1} = [p_1, \dots, p_{k-1}] \in \mathbb{R}^{N \times (k-1)}, y \in \mathbb{R}^{k-1}, \alpha \in \mathbb{R}$ .

Our aim is to determine y and  $\alpha$ . So let's look at minimizing  $f(x_k)$  w.r.t. y and  $\alpha$ 

$$f(x_k) = \dots = \underbrace{f(x_0 + P_{k-1}y)}_{\text{only depends on } y \text{ not on } \alpha} + \alpha p_k^T A P_{k-1}y + \underbrace{\frac{\alpha^2}{2} p_k^T A p_k - \alpha p_k^T r_0}_{\text{only depends on } y \text{ not on } \alpha}$$

only depends on  $\alpha$  not on y

(recall that  $f(x) = \frac{1}{2}x^T A x - b^T x$ ).

The mixed term in the middle depends on  $\alpha$  and y, otherwise we could optimize separately for y and  $\alpha$ . How should we choose  $p_k$ ?

Let's start by writing

$$x_k = x_0 + P_{k-1}y + \alpha p_k,$$
  
where  $P_{k-1} = [p_1, \dots, p_{k-1}] \in \mathbb{R}^{N \times (k-1)}, y \in \mathbb{R}^{k-1}, \alpha \in \mathbb{R}.$ 

Our aim is to determine y and  $\alpha$ . So let's look at minimizing  $f(x_k)$  w.r.t. y and  $\alpha$ 

$$f(x_k) = \dots = \underbrace{f(x_0 + P_{k-1}y)}_{\text{only depends on } y \text{ not on } \alpha} + \alpha p_k^T A P_{k-1}y + \underbrace{\frac{\alpha^2}{2} p_k^T A p_k - \alpha p_k^T r_0}_{\text{only depends on } y \text{ not on } \alpha}$$

only depends on  $\alpha$  not on y

(recall that  $f(x) = \frac{1}{2}x^T A x - b^T x$ ).

The mixed term in the middle depends on  $\alpha$  and y, otherwise we could optimize separately for y and  $\alpha$ . How should we choose  $p_k$ ?

Let's choose the search direction  $p_k$  such that

$$p_k^T A P_{k-1} = 0$$

which means

$$p_k \in \operatorname{span}\{Ap_1, \ldots, Ap_{k-1}\}^{\perp}$$

Thus, with  $p_k^T A P_{k-1} = 0$  we get

$$\min_{x_k \in x_0 + \operatorname{span}\{p_1, \dots, p_k\}} f(x_k) = \min_{y \in \mathbb{R}^{k-1}} f(x_0 + P_{k-1}y) + \min_{\alpha \in \mathbb{R}} \left( \frac{\alpha^2}{2} p_k^T A p_k - \alpha p_k^T r_0 \right)$$

► The first minimization problem is solved for y = y<sub>k-1</sub> computed from step k − 1 and then x<sub>k-1</sub> = x<sub>0</sub> + P<sub>k-1</sub>y<sub>k-1</sub> satisfies

$$f(x_{k-1}) = \min_{x_0 + \text{span}\{p_1, \dots, p_{k-1}\}} f(x)$$

The solution to the second minimization problem is just a scalar

$$\alpha_k = \frac{\boldsymbol{p}_k^T \boldsymbol{r}_0}{\boldsymbol{p}_k^T \boldsymbol{A} \boldsymbol{p}_k}$$

 $\rightsquigarrow$  satisfy conditions (b) and (c) from above.

We said the search directions p<sub>1</sub>,..., p<sub>k</sub> have to be conjugate, i.e., orthogonal w.r.t. A

$$p_i^T A p_j = 0, \qquad i, j = 1, \dots, k, i \neq j$$
 (1)

- One can show that (1) implies that p<sub>1</sub>,..., p<sub>k</sub> are linearly independent (w.r.t. (·, ·, )), which satisfies condition (a)
- To find the search direction p<sub>k</sub>, we want to combine positive aspects of steepest descent and conjugate gradients. In steepest descent we have p<sub>k</sub> = r<sub>k-1</sub>. So let's stay close to r<sub>k-1</sub> but additionally enforce that p<sub>k</sub> is A-conjugate to previous search directions p<sub>1</sub>,..., p<sub>k-1</sub>

How can we achieve this?

We said the search directions p<sub>1</sub>,..., p<sub>k</sub> have to be conjugate, i.e., orthogonal w.r.t. A

$$p_i^T A p_j = 0, \qquad i, j = 1, \dots, k, i \neq j$$
 (1)

- One can show that (1) implies that p<sub>1</sub>,..., p<sub>k</sub> are linearly independent (w.r.t. (·, ·, )), which satisfies condition (a)
- To find the search direction p<sub>k</sub>, we want to combine positive aspects of steepest descent and conjugate gradients. In steepest descent we have p<sub>k</sub> = r<sub>k-1</sub>. So let's stay close to r<sub>k-1</sub> but additionally enforce that p<sub>k</sub> is A-conjugate to previous search directions p<sub>1</sub>,..., p<sub>k-1</sub>

How can we achieve this? ~> Gram-Schmidt orthogonalization

Apply Gram-Schmidt to  $r_{k-1}$  so that we obtain  $p_k$  that is A-conjugate to  $p_1, \ldots, p_{k-1}$ 

$$p_k = r_{k-1} - \sum_{j=1}^{k-1} \frac{\langle r_{k-1}, p_j \rangle_A}{\|p_j\|_A^2} p_j$$

We need following technical statements  $\rightsquigarrow$  board:

- ▶ If  $r_{k-1} = b Ax_{k-1} \neq 0$ , then there exists  $p_k \in \text{span}\{Ap_1, \dots, Ap_{k-1}\}^{\perp}$  such that  $p_k^T r_{k-1} \neq 0$  and  $p_k^T r_{k-1} = p_k^T r_0$
- It then follows that (why is this helpful?)

$$\alpha_k = \frac{p_k^T r_0}{p_k^T A p_k} = \frac{p_k^T r_{k-1}}{p_k^T A p_k}$$

• If  $r_j \neq 0$  for j < k, then

$$\langle r_{k-1}, p_j \rangle_A = 0, \qquad j < k-1.$$

CG technical lemnato:  

$$r_{R-1} = b - Ax_{R-1} \neq O$$

$$\Rightarrow \exists P_R \in \operatorname{Span} \exists A_{P_1, \dots, I} A_{B-1} \end{bmatrix}^{\perp}$$
with  $P_R^{\perp} r_{R-1} \neq O$ 
for  $R=1$ : Set  $P_1 = r_0$ 
for  $R=1$ :  $r_{R-1} \neq O$ , then
$$x^{\perp} = A^{\perp}b \notin x_0 + \operatorname{Span} \exists P_{1, \dots, I} B_{n-1} \end{bmatrix}$$

$$b \notin Ax_0 + \operatorname{Span} \exists A_{P_1, \dots, I} A_{B-1} \end{bmatrix}$$

$$b = Ax_0 \notin \operatorname{Span} \exists A_{P_1, \dots, I} A_{B-1} \end{bmatrix}$$

$$b = Ax_0 \notin \operatorname{Span} \exists A_{P_1, \dots, I} A_{B-1} \end{bmatrix}$$
with  $P_R^{\perp} r_0 \neq O$ 
Sched such  $O = P_R \in \operatorname{Span} \exists A_{P_1, \dots, I} A_{B-1} \end{bmatrix}$ 

$$P_R^{\perp} r_{A+1} = P_R^{\perp} (b - Ax_{B-1})$$

$$= P_R^{\perp} (b - A(x_0 + P_{R-1} x_{B-1}))$$

$$= \frac{P_R^{\perp} (b - A(x_0 + P_{R-1} x_{B-1}))}{P_R^{\perp} r_0} = P_R^{\perp} (b - A(x_0 + P_{R-1} x_{B-1}))$$

Additionally  

$$P_{a}^{T} r_{E-1} = P_{a}^{T} r_{0}$$
  
 $r_{e} = \frac{P_{a}^{T} r_{0}}{P_{a}^{T} A P_{e}} = \frac{P_{a}^{T} r_{3-1}}{P_{a}^{T} A P_{e}}$   
Now wort to convince us that it holds  
 $\forall p e$  span  $\$ P_{1,...,} P_{e} \$$ :  $p^{T} r_{E} = O$   
 $Recoll from lecture obsert lsg problems$   
 $r = b - A \overleftarrow{x} \perp colourspon(A)$   
Condition (b) of CG tells us  
 $x_{e} = 098 \min [P(x) = 1(Ax - 6)|_{e}^{2}]$   
 $x \in x_{ot} \operatorname{span} \$ P_{1,...,} P_{a} \$$   
(\*)  $p^{T} r_{e} = O \quad \forall p \in \$ P_{1,...,} P_{a}$   
(\*)  $p^{T} r_{e} = O \quad \forall p \in \$ P_{1,...,} P_{a}$ 

Consider Xj

$$r_{j} = b - Ax_{j} = b - Ax_{j-1} - a_{j}AP_{j}$$

$$r_{j-1} - a_{j}AP_{j}$$

$$(a_{j}AP_{j} = r_{j} - r_{j-1}) j \in h-1$$

$$From the Grown - Schmidt process$$

$$r_{j} = P_{j+1} + \sum_{i=1}^{j} \frac{\langle r_{i}, P_{i} \rangle_{A}}{||P_{i}||_{A}^{2}}P_{i} \in SP_{i} = P_{j}$$

By def of 
$$\gamma'_{j}$$
  
 $P_{j} = \frac{r_{j-1}^{T} P_{j}}{\|P_{j}\|_{4}^{2}} = \frac{(}{\|P_{j}\|_{2}^{2}} \left[ \|r_{j-1}\|_{2}^{2} - \sum_{i=1}^{j-1} \frac{(r_{j-1}, P_{i}) A}{\|P_{i}\|_{4}^{2}} r_{j-1}^{T} P_{i} \right]$   
 $= \frac{\|r_{j-1}\|_{2}^{2}}{\|P_{j}\|_{4}^{2}} > 0 \quad \text{because}$   
 $r_{j} \neq 0 \quad j < k$ 

=> ~; =O; with (\*\*) we obtain

$$A p_{j} \in \text{Span} \{P_{1}, \dots, P_{n-1}\}, j \leq h-1$$

$$\geq r_{n-1}, P_{j} \geq_{A} = r_{n-1}^{T} A p_{j}^{T} \int_{a}^{b} = 2r_{n-1}, A p_{j}^{T} \geq_{A}^{a}$$

$$\left[ \sum r_{n-1}, P_{n-1} = 0 \quad \forall p \in \text{Span} \{P_{n-1}^{T}\} \right]$$

= 
$$2\gamma_{n-1}, P_j >_A = 0$$
 j < 2-1

This is important become  

$$P_{R} = r_{R-1} - \sum_{j=1}^{R-1} \frac{\zeta r_{R-1}}{|I| P_{j} |I|_{A}^{2}} P_{j}$$
  
 $\zeta r_{R-1} - \frac{\zeta r_{R-1}}{Z} P_{R-1} Z_{A}$ 

Apply Gram-Schmidt to  $r_{k-1}$  so that we obtain  $p_k$  that is A-conjugate to  $p_1, \ldots, p_{k-1}$ 

$$p_k = r_{k-1} - \sum_{j=1}^{k-1} \frac{\langle r_{k-1}, p_j \rangle_A}{\|p_j\|_A^2} p_j$$

We need following technical statements  $\rightsquigarrow$  board:

- ▶ If  $r_{k-1} = b Ax_{k-1} \neq 0$ , then there exists  $p_k \in \text{span}\{Ap_1, \dots, Ap_{k-1}\}^{\perp}$  such that  $p_k^T r_{k-1} \neq 0$  and  $p_k^T r_{k-1} = p_k^T r_0$
- It then follows that (why is this helpful?)

$$\alpha_k = \frac{p_k^T r_0}{p_k^T A p_k} = \frac{p_k^T r_{k-1}}{p_k^T A p_k}$$

• If  $r_j \neq 0$  for j < k, then

$$\langle r_{k-1}, p_j \rangle_A = 0, \qquad j < k-1.$$

to obtain that (why is this useful?)

$$p_k = r_{k-1} - rac{\langle r_{k-1}, p_{k-1} 
angle_A}{\|p_{k-1}\|_A^2} p_{k-1}$$

#### The conjugate gradient method

Choose  $x_0 \in \mathbb{R}^N$  and set  $p_0 = 0$ . For  $k = 1, 2, 3, \ldots$ , stop if  $r_{k-1} = b - Ax_{k-1}$  small 1. Set

$$\beta_{k-1} = \frac{\langle r_{k-1}, p_{k-1} \rangle_A}{\|p_{k-1}\|_A^2}$$

2. Set

$$p_k = r_{k-1} - \beta_{k-1} p_{k-1}$$

$$\alpha_k = \frac{r_{k-1}^T p_k}{\|p_k\|_A^2}$$

**4**. Set

$$x_k = x_{k-1} + \alpha_k p_k$$

5. Set

$$r_k = b - Ax_k$$

and check for convergence



[Figure: Kuusela et al., 2009]

It can be shown that for  $k \ge 1$  and  $e_j \ne 0, j < k$  it holds

$$\|e_k\|_A \leq 2\left(rac{\sqrt{\kappa_2(\mathcal{A})}-1}{\sqrt{\kappa_2(\mathcal{A})}+1}
ight)^k \|e_0\|_A$$

for spd matrices A.  $\rightsquigarrow$  Trefethen & Bau

### Krylov subspace

Given an spd matrix  $A \in \mathbb{R}^{N \times N}$ , the Krylov subspace of order k is

$$\mathcal{K}_k(A, r_0) = \operatorname{span}\left\{r_0, Ar_0, \dots, A^{k-1}r_0\right\}$$

where, e.g.,  $r_0 = b - Ax_0$ 

All search directions of CG are in  $\mathcal{K}_k(A, r_0)$  and all iterates  $x_1, x_2, \ldots, x_k$  are in  $x_0 + \mathcal{K}_k(A, r_0)$ 

There is a range of other methods that apply to more general matrices than spd that build on approximations in Krylov subspaces to accelerate convergence (e.g., GMRES (general residual method))

- There are also methods for finding eigenvalues via Krylov methods (Lanczos, Arnoldi iterations)
- Think of Krylov methods has having a memory of previous iterations, whereas, e.g., a power method only looks at the previous iteration (if you like stochastic processes, think of Markovian vs. non-Markovian dynamics)

## Matlab implementation

```
1: function x = conjgrad(A, b, maxIter)
2:
3: [N, ~] = size(A);
4: x = zeros(N, 1);
5: r = b - A * x;
6: p = r;
7: alpha = (r'*p)/(p'*A*p);
8: x = x + alpha*p;
9: r = b - A * x;
10:
11: for i=1:maxIter
12: beta = (r'*A*p)/(p'*A*p);
13: p = r - beta * p;
14: alpha = (r'*p)/(p'*A*p);
15: x = x + alpha * p;
16: r = b - A * x;
17: end
```

### Experiment with 10000 $\times$ 10000 spd matrix

Condition number of this matrix is  $\approx 5$  (very! well conditioned)



### Discussion of the CG method

- In principle, the CG algorithm is a direct solver because is converges after N steps; however, it is mostly used as an iterative method because we don't want to wait for N steps
- The convergence speed of the CG method depends on matrix properties as well. Fast convergence if the spectrum is clustered.
- However, similarly slow convergence can be expected for matrices coming from PDE discretizations and therefore preconditioning is necessary

$$Q^{-1}Ax = Q^{-1}b$$

▶ Preconditioned CG methods (for example multigrid can act as a preconditioner) are among the fastest solvers and achieve  $\mathcal{O}(N)$  in ideal settings.

# Numerical Methods I MATH-GA 2010.001/CSCI-GA 2420.001

Benjamin Peherstorfer Courant Institute, NYU

Based on slides by G. Stadler and A. Donev

Interpolation

Consider a function  $f \in \mathcal{V}$  in a function space  $\mathcal{V}$ . Let now  $\phi_1, \ldots, \phi_n$  be a basis of an *n*-dimensional space  $\mathcal{V}_n$ .

Consider a function  $f \in \mathcal{V}$  in a function space  $\mathcal{V}$ . Let now  $\phi_1, \ldots, \phi_n$  be a basis of an *n*-dimensional space  $\mathcal{V}_n$ .

The task that we are interested in is finding a function  $f^* \in \mathcal{V}_n$  that approximates f with coefficients  $c_1, \ldots, c_n$ :

$$f^*(x) = \sum_{i=1}^n c_i \phi_i(x) \, .$$

Consider a function  $f \in \mathcal{V}$  in a function space  $\mathcal{V}$ . Let now  $\phi_1, \ldots, \phi_n$  be a basis of an *n*-dimensional space  $\mathcal{V}_n$ .

The task that we are interested in is finding a function  $f^* \in \mathcal{V}_n$  that approximates f with coefficients  $c_1, \ldots, c_n$ :

$$f^*(x) = \sum_{i=1}^n c_i \phi_i(x) \, .$$

If we have an inner product, what is the best approximation?

Consider a function  $f \in \mathcal{V}$  in a function space  $\mathcal{V}$ . Let now  $\phi_1, \ldots, \phi_n$  be a basis of an *n*-dimensional space  $\mathcal{V}_n$ .

The task that we are interested in is finding a function  $f^* \in \mathcal{V}_n$  that approximates f with coefficients  $c_1, \ldots, c_n$ :

$$f^*(x) = \sum_{i=1}^n c_i \phi_i(x).$$

If we have an inner product, what is the best approximation? The best-approximation of f in  $\mathcal{V}_n$  w.r.t. the induced norm is given by the projection

$$f^*=\Pi_n f\,,$$

where  $\Pi_n$  is the orthogonal projection onto  $\mathcal{V}_n$ .

Consider a function  $f \in \mathcal{V}$  in a function space  $\mathcal{V}$ . Let now  $\phi_1, \ldots, \phi_n$  be a basis of an *n*-dimensional space  $\mathcal{V}_n$ .

The task that we are interested in is finding a function  $f^* \in \mathcal{V}_n$  that approximates f with coefficients  $c_1, \ldots, c_n$ :

$$f^*(x) = \sum_{i=1}^n c_i \phi_i(x).$$

If we have an inner product, what is the best approximation? The best-approximation of f in  $\mathcal{V}_n$  w.r.t. the induced norm is given by the projection

$$f^* = \prod_n f \, ,$$

where  $\Pi_n$  is the orthogonal projection onto  $\mathcal{V}_n$ .

How can we compute the projection?

Consider a function  $f \in \mathcal{V}$  in a function space  $\mathcal{V}$ . Let now  $\phi_1, \ldots, \phi_n$  be a basis of an *n*-dimensional space  $\mathcal{V}_n$ .

The task that we are interested in is finding a function  $f^* \in \mathcal{V}_n$  that approximates f with coefficients  $c_1, \ldots, c_n$ :

$$f^*(x) = \sum_{i=1}^n c_i \phi_i(x).$$

If we have an inner product, what is the best approximation? The best-approximation of f in  $\mathcal{V}_n$  w.r.t. the induced norm is given by the projection

$$f^*=\Pi_n f\,,$$

where  $\Pi_n$  is the orthogonal projection onto  $\mathcal{V}_n$ .

How can we compute the projection? In many cases, we cannot directly compute the projection of f onto  $\mathcal{V}_n$  because we have "too little knowledge about f" Instead?

Consider a function  $f \in \mathcal{V}$  in a function space  $\mathcal{V}$ . Let now  $\phi_1, \ldots, \phi_n$  be a basis of an *n*-dimensional space  $\mathcal{V}_n$ .

The task that we are interested in is finding a function  $f^* \in \mathcal{V}_n$  that approximates f with coefficients  $c_1, \ldots, c_n$ :

$$f^*(x) = \sum_{i=1}^n c_i \phi_i(x).$$

If we have an inner product, what is the best approximation? The best-approximation of f in  $\mathcal{V}_n$  w.r.t. the induced norm is given by the projection

$$f^*=\Pi_n f\,,$$

where  $\Pi_n$  is the orthogonal projection onto  $\mathcal{V}_n$ .

How can we compute the projection? In many cases, we cannot directly compute the projection of f onto  $\mathcal{V}_n$  because we have "too little knowledge about f" Instead?  $\rightsquigarrow$  interpolation (/regression)

#### Interpolation

Consider *n* pairs of data samples  $(x_i, y_i), i = 1, ..., n$  with

$$y_i = f(x_i)$$

Based on  $\{(x_i, y_i)\}_{i=1}^n$ , we now would like to find an approximation  $\tilde{f} \in \mathcal{V}_n$  that is "close" to f.

For example, we could enforce the interpolation condition, namely that it holds

$$\tilde{f}(x_i) = f(x_i), \qquad i = 1, \ldots, n$$

We could also use regression (m > n) and minimize, e.g.,

$$\frac{1}{m}\sum_{i=1}^m |y_i - \tilde{f}(x_i)|^2$$

The error of  $\tilde{f}$  w.r.t. f can then typically be split into two components (we will formalize this moving forward): which?
The error of  $\tilde{f}$  w.r.t. f can then typically be split into two components (we will formalize this moving forward): which?

$$\|\widetilde{f}-f\| \leq \Lambda(x_1,\ldots,x_n)\|f^*-f\|$$

The projection error  $||f^* - f||$  describes the best we can do in the space  $\mathcal{V}_n$ . Even if we had "full knowledge" of f so that we could compute  $f^* = \prod_n f$ , we are limited by the expressiveness of the space  $\mathcal{V}_n$ 

Intuitively, we'd also expect that the error of  $\tilde{f}$  depends on the points  $x_1, \ldots, x_n$  at which we have samples of f. This is captured by the "constant"  $\Lambda(x_1, \ldots, x_n)$  that is independent of f but depends on  $x_1, \ldots, x_n$ .

#### Polynomial interpolation

Consider n + 1 pairs  $(x_i, y_i), i = 0, ..., n$  of a function f with

$$y_i = f(x_i)$$

#### Polynomial interpolation

Consider n + 1 pairs  $(x_i, y_i), i = 0, ..., n$  of a function f with

 $y_i = f(x_i)$ 

Let now  $\mathbb{P}_n$  be the set of all polynomials up to degree *n* over  $\mathbb{R}$  so that we have for all  $P \in \mathbb{P}_n$ 

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0, \qquad a_n, \ldots, a_0 \in \mathbb{R}$$

#### Polynomial interpolation

Consider n + 1 pairs  $(x_i, y_i), i = 0, ..., n$  of a function f with

 $y_i = f(x_i)$ 

Let now  $\mathbb{P}_n$  be the set of all polynomials up to degree *n* over  $\mathbb{R}$  so that we have for all  $P \in \mathbb{P}_n$ 

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0, \qquad a_n, \ldots, a_0 \in \mathbb{R}$$

We would like to find a  $P \in \mathbb{P}_n$  such that

$$P(x_i) = y_i, \qquad i = 0, \ldots, n$$

▶ The *P* is what  $\tilde{f}$  was on the previous slide

► By saying P is a polynomial of degree n, we fixed the space V<sub>n+1</sub> with the notation of the previous slide

$$P(x_i) = y_i, \qquad i = 0, \ldots, n$$

We sometimes refer to this unique polynomial as  $P_f(\cdot|x_0,\ldots,x_n) \rightsquigarrow board$ 

Griven ut nodes (ti, yi) with pairmise distinct to, ..., to. There causes a unique poly nomial Phelps such that P(t,) = yi, i= 0,..., n If P,Q E Phy are two interpolatory polynomials with

$$P(t_i) = Q(t_i), \quad (= 0, ..., L)$$

then P-Q is or polynomial of ot most degree a ond has n+1 rools to,...,ty (P-Q)(t;)=0

and thus P-Q has to be the zero pognonist. Forthormore, the space (Ph and IR<sup>h+1</sup> have n+1 Olimensions and the map P H-> [P(to),..., P(t\_n)] is linear. Uniqueness => injective => Surjectivity.

$$P(x_i) = y_i, \qquad i = 0, \ldots, n$$

We sometimes refer to this unique polynomial as  $P_f(\cdot|x_0,\ldots,x_n) \rightsquigarrow board$ 

Let's try to construct  $P_f(\cdot|x_0,...,x_n)$ . What do we need to construct  $P \in \mathbb{P}_n$  for a data set  $\{(x_i, y_i)\}_{i=0}^n$ ?

$$P(x_i) = y_i, \qquad i = 0, \ldots, n$$

We sometimes refer to this unique polynomial as  $P_f(\cdot|x_0,\ldots,x_n) \rightsquigarrow board$ 

Let's try to construct  $P_f(\cdot|x_0,...,x_n)$ . What do we need to construct  $P \in \mathbb{P}_n$  for a data set  $\{(x_i, y_i)\}_{i=0}^n$ ? A basis of  $\mathbb{P}_n$ .

$$P(x_i) = y_i, \qquad i = 0, \ldots, n$$

We sometimes refer to this unique polynomial as  $P_f(\cdot|x_0,\ldots,x_n) \rightsquigarrow \text{board}$ 

Let's try to construct  $P_f(\cdot|x_0, \ldots, x_n)$ . What do we need to construct  $P \in \mathbb{P}_n$  for a data set  $\{(x_i, y_i)\}_{i=0}^n$ ? A basis of  $\mathbb{P}_n$ . Let's give the monomial basis  $1, x, x^2, \ldots, x^n$  a chance  $\rightsquigarrow$  board

poly interpolation: monomials as basis  

$$P(x) = \sigma_{n} x^{n} + \dots + \sigma_{i} x + \sigma_{o}$$
We have  $n+1$  and  $n = 0$   
and  $n+1$  apublicers  

$$P(x_{0}) = 7_{0}$$

$$P(x_{0}) = 1$$

$$P(x_$$

¢

What would go wrong? Lo condition number of Vn is high Lo Do we really need to invest O(43) costs to complete Pp(. 1x0, ..., t)?



 $\rightsquigarrow$  we really should look for another basis

#### Lagrange basis

The Lagrange polynomials  $L_0, \ldots, L_n \in \mathbb{P}_n$  are uniquely defined for distinct  $x_0, \ldots, x_n$ 

$$L_i(x_j) = \delta_{ij}, \qquad L_i \in \mathbb{P}_n.$$



Lagrange polynomials up to order n = 4 for equidistant  $x_0, \ldots, x_4$ . [Figure: Deuflhard]

The corresponding explicit formula is

$$L_i(x) = \prod_{\substack{j=0\\j\neq i}}^n \frac{x-x_j}{x_i-x_j}, \qquad i=0,\ldots,n$$

What are the coefficients  $a_n, \ldots, a_0$  so that  $P(x_i) = y_i$  for  $i = 0, \ldots, n$ ?

The corresponding explicit formula is

$$L_i(x) = \prod_{\substack{j=0\\j\neq i}}^n \frac{x-x_j}{x_i-x_j}, \qquad i=0,\ldots,n$$

What are the coefficients  $a_n, \ldots, a_0$  so that  $P(x_i) = y_i$  for  $i = 0, \ldots, n$ ?

$$P(x) = \sum_{i=0}^{n} y_i L_i(x)$$

because

$$P(x_j) = \sum_{i=0}^{n} y_i L_i(x_j) = \sum_{i=0}^{n} y_i \delta_{ij} = y_j$$

If we have the basis  $L_0, \ldots, L_n$ , we obtain the polynomial P for free. Drawback?

The corresponding explicit formula is

$$L_i(x) = \prod_{\substack{j=0\\j\neq i}}^n \frac{x-x_j}{x_i-x_j}, \qquad i=0,\ldots,n$$

What are the coefficients  $a_n, \ldots, a_0$  so that  $P(x_i) = y_i$  for  $i = 0, \ldots, n$ ?

$$P(x) = \sum_{i=0}^{n} y_i L_i(x)$$

because

$$P(x_j) = \sum_{i=0}^{n} y_i L_i(x_j) = \sum_{i=0}^{n} y_i \delta_{ij} = y_j$$

If we have the basis  $L_0, \ldots, L_n$ , we obtain the polynomial P for free. Drawback? but the cost of evaluating the polynomial is too high for practical computations

The Lagrange polynomials are orthogonal w.r.t. the following inner product over  $\mathbb{P}_n$ 

$$\langle P, Q \rangle = \sum_{i=0}^{n} P(x_i) Q(x_i), \qquad P, Q \in \mathbb{P}_n$$

Let's try to generalize this to other scalar products to find other orthogonal bases

## Orthogonal polynomials

Define an inner product between functions:

$$(f,g) = \int_a^b \omega(x) f(x) g(x) \, dx,$$

where  $\omega(x) > 0$  for  $a \le x \le b$  is a weight function. The induced norm is  $||f|| := \sqrt{(f, f)}$ .

Let  $P_0, P_1, P_2, \ldots, P_K$  be polynomials of  $0, 1, 2, \ldots, K$  order, respectively. They are called orthogonal polynomials on [a, b] with respect to the weight function  $\omega(x)$  if it holds

$$(P_i, P_j) = \int_a^b \omega(x) P_i(x) P_j(x) dx = \delta_{ij} \gamma_i, \qquad i, j = 0, \dots, K,$$

with  $\gamma_i = \|P_i\|^2 > 0$ .

To define orthogonal polynomials uniquely, we normalize them so that the leading coefficient is one, i.e.,

$$P_k(x) = x^k + \dots$$

Theorem: There exist uniquely determined orthogonal polynomials  $P_k \in \mathbb{P}_k$  with leading coefficient 1. These polynomials satisfy the 3-term recurrence relation:

$$P_k(x) = (x + a_k)P_{k-1}(x) + b_kP_{k-2}(x), \quad k = 2, 3, \dots$$

with starting values  $P_0 = 1$ ,  $P_1 = x + a_1$ , where

$$a_k = -rac{(xP_{k-1}, P_{k-1})}{(P_{k-1}, P_{k-1})}, \quad b_k = -rac{(P_{k-1}, P_{k-1})}{(P_{k-2}, P_{k-2})}$$

Proof: ~ board

L> 
$$P_1 = X + a_1$$
; it is unique because of is  
unique is computed as  
 $a_1 = -\frac{(xP_0, P_0)}{(P_0, P_0)}$ 

and  $(P_{o_l}, P_l) = O$ 

$$P_{e} - x P_{e-1}$$

$$x^{e} + \dots \qquad x (x^{e-1} + \dots)$$
of degree  $\leq h - 1$ 

is

with coefficients  

$$C_{j} = \frac{(P_{q} - x P_{q-1}, P_{j})}{(P_{j}, P_{j})} \begin{cases} P_{q} - x P_{q-1} \\ P_{q} - x P_{q} \\ P_{$$

If 
$$P_{e}$$
 orthogonal to  $P_{o,...}, P_{n-1}$ , then  
 $(P_{e}, P_{j}) = 0, \quad \tilde{J} = 0, ..., R-1$ 

and thus  $C_{j} = -\frac{(x P_{R-1}, P_{j})}{(P_{j}, P_{j})} = -\frac{\int w(x)(x P_{R-1}(x) P_{j}(x))}{(P_{j}, P_{j})}$   $= -\frac{(P_{R-1}, x P_{j})}{(P_{j}, P_{j})}$  We obtoin

$$C_{R-1} = -\frac{(x P_{R-1}, P_{R-1})}{(P_{n-1}, P_{n-1})},$$

$$C_{R-2} = -\frac{(P_{R-1}, x P_{R-2})}{(P_{R-2}, P_{n-2})} \begin{bmatrix} P_{R-1} = (x + \sigma_{R-1}) P_{R-2} + b_{R} P_{n-3} \\ x P_{R-2} = P_{R-1} - \sigma_{R-1} P_{R-2} - b_{R} P_{n-3} \\ x P_{R-2} = P_{R-1} - \sigma_{R-1} P_{R-2} - b_{R} P_{n-3} \end{bmatrix}$$

$$= -\frac{(P_{R-1}, P_{R-1} - \sigma_{R-1} P_{n-2} - b_{R} P_{n-3})}{(P_{R-2}, P_{n-2})}$$

$$= -\frac{(P_{R-1}, P_{R-1})}{(P_{R-2}, P_{n-2})}$$





#### Numerics with 3-term recurrence

> 3-term recurrence can be used to compute polynomials  $P_k$  completely, or

lacktriangleright evaluate  $P_k$  at a point  $x_0$  via pre-computing the a's and b's

▶ However, simple application of 3-term recurrence might not always be stable due to cancellation (coefficients  $a_k$ ,  $b_k$  can be negative)

Cancellation errors can be avoided with clever numerics (Sec 6.3 in Deuflhard)

# Numerical Methods I MATH-GA 2010.001/CSCI-GA 2420.001

Benjamin Peherstorfer Courant Institute, NYU

Based on slides by G. Stadler and A. Donev

# Today

#### Last time

Polynomial interpolation

#### Today



#### Announcements

► Homework 5 is due Mon, Nov 18 before class

#### Recap: Function approximation

Consider a function  $f \in \mathcal{V}$  in a function space  $\mathcal{V}$ . Let now  $\phi_1, \ldots, \phi_n$  be a basis of an *n*-dimensional space  $\mathcal{V}_n$ .

The task that we are interested in is finding a function  $f^* \in \mathcal{V}_n$  that approximates f with coefficients  $c_1, \ldots, c_n$ :

$$f^*(x) = \sum_{i=1}^n c_i \phi_i(x).$$

If we have an inner product, what is the best approximation? The best-approximation of f in  $\mathcal{V}_n$  w.r.t. the induced norm is given by the projection

$$f^* = \prod_n f \, ,$$

where  $\Pi_n$  is the orthogonal projection onto  $\mathcal{V}_n$ .

How can we compute the projection? In many cases, we cannot directly compute the projection of f onto  $\mathcal{V}_n$  because we have "too little knowledge about f" Instead?  $\rightsquigarrow$  interpolation (/regression)

#### **Recap:** Interpolation

Consider *n* pairs of data samples  $(x_i, y_i), i = 1, ..., n$  with

$$y_i = f(x_i)$$

Based on  $\{(x_i, y_i)\}_{i=1}^n$ , we now would like to find an approximation  $\tilde{f} \in \mathcal{V}_n$  that is "close" to f.

For example, we could enforce the interpolation condition, namely that it holds

$$\tilde{f}(x_i) = f(x_i), \qquad i = 1, \ldots, n$$

We could also use regression (m > n) and minimize, e.g.,

$$\frac{1}{m}\sum_{i=1}^m |y_i - \tilde{f}(x_i)|^2$$

#### Condition number of Vandermonde matrix



#### Recap: Lagrange basis

The Lagrange polynomials  $L_0, \ldots, L_n \in \mathbb{P}_n$  are uniquely defined for distinct  $x_0, \ldots, x_n$ 

$$L_i(x_j) = \delta_{ij}, \qquad L_i \in \mathbb{P}_n.$$



Lagrange polynomials up to order n = 4 for equidistant  $x_0, \ldots, x_4$ . [Figure: Deuflhard]

## Recap: Orthogonal polynomials

Define an inner product between functions:

$$(f,g) = \int_a^b \omega(x) f(x) g(x) \, dx,$$

where  $\omega(x) > 0$  for  $a \le x \le b$  is a weight function. The induced norm is  $||f|| := \sqrt{(f, f)}$ .

Let  $P_0, P_1, P_2, \ldots, P_K$  be polynomials of  $0, 1, 2, \ldots, K$  order, respectively. They are called orthogonal polynomials on [a, b] with respect to the weight function  $\omega(x)$  if it holds

$$(P_i, P_j) = \int_a^b \omega(x) P_i(x) P_j(x) \mathrm{d}x = \delta_{ij} \gamma_i, \qquad i, j = 0, \dots, K,$$

with  $\gamma_i = \|P_i\|^2 > 0$ .

## Recap

To define orthogonal polynomials uniquely, we normalize them so that the leading coefficient is one, i.e.,

$$P_k(x) = x^k + \dots$$

Theorem: There exist uniquely determined orthogonal polynomials  $P_k \in \mathbb{P}_k$  with leading coefficient 1. These polynomials satisfy the 3-term recurrence relation:

$$P_k(x) = (x + a_k)P_{k-1}(x) + b_kP_{k-2}(x), \quad k = 2, 3, \dots$$

with starting values  $P_0 = 1$ ,  $P_1 = x + a_1$ , where

$$a_k = -rac{(xP_{k-1}, P_{k-1})}{(P_{k-1}, P_{k-1})}, \quad b_k = -rac{(P_{k-1}, P_{k-1})}{(P_{k-2}, P_{k-2})}$$

#### Chebyshev polynomials

Chebyshev polynomials for  $-1 \le x \le 1$  are given by the 3-term recurrence:  $T_0(x) = 1$ ,  $T_1(x) = x$ ,

$$T_k(x) = 2xT_{k-1}(x) - T_{k-2}(x)$$
 for  $k \ge 2$ .

Chebyshev polynomials are orthogonal in the following inner product

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} T_n(x) T_m(x) \, dx = \begin{cases} 0 & n \neq m \\ \pi & n = m = 0 \\ \pi/2 & n = m \neq 0 \end{cases}$$

The roots of Chebyshev polynomials play an important role in interpolation and numerical quadrature.

Chebyshev polynomials are also given by  $T_k(x) = cos(k \arccos(x))$  with roots

$$x_i = \cos\left(\frac{\pi(i-1/2)}{k}\right)$$



Source: Springer, Encyclopedia of Applied and Computational Mathematics.

Question: What property of the roots of the polynomials do you observe?

#### Legendre polynomials

Orthogonal polynomials for weight function  $\omega \equiv 1$ , satisfy  $L_0 = 1$ ,  $L_1 = x$ , and

$$L_{k+1}(x) = \frac{2k+1}{k+1} x L_k(x) - \frac{k}{k+1} L_{k-1(x)}$$



legendre polynomials

#### Approximation error of polynomial interpolation

Let  $f : I \to \mathbb{R}$  and let  $x_0, x_1, \ldots, x_n \in I$  be n + 1 distinct nodes. Assume  $f \in C^{n+1}(I)$ . Then the interpolation error at point  $x \in I$  is

$$E_n(x) = f(x) - P_f(x|x_0, \ldots, x_n) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x),$$

where  $\xi \in I$  and

$$\omega_{n+1}(x) = \prod_{i=0}^n (x - x_i),$$

is the nodal polynomial.

Proof:  $\rightsquigarrow$  textbook

What are observations can we make?

#### Approximation error of polynomial interpolation

Let  $f : I \to \mathbb{R}$  and let  $x_0, x_1, \ldots, x_n \in I$  be n + 1 distinct nodes. Assume  $f \in C^{n+1}(I)$ . Then the interpolation error at point  $x \in I$  is

$$E_n(x) = f(x) - P_f(x|x_0, \ldots, x_n) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x),$$

where  $\xi \in I$  and

$$\omega_{n+1}(x) = \prod_{i=0}^n (x - x_i),$$

is the nodal polynomial.

Proof:  $\rightsquigarrow$  textbook

What are observations can we make?

- The error bound requires increasing smoothness with the degree  $n \rightsquigarrow$  can we derive bounds for  $f \in C^k$  with k fixed independent of degree n?
- ▶ The bound critically depends on  $\omega_{n+1} \rightsquigarrow$  contains information about the nodes
Let's say the function f is continuous, i.e.,  $f \in C^0([a, b])$ , but not even differentiable.

Define the maximum norm

$$\|f\|_{\infty} = \max_{x \in [a,b]} |f(x)|$$

Given points  $X = \{x_0, \dots, x_n\} \subset [a, b]$ , define the interpolation error  $E_{n,\infty}(X) = \|f - P_f(\cdot|X)\|_{\infty}$ 

and the best-approximation error with  $f^* \in \mathbb{P}_n$ 

$$E_n^* = \|f - f^*\|_{\infty} \le \|f - \tilde{f}\|_{\infty}, \qquad \forall \tilde{f} \in \mathbb{P}_n$$

Side remark: What does the Stone-Weierstrass theorem tell us about the best-approximation of continuous functions with polynomials?

Let's say the function f is continuous, i.e.,  $f \in C^0([a, b])$ , but not even differentiable.

Define the maximum norm

$$\|f\|_{\infty} = \max_{x \in [a,b]} |f(x)|$$

Given points  $X = \{x_0, \dots, x_n\} \subset [a, b]$ , define the interpolation error  $E_{n,\infty}(X) = \|f - P_f(\cdot|X)\|_{\infty}$ 

and the best-approximation error with  $f^* \in \mathbb{P}_n$ 

$$E_n^* = \|f - f^*\|_{\infty} \le \|f - \tilde{f}\|_{\infty}, \qquad \forall \tilde{f} \in \mathbb{P}_n$$

Side remark: What does the Stone-Weierstrass theorem tell us about the best-approximation of continuous functions with polynomials? Universal approximation: Uniform convergence (i.e., converge in  $\|\cdot\|_{\infty}$ ). However, the sequence of polynomials that converges is not necessarily obtained via interpolation.

**Theorem** Let  $f \in C^0([a, b])$  and  $X = \{x_0, \dots, x_n\} \subset [a, b]$ . Then $E_{n,\infty}(X) = E_n^*(1 + \Lambda_n(X)),$ 

where  $\Lambda_n(X)$  is the *Lebesgue* constant of X, defined as

$$\Lambda_n(X) = \left\| \sum_{j=0}^n |L_j^{(n)}| \right\|_{\infty},$$

where  $L_j^{(n)} \in \mathbb{P}_n$  is the *j*-th Lagrange polynomial with

$$L_j^{(n)}(x_i) = \begin{cases} 1, & i = j, \\ 0, & \text{otherwise} \end{cases}$$

Notice the decomposition of the error into component  $E_n^*$  (independent of X but dependent on f) and  $\Lambda_n(X)$  (independent of f but dependent on X)

We control the Lebesgue constant  $\Lambda_n(X)$  with the nodes  $x_0, \ldots, x_n$ 

What are two important questions to ask about the Lebesgue constant  $\Lambda_n(X)$ ?

<sup>\*</sup>Not necessarily nested

We control the Lebesgue constant  $\Lambda_n(X)$  with the nodes  $x_0, \ldots, x_n$ 

What are two important questions to ask about the Lebesgue constant  $\Lambda_n(X)$ ?

- ▶ What are "good" nodes  $x_0, \ldots, x_n$  that keep  $\Lambda_n(X)$  low or even minimize it?
- ▶ In the best case, how does  $\Lambda_n(X)$  behave with respect to  $n \to \infty$

We control the Lebesgue constant  $\Lambda_n(X)$  with the nodes  $x_0, \ldots, x_n$ 

What are two important questions to ask about the Lebesgue constant  $\Lambda_n(X)$ ?

What are "good" nodes x<sub>0</sub>,..., x<sub>n</sub> that keep Λ<sub>n</sub>(X) low or even minimize it?
 In the best case, how does Λ<sub>n</sub>(X) behave with respect to n → ∞

Famous result by Faber (1914): Given a sequence of any nodes<sup>\*</sup>  $X_n = \{x_{n,0}, x_{n,1}, \ldots, x_{n,n}\} \subset [a, b]$ , then there always exists a continuous function f so that  $P_f(\cdot|x_0, \ldots, x_n)$  does not converge to f in  $\|\cdot\|_{\infty}$  for  $n \to \infty$ 

Thus, polynomial interpolation does not allow for approximating any continuous function

We control the Lebesgue constant  $\Lambda_n(X)$  with the nodes  $x_0, \ldots, x_n$ 

What are two important questions to ask about the Lebesgue constant  $\Lambda_n(X)$ ?

What are "good" nodes x<sub>0</sub>,..., x<sub>n</sub> that keep Λ<sub>n</sub>(X) low or even minimize it?
In the best case, how does Λ<sub>n</sub>(X) behave with respect to n → ∞
Famous result by Faber (1914): Given a sequence of any nodes\*
X<sub>n</sub> = {x<sub>n,0</sub>, x<sub>n,1</sub>,..., x<sub>n,n</sub>} ⊂ [a, b], then there always exists a continuous function f so that P<sub>f</sub>(·|x<sub>0</sub>,...,x<sub>n</sub>) does not converge to f in || · ||<sub>∞</sub> for n → ∞

Thus, polynomial interpolation does not allow for approximating any continuous function

However, interpolation works fantastic for "most" functions ↔ "Six myths of polynomial interpolation and quadrature," Trefethen, Approximation Theory and Approximation Practice and also chebfun.org \*Not necessarily nested

It also has been shown that for any possible choice  $X_n = \{x_{n,0}, \ldots, x_{n,n}\}$ , there exists a constant C > 0 such that

$$\Lambda_n(X_n) > \frac{2}{\pi} \log(n+1) - C, \qquad n = 0, 1, \ldots$$

Thus  $\Lambda_n(X_n) \to \infty$  for  $n \to \infty$ 

- This is an instability statement in the sense that "investing more time" (by selecting more grid points), leads to a larger Lebesgue constant
- However, the Lebesgue constant might grow very slowly with n (even slower than E<sub>n</sub><sup>\*</sup> decreases!)

The Lebesgue constant is also the absolute condition number of polynomial interpolation on [a, b] with points X

$$\kappa_{\mathsf{abs}} = \Lambda_n(X)$$

 $\rightsquigarrow$  textbook by Deuflhard

Let's approximate

$$f(x) = \frac{1}{1+x^2}, \quad -5 \le x \le 5,$$

using polynomial interpolation on equally spaced nodes in [-5, 5].



[Figure: Quarteroni] Interpolants of degree n = 5 and n = 10 of  $f(x) = 1/(1 + x^2)$  on equidistant nodes.



[Figure: Quarteroni] Interpolants of degree n = 5 and n = 10 of  $f(x) = 1/(1 + x^2)$  on equidistant nodes. It can be shown that polynomial interpolation does not converge for |x| > 4 for this f

It is a very common situation that interpolation on equidistant nodes leads to high oscillations near the interval ends  $\rightsquigarrow$  Runge's phenomenon





What is a way out of this?



What is a way out of this? ~> Use different nodes

### Non-equispaced points equispaced



#### Non-equispaced points equispaced

order  $\boldsymbol{n}$ 

25 25 20 20 152 order n\*\*\*\*\*\* XX × × XX 10 X × × × × × × × × × X х× ××× X × × × × × ×× × × × × × × × 5 **X X X X X** × × × × × × × X X × × X × × X × × X × × × X × X × × × × × × × 0 0 -0.5 0 0.2 0.4 0.6 0.8 0 0.5 1 -1 1 Х Х

Chebyshev nodes

Lebesgue constants for different orders:

| n  | $\Lambda_n$ for equidistant nodes | $\Lambda_n$ for Chebyshev nodes |
|----|-----------------------------------|---------------------------------|
| 5  | 3.106292                          | 2.104398                        |
| 10 | 29.890695                         | 2.489430                        |
| 15 | 512.052451                        | 2.727778                        |
| 20 | 10986.533993                      | 2.900825                        |

Chebyshev nodes are the roots of the Chebyshev polynomials:

$$t_i = \cos\left(\frac{2i+1}{2n+2}\pi\right)$$
, for  $i = 0, \ldots, n$ 

Lebesgue constant for Chebyshev nodes is bounded as

$$\Lambda_n \leq \frac{2}{\pi} \log(n+1) + 1 \,,$$

which is close to the lower bound from previous slides

Lebesgue constant for n = 10, uniform vs. Chebyshev nodes:



#### Lebesgue constant for n = 40, uniform vs. Chebyshev nodes:



The Lebesgue constant for Chebyshev points is bounded as

$$\Lambda_n \leq rac{2}{\pi} \log(n+1) + 1 \,,$$

We know that for all interpolation points there exists a continuous function f such that polynomial interpolation does not converge (result by Faber, see previous slides)

This is also true for Cheybshev points! However, if f is Lipschitz continuous, then one can show uniform convergence.

The smoother the function (e.g., continuously differentiable,  $\nu$ -times continuously differentiable, analytic), the faster interpolation on Chebyshev nodes converges uniformly.

This is a general principle: The more regularity there is in the function, the easier we can approximate it (faster convergence w.r.t. number of degrees of freedom of the approximation)

### Beyond the material we cover here...



# Pointwise evaluation of interpolating polynomials

**Aitken Lemma:** The interpolating polynomial  $P_f(\cdot|x_0, \ldots, x_n)$  satisfies the recurrence relation

$$P_f(x|x_0,\ldots,x_n) = \frac{(x_0-x)P_f(x|x_1,\ldots,x_n) - (x_n-x)P_f(x|x_0,\ldots,x_{n-1})}{x_0-x_n}$$

 $\mathsf{Proof} \rightsquigarrow \mathsf{board}$ 

Ailben's lemmon  

$$\begin{aligned}
\mathcal{Q}(x) &= \frac{(x_{0} - x) P_{p}(x(x_{1}, \dots, x_{n}) - (x_{n} - x) P(x(x_{0}, y_{n}))}{x_{0} - x_{n}} \\
\text{We now show that y interpolates f at x_{0} - x_{n} & \text{Becomes we have uniqueness of interpolating polynomials , it follows } \mathcal{Q} = P(x_{0}, \dots, x_{n}) \\
\text{for } i = 1, \dots, \frac{n-1}{2} \\
\mathcal{Q}(x_{1}) &= \frac{(x_{0} - x_{1}) f(x_{1})}{x_{0} - x_{n}} \\
&= \frac{x_{0} - x_{1} - x_{n} + x_{1}}{x_{0} - x_{n}} f(x_{1}) = f(x_{1}) \\
\mathcal{Q}(x_{0}) &= \frac{0 - (x_{n} - x_{0}) f(x_{0})}{x_{0} - x_{n}} - 0 = f(x_{0}) \\
\mathcal{Q}(x_{n}) &= \frac{(x_{0} - x_{n}) P(x_{n})}{x_{0} - x_{n}} - 0 = f(x_{n}) \\
\mathcal{Q}(x_{0}) &= \frac{P_{p}(\cdot (x_{0}, \dots, x_{n}))}{x_{0} - x_{n}} \\
\end{aligned}$$

# Pointwise evaluation of interpolating polynomials

**Aitken Lemma:** The interpolating polynomial  $P_f(\cdot|x_0, \ldots, x_n)$  satisfies the recurrence relation

$$P_f(x|x_0,\ldots,x_n) = \frac{(x_0-x)P_f(x|x_1,\ldots,x_n) - (x_n-x)P_f(x|x_0,\ldots,x_{n-1})}{x_0-x_n}$$

Proof  $\rightsquigarrow$  board

Introduce the notation

$$P_{ik} = P_f(x|x_{i-k},\ldots,x_i), \qquad i \geq k$$

then  $P_f(x|x_0,...,x_n) = P_{nn}$  can be computed based on the Neville scheme

$$P_{i0} = f(x_i), \quad i = 0, \dots, n$$
  
$$P_{ik} = P_{i,k-1} + \frac{x - x_i}{x_i - x_{i-k}} (P_{i,k-1} - P_{i-1,k-1}), \quad i \ge k$$

 $\rightsquigarrow$  a numerically stable and efficient  $(\mathcal{O}(n^2))$  way to evaluate (!)  $P_f(x|x_0,\ldots,x_n)$ 

# Hermite interpolation

Given

$$a = x_0 \leq x_1 \leq \ldots \leq x_n = b$$

with possibly duplicated nodes. Less information than degrees of freedom?

# Hermite interpolation

Given

$$a = x_0 \leq x_1 \leq \ldots \leq x_n = b$$

with possibly duplicated nodes. Less information than degrees of freedom? Therefore, if the node  $x_i$  occurs k times, the corresponding node values correspond to  $f(x_i), f'(x_i), \ldots, f^{k-1}(x_i)$ .

The Hermite interpolation polynomial p(x) is a polynomial of order n, which coincides with the nodal values (and, for duplicated nodes, derivatives at nodal values) at the nodes.

# Hermite interpolation

Given

$$a = x_0 \leq x_1 \leq \ldots \leq x_n = b$$

with possibly duplicated nodes. Less information than degrees of freedom? Therefore, if the node  $x_i$  occurs k times, the corresponding node values correspond to  $f(x_i), f'(x_i), \ldots, f^{k-1}(x_i)$ .

The Hermite interpolation polynomial p(x) is a polynomial of order n, which coincides with the nodal values (and, for duplicated nodes, derivatives at nodal values) at the nodes.

Aitken lemma for Hermite interpolation: The (Hermite) interpolating polynomial  $P = P_f(\cdot|x_0, ..., x_n)$  satisfies, if  $x_i \neq x_j$ , the recurrence relation:  $P_f(x|x_0, ..., x_n) = \frac{(x_i - x)P_f(x|x_0, ..., \hat{x_i}, ..., x_n) - (x_j - x)P_f(x|x_0, ..., \hat{x_j}, ..., x_n)}{x_i - x_j}$ ,

where the hat symbol indicates that the corresponding node is omitted.

# Polynomial interpolation in Newton basis

The Newton basis  $\omega_0, \ldots, \omega_n$  is given by

$$\omega_i(x) := \prod_{j=0}^{i-1} (x - x_j) \in \mathbb{P}_i.$$

Would like to find coefficients  $c_0, c_1, \ldots, c_n$  of interpolating polynomial in Newton basis

$$P_f(x|x_0,\ldots,x_n)=c_0\omega_0(x)+c_1\omega_1(x)+\cdots+c_n\omega_n(x)$$

### Newton polynomial basis

The leading coefficient  $a_n$  of the interpolation polynomial (monomial basis!)

$$P_f(x|x_0,\ldots,x_n)=a_nx^n+\cdots+a_0$$

is called the *n*-th divided difference,  $[x_0, \ldots, x_n]f := a_n$ .

The divided differences are the coefficients  $c_0, \ldots, c_n$ : The interpolation polynomial  $P_f(\cdot|x_0, \ldots, x_n)$  for  $x_0 \le x_1 \le \cdots \le x_n$  (not necessarily distinct and thus need  $f \in C^{n+1}$ ) is given by

$$P(x) = \sum_{i=0}^{n} [x_0, \ldots, x_i] f \omega_i(x).$$

Furthermore,

$$f(x) = P(x) + [x_0, \ldots, x_n, x] f \omega_{n+1}(x).$$

#### Proof $\rightsquigarrow$ board

Newton differences  
L> for 
$$h=0$$
,  $p(x) = 0$   
 $p(x_0) = 0$  =  $[x_0]f = f(x_0)$   
 $w_0(x) = 1$   
L>  $h > 0$  (eff  
 $P_{n-1} = \sum_{i=0}^{n-1} [x_{0,\dots,x_i}]f(w_i(x))$   
 $1 \le 0$  of  $x_{0,\dots,x_n} = 1$   
 $P_n = [x_{0,\dots,x_n}]f(x^n + 0 \le 1) \times 1 + \cdots + 0_0$   
OS  
 $P_n(x) = [x_{0,\dots,x_n}]f(w_n(x)) + Q_{n-1}(x)$   
with some polynomial  $Q_{n-1} \in |P_{n-1}|$  of degree  
Notice  $\frac{1}{2}$  but  $n-1$   
 $w_n(x) = \prod_{i=0}^{n-1} (x_i - x)$   
 $w_n(x_i) = 0$ ,  $i = 0$ ,  $\dots$ ,  $x_n$  if  $w_n(x_i)$   
 $= f(x_i)$ 

Qu-, interpolates X0,..., Xn-1



# Numerical Methods I MATH-GA 2010.001/CSCI-GA 2420.001

Benjamin Peherstorfer Courant Institute, NYU

Based on slides by G. Stadler and A. Donev

# Today

#### Last time

Polynomial interpolation

#### Today



#### Announcements

► Homework 5 is due Mon, Nov 18 before class

### Recap

Let's say the function f is continuous, i.e.,  $f \in C^0([a, b])$ , but not even differentiable.

Define the maximum norm

$$\|f\|_{\infty} = \max_{x \in [a,b]} |f(x)|$$

Given points  $X = \{x_0, \ldots, x_n\} \subset [a, b]$ , define the interpolation error

$$E_{n,\infty}(X) = \|f - P_f(\cdot|X)\|_{\infty}$$

and the best-approximation error with  $f^* \in \mathbb{P}_n$ 

$$E_n^* = \|f - f^*\|_{\infty} \le \|f - \tilde{f}\|_{\infty}, \qquad \forall \tilde{f} \in \mathbb{P}_n$$

### Recap

**Theorem** Let 
$$f \in C^0([a, b])$$
 and  $X = \{x_0, \ldots, x_n\} \subset [a, b]$ . Then
$$E_{n,\infty}(X) = E_n^*(1 + \Lambda_n(X)),$$

where  $\Lambda_n(X)$  is the *Lebesgue* constant of X, defined as

$$\Lambda_n(X) = \left\| \sum_{j=0}^n |L_j^{(n)}| \right\|_{\infty},$$

where  $L_i^{(n)} \in \mathbb{P}_n$  is the *j*-th Lagrange polynomial with

$$L_j^{(n)}(x_i) = \begin{cases} 1, & i = j, \\ 0, & \text{otherwise} \end{cases}$$

Notice the decomposition of the error into component  $E_n^*$  (independent of X but dependent on f) and  $\Lambda_n(X)$  (independent of f but dependent on X)

#### Recap: Pointwise evaluation of interpolating polynomials Aitken Lemma: The interpolating polynomial $P_f(\cdot|x_0, ..., x_n)$ satisfies the recurrence relation

$$P_f(x|x_0,...,x_n) = \frac{(x_0-x)P_f(x|x_1,...,x_n) - (x_n-x)P_f(x|x_0,...,x_{n-1})}{x_0-x_n}$$

Introduce the notation

$$P_{ik} = P_f(x|x_{i-k},\ldots,x_i), \qquad i \geq k$$

then  $P_f(x|x_0,...,x_n) = P_{nn}$  can be computed based on the Neville scheme

$$P_{i0} = f(x_i), \quad i = 0, \dots, n$$
  
$$P_{ik} = P_{i,k-1} + \frac{x - x_i}{x_i - x_{i-k}} (P_{i,k-1} - P_{i-1,k-1}), \quad i \ge k$$

 $\rightsquigarrow$  a numerically stable and efficient  $(\mathcal{O}(n^2))$  way to evaluate (!)  $P_f(x|x_0,\ldots,x_n)$
Recap: Polynomial interpolation in Newton basis

The Newton basis  $\omega_0, \ldots, \omega_n$  is given by

$$\omega_i(x) := \prod_{j=0}^{i-1} (x - x_j) \in \mathbb{P}_i.$$

Would like to find coefficients  $c_0, c_1, \ldots, c_n$  of interpolating polynomial in Newton basis

$$P_f(x|x_0,\ldots,x_n)=c_0\omega_0(x)+c_1\omega_1(x)+\cdots+c_n\omega_n(x)$$

#### Recap: Newton polynomial basis

The leading coefficient  $a_n$  of the interpolation polynomial (monomial basis!)

$$P_f(x|x_0,\ldots,x_n)=a_nx^n+\cdots+a_0$$

is called the *n*-th divided difference,  $[x_0, \ldots, x_n]f := a_n$ .

The divided differences are the coefficients  $c_0, \ldots, c_n$ : The interpolation polynomial  $P_f(\cdot|x_0, \ldots, x_n)$  for  $x_0 \le x_1 \le \cdots \le x_n$  (not necessarily distinct and thus need  $f \in C^{n+1}$ ) is given by

$$P(x) = \sum_{i=0}^{n} [x_0, \ldots, x_i] f \omega_i(x).$$

Furthermore,

$$f(x) = P(x) + [x_0, \ldots, x_n, x] f \omega_{n+1}(x).$$

#### Proof $\rightsquigarrow$ board

coul of prof:  

$$P_{n} = [x_{0}, ..., x_{n}]f w_{n} + \sum_{i=1}^{n} [x_{0}, ..., x_{i}]f w_{i}$$

$$P_{n+1} - \sum_{i=1}^{n} [x_{0}, ..., x_{i}]f w_{i} + [x_{0}, ..., x_{n}, x_{n+1}]f w_{n+1}$$

$$this is five for any x_{n+1} and P_{n+1}(x_{n+1}) = f(x_{n+1})$$

$$= \sum_{i=1}^{n} f(x) = P_{n}(x) + [x_{0}, ..., x_{n}]f w_{n+1}(x)$$

#### **Divided differences**

The divided differences  $[x_0, \ldots, x_n]f$  satisfy the following properties:

[x<sub>0</sub>,...,x<sub>n</sub>]P = 0 for all P ∈ P<sub>n-1</sub> (because a<sub>n</sub> = 0 for degree n − 1 polynom)
 If x<sub>0</sub> = ... = x<sub>n</sub>:

$$[x_0,\ldots,x_n]f=\frac{f(n)(x_0)}{n!}$$

▶ The following recurrence relation holds for  $x_i \neq x_j$ :

$$[x_0,\ldots,x_n]f = \frac{\left([x_0,\ldots,\hat{x_i},\ldots,x_n]f - [x_0,\ldots,\hat{x_j},\ldots,x_n]f\right)}{x_j - x_i}$$

•  $[x_0, ..., x_n]f = \frac{1}{n!}f^{(n)}(\tau)$  with a  $a \le \tau \le b$ , if f in  $C^{n+1}$ 

## **Divided differences**

Let us use divided differences to compute the coefficients for the Newton basis for the cubic interpolation polynomial p that satisfies p(0) = 1, p(0.5) = 2, p(1) = 0, p(2) = 3.

p(0) = 1, p(0S) = 2, p(1) = 0, p(2) = 3

 $\sum_{x=1}^{n} 0 [x_0]f = 1 = \frac{1}{|x_0| + 1} f = \frac{[x_0]f - [x_0]f}{|x_0| - x_0|} = \frac{2 - 1}{|x_0| - |x_0|} = \frac{2 - 1}{|x_$ 

 $[x_0 \times_1 \times_2] f = \frac{[x_1 \times_2] f - [x_0 \times_1] f}{x_2 - x_0} = \frac{-4 - 2}{1 - 0} = \frac{-6}{-6}$ 

 $\begin{bmatrix} x_0 x_1 x_2 x_{-3} \end{bmatrix}_{i=0}^{i=0} = \frac{16}{3}$   $w_i(x) = \int_{j=0}^{i-1} (x_{-}x_j)$   $w_i(x) = \int_{j=0}^{i-1} (x_{-}x_j)$   $= C_0 \cdot 1 + C_1 (x_{-0}) + C_2 (x_{-0})(x_{-}x_j)$   $+ C_3 (x_{-0})(x_{-}x_j)(x_{-}1)$   $= 1 + 2x - 6x(x_{-}x_j) + \frac{16}{3}x(x_{-}x_j)(x_{-}1)$ 

#### **Divided differences**

Let us use divided differences to compute the coefficients for the Newton basis for the cubic interpolation polynomial p that satisfies p(0) = 1, p(0.5) = 2, p(1) = 0, p(2) = 3.

Thus, the interpolating polynomial is

$$p(x) = 1 + 2x + (-6)x(x - 0.5) + \frac{16}{3}x(x - 0.5)(x - 1).$$

#### **Divided differences**

Let us now use divided differences to compute the coefficients for the Newton basis for the cubic interpolation polynomial p that satisfies p(0) = 1, p'(0) = 2, p''(0) = 1, p(1) = 3.

Thus, the interpolating polynomial is

$$p(t) = 1 + 2t + \frac{1}{2}t^2 + (-\frac{1}{2})t^3$$

# Polynomial interpolation

Polynomial interpolation

Hermite interpolation

(Least squares with polynomials)

#### ► What else?

# Polynomial interpolation

Polynomial interpolation

Hermite interpolation

(Least squares with polynomials)

What else? Splines, i.e., piecewise polynomial interpolation

## **Splines**

Assume (l+2) pairwise disjoint nodes:

$$a = x_0 < x_1 < \ldots < x_{l+1} = b.$$

A spline of degree k - 1 (order k) is a function in  $C^{k-2}$  which on each interval  $[x_i, x_{i+1}]$  coincides with a polynomial in  $\mathbb{P}_{k-1}$ .

Most important examples:

- linear splines, k = 2
- cubic splines, k = 4

# Splines

Linear spline (piecewise linear polynomial)



# Splines

Cubic splines look smooth:



# Trigonometric Interpolation for periodic functions

Instead of polynomials, use sin(jt), cos(jt) for different  $j \in \mathbb{N}$ .

For  $N \ge 1$ , we define the set of complex trigonometric polynomials of degree  $\le N - 1$  as

$$\boldsymbol{T}_{N-1} := \left\{ \sum_{j=0}^{N-1} c_j e^{ijt}, c_j \in \mathbb{C} \right\},$$

where  $i = \sqrt{-1}$ .

Complex interpolation problem: Given pairwise distinct nodes  $t_0, \ldots, t_{N-1} \in [0, 2\pi)$ and corresponding nodal values  $f_0, \ldots, f_{N-1} \in \mathbb{C}$ , find a trigonometric polynomial  $p \in T_{N-1}$  such that  $p(t_i) = f_i$ , for  $i = 0, \ldots, N-1$ . ▶ There exists exactly one  $p \in T_{N-1}$ , which solves this interpolation problem.

• Choose the equidistant nodes  $t_k := \frac{2\pi k}{N}$  for k = 0, ..., N - 1. The trigonometric polynomial that satisfies  $p(t_i) = f_i$  for i = 0, ..., N - 1 has the coefficients

$$c_j = rac{1}{N}\sum_{k=0}^{N-1}e^{-rac{2\pi ijk}{N}}f_k.$$

► For equidistant nodes, the linear map from  $\mathbb{C}^N \to \mathbb{C}^N$  defined by  $(f_0, \ldots, f_{N-1}) \mapsto (c_0, \ldots, c_{N-1})$  is called the discrete Fourier transformation (DFT). The Fast Fourier Transform (FFT) is a (very famous!) algorithm that computes the DFT and its inverse in  $O(N \log N)$  flops.  $\rightsquigarrow$  Numerical Methods II

# Conclusions

- Interpolation means approximating function values in the interior of a domain when there are known samples of the function at a set of interior and boundary nodes
- Given a set of basis functions, interpolation amounts to solving a linear system of equations for the coefficients; there are clever choices to avoid explicitly computing the solution of the system of equations
- Interpolation on equidistant nodes is a bad idea: Not accurate and not stable! Instead, use Chebyshev nodes, then also higher-order polynomials are safe!
- Another option is to use piecewise polynomial interpolation such as splines, which is very common when solving PDEs numerically
- What about higher dimensions?

Solving nonlinear equations

We want to solve the nonlinear equation

$$f(x) = 0, \quad x \in \mathbb{R}.$$

We could also have  $n < \infty$  equations in *n* unknowns with  $f : \mathbb{R}^n \to \mathbb{R}^n$ 

 $f(\mathbf{x}) = \mathbf{0}$ 

In general, we will need an iterative approach that constructs  $x_1, x_2, x_3, \ldots$  such that

$$\lim_{k\to\infty} x_k = x^*$$

with  $f(x^*) = 0$ .

We want to solve the nonlinear equation

$$f(x) = 0, \quad x \in \mathbb{R}.$$

We could also have  $n < \infty$  equations in *n* unknowns with  $f : \mathbb{R}^n \to \mathbb{R}^n$ 

 $f(\mathbf{x}) = \mathbf{0}$ 

In general, we will need an iterative approach that constructs  $x_1, x_2, x_3, \ldots$  such that  $\lim_{k \to \infty} x_k = x^*,$ 

with  $f(x^*) = 0$ .

What are important properties of a method for solving nonlinear equations?

We want to solve the nonlinear equation

$$f(x) = 0, \quad x \in \mathbb{R}.$$

We could also have  $n < \infty$  equations in *n* unknowns with  $f : \mathbb{R}^n \to \mathbb{R}^n$ 

 $f(\mathbf{x}) = \mathbf{0}$ 

In general, we will need an iterative approach that constructs  $x_1, x_2, x_3, \ldots$  such that

$$\lim_{k\to\infty} x_k = x^*$$

with  $f(x^*) = 0$ .

What are important properties of a method for solving nonlinear equations?
Does it converge? From which starting point x<sub>0</sub>?

We want to solve the nonlinear equation

$$f(x) = 0, \quad x \in \mathbb{R}.$$

We could also have  $n < \infty$  equations in *n* unknowns with  $f : \mathbb{R}^n \to \mathbb{R}^n$ 

 $f(\mathbf{x}) = \mathbf{0}$ 

In general, we will need an iterative approach that constructs  $x_1, x_2, x_3, \ldots$  such that

$$\lim_{k\to\infty}x_k=x^*\,,$$

with  $f(x^*) = 0$ .

What are important properties of a method for solving nonlinear equations?

- Does it converge? From which starting point  $x_0$ ?
- How quickly does it converge?

We want to solve the nonlinear equation

$$f(x) = 0, \quad x \in \mathbb{R}.$$

We could also have  $n < \infty$  equations in *n* unknowns with  $f : \mathbb{R}^n \to \mathbb{R}^n$ 

 $f(\mathbf{x}) = \mathbf{0}$ 

In general, we will need an iterative approach that constructs  $x_1, x_2, x_3, \ldots$  such that

$$\lim_{k\to\infty}x_k=x^*\,,$$

with  $f(x^*) = 0$ .

What are important properties of a method for solving nonlinear equations?

- Does it converge? From which starting point  $x_0$ ?
- How quickly does it converge?
- How expensive is each step?

# **Bisection** method

The bisection method exploits that given a continuous function  $f : [a, b] \to \mathbb{R}$ , such that f(a)f(b) < 0, there exists  $x^* \in (a, b)$  with  $f(x^*) = 0$ 

- ► Assumption: *f* is continuous over [*a*, *b*] (very weak assumption!)
- We have chosen a reasonable interval [a, b] so that there exists a solution x<sup>\*</sup> ∈ (a, b) with f(x<sup>\*</sup>) = 0

## **Bisection method**

The bisection method exploits that given a continuous function  $f : [a, b] \to \mathbb{R}$ , such that f(a)f(b) < 0, there exists  $x^* \in (a, b)$  with  $f(x^*) = 0$ 

- ► Assumption: *f* is continuous over [*a*, *b*] (very weak assumption!)
- We have chosen a reasonable interval [a, b] so that there exists a solution x<sup>\*</sup> ∈ (a, b) with f(x<sup>\*</sup>) = 0

Set 
$$a_0 = a, b_0 = b, x_0 = (a + b)/2$$
 and iterate for  $k = 0, 1, 2, 3, ...$  as follows:  
1. Set  $a_{k+1} = a_k, b_{k+1} = x_k$  if  $f(x_k)f(a_k) < 0$   
2. Set  $a_{k+1} = x_k, b_{k+1} = b_k$  if  $f(x_k)f(b_k) < 0$   
3. Set  $x_{k+1} = (a_{k+1} + b_{k+1})/2$   
4. Terminate if  $|b_{k+1} - a_{k+1}| \le \epsilon$ 

Visualization ~> board



#### Numerical example

Experiment: Solve  $f(x) = x^2 - c = 0$  over [0.5, 1.5] with c = 0.81 and  $x_0 = 1$ 

```
1: a = 0.5; b = 1.5; c = 0.81; xStar = sqrt(c);
2: f = Q(x)x^2 - c;
3: x = (a + b)/2:
4:
5: res = [x, xStar];
6: for k=1:20
7: if(f(a)*f(x) < 0)
8: b = x;
9: else
10: a = x;
11: end
12: x = (a + b)/2;
13: res(end + 1, :) = [x, xStar];
14: end
```

| 1:  | 1.0000e+00 | 9.0000e-01 |                  |
|-----|------------|------------|------------------|
| 2:  | 7.5000e-01 | 9.0000e-01 | 100              |
| 3:  | 8.7500e-01 | 9.0000e-01 | 10               |
| 4:  | 9.3750e-01 | 9.0000e-01 | 10-1             |
| 5:  | 9.0625e-01 | 9.0000e-01 | 69               |
| 6:  | 8.9062e-01 | 9.0000e-01 | 10 <sup>-2</sup> |
| 7:  | 8.9844e-01 | 9.0000e-01 | 10-3             |
| 8:  | 9.0234e-01 | 9.0000e-01 |                  |
| 9:  | 9.0039e-01 | 9.0000e-01 | to -4            |
| 10: | 8.9941e-01 | 9.0000e-01 | sq i             |
| 11: | 8.9990e-01 | 9.0000e-01 | <sup>10-5</sup>  |
| 12: | 9.0015e-01 | 9.0000e-01 | 10 <sup>-6</sup> |
| 13: | 9.0002e-01 | 9.0000e-01 |                  |
| 14: | 8.9996e-01 | 9.0000e-01 | 10 <sup>-7</sup> |
| 15: | 8.9999e-01 | 9.0000e-01 |                  |
| 16: | 9.0001e-01 | 9.0000e-01 | 10 <sup>-8</sup> |
| 17: | 9.0000e-01 | 9.0000e-01 | iterations       |
|     |            |            |                  |

- Bisection is a slow but sure method.
- It uses no information about the value of the function or its derivatives only the sign
- ► There are variants that achieve faster convergence ~→ textbook by Quarterioni
- How can we achieve faster convergence in general?

- Bisection is a slow but sure method.
- It uses no information about the value of the function or its derivatives only the sign
- ► There are variants that achieve faster convergence ~→ textbook by Quarterioni
- How can we achieve faster convergence in general? ~> need to use additional information, at least the function value instead of just the sign

More general formulation via fixed point iterations

Reformulation as fixed point method so that  $x^*$  is fixed point

$$x^* = \Phi(x^*)$$

Corresponding iteration: Choose  $x_0$  (initialization) and compute  $x_1, x_2, ...$  from

$$x_{k+1} = \Phi(x_k)$$

We now want to study when this iteration converges to  $x^*$  with  $f(x^*) = 0$ 

## Convergence of fixed point methods

A mapping  $\Phi : [a, b] \to \mathbb{R}$  is called contractive on [a, b] if there is a  $0 \le \Theta < 1$  such that

$$|\Phi(x) - \Phi(y)| \le \Theta |x - y|$$
 for all  $x, y \in [a, b]$ .

If  $\Phi$  is continuously differentiable on [a, b], then

$$\Theta = \sup_{x,y\in[a,b]} \frac{|\Phi(x) - \Phi(y)|}{|x-y|} = \sup_{z\in[a,b]} |\Phi'(z)|$$

# Convergence of fixed point methods

Let  $\Phi : [a, b] \rightarrow [a, b]$  be contractive with constant  $\Theta < 1$ . Then:

- There exists a unique fixed point  $\bar{x}$  with  $\bar{x} = \Phi(\bar{x})$
- For any starting guess  $x_0$  in [a, b], the fixed point iteration converges to  $\overline{x}$  and

$$|x_{k+1}-x_k| \leq \Theta |x_k-x_{k-1}|$$

and

$$|\overline{x}-x_k| \leq rac{\Theta^k}{1-\Theta}|x_1-x_0|.$$

The second expression allows to estimate the required number of iterations.

 $\rightsquigarrow$  board

Convergence of fixed point methods: For oll  $x_0 \in I$ , it holds for  $x_0, x_1, x_2, ...$   $|x_{R+1} - x_{R}| = |\varphi(x_n) - \varphi(x_{n-1})| \leq \Theta|x_n - x_{n-1}|$ because of is controcting with constant  $\Theta$ . By induction, we obtain  $|x_{R+1} - x_n| \leq \Theta^R |x_1 - x_0|$ Thus

 $|X_{l+m} - X_{l}| \leq |X_{l+m} - X_{l+m-l}| + \dots + |X_{l+l} - X_{l}|$ 

$$\leq \left( \Theta^{q_{i+n-1}} + \dots + \Theta^{q} \right) \left[ \times_{1} - \times_{0} \right]$$

$$\leq \frac{\Theta^{q_{i+n-1}}}{1 - \Theta} \left[ \times_{1} - \times_{0} \right]$$

become  $O \leq \Theta \leq 1$  or  $\frac{1}{2}$   $(1 + \Theta + \dots + \Theta^{n-1}) \leq \sum \Theta^{2} = 1 - \Theta$  $= \sum (\partial urby sequence -> convergence$ 

Show 
$$\lim_{k \to \infty} x_{q} = x^{*}$$
 that is fixed point of  $\phi$ :  
 $|x^{*} - \phi(x^{*})| = |x^{*} - x_{q_{+1}} + x_{q_{+1}} - \phi(x^{*})|$   
 $= |x^{*} - x_{q_{+1}} + \phi(x_{q}) - \phi(x^{*})|$   
 $\leq |x^{*} - x_{q_{+1}}| + |\phi(x_{q}) - \phi(x^{*})|$   
 $\leq (x^{*} - x_{q_{+1}}| + \Theta(x^{*} - x_{q_{+1}}))$ 

$$\frac{1}{1} \xrightarrow{\gamma_{+1}} 0$$

$$(x^* - \phi(x^*)) \le 0$$
  
 $|x^* - \phi(x^*)| = 0$   
 $=> fixed point$ 

Uniqueness:

(f there are two fixed points 
$$x^{\text{Ford}} y^{\text{Ford}} y^{\text{Ford}$$

#### What is the standard approach in numerics when we encounter a nonlinear problem?

# What is the standard approach in numerics when we encounter a nonlinear problem? $\rightsquigarrow$ we linearize

 $\rightsquigarrow$  board


## Numerical Methods I MATH-GA 2010.001/CSCI-GA 2420.001

Benjamin Peherstorfer Courant Institute, NYU

Based on slides by G. Stadler and A. Donev

## Today

#### Last time

#### Interpolation

- Solving systems of nonlinear equations
- Bisection methods

#### Today

Newton method

#### Announcements

Homework 5 posted and is due Mon, Nov 18 before class

## Recap: Solving nonlinear equations ("root finding")

We want to solve the nonlinear equation

$$f(x) = 0, \quad x \in \mathbb{R}.$$

We could also have  $n < \infty$  equations in *n* unknowns with  $f : \mathbb{R}^n \to \mathbb{R}^n$ 

 $f(\mathbf{x}) = \mathbf{0}$ 

In general, we will need an iterative approach that constructs  $x_1, x_2, x_3, \ldots$  such that

$$\lim_{k\to\infty}x_k=x^*\,,$$

with  $f(x^*) = 0$ .

What are important properties of a method for solving nonlinear equations?

- Does it converge? From which starting point  $x_0$ ?
- How quickly does it converge?
- How expensive is each step?

## Recap: Bisection method

The bisection method exploits that given a continuous function  $f : [a, b] \to \mathbb{R}$ , such that f(a)f(b) < 0, there exists  $x^* \in (a, b)$  with  $f(x^*) = 0$ 

- ► Assumption: *f* is continuous over [*a*, *b*] (very weak assumption!)
- We have chosen a reasonable interval [a, b] so that there exists a solution x<sup>\*</sup> ∈ (a, b) with f(x<sup>\*</sup>) = 0

## Recap: Bisection method

The bisection method exploits that given a continuous function  $f : [a, b] \to \mathbb{R}$ , such that f(a)f(b) < 0, there exists  $x^* \in (a, b)$  with  $f(x^*) = 0$ 

- ► Assumption: *f* is continuous over [*a*, *b*] (very weak assumption!)
- We have chosen a reasonable interval [a, b] so that there exists a solution x<sup>\*</sup> ∈ (a, b) with f(x<sup>\*</sup>) = 0

Set 
$$a_0 = a, b_0 = b, x_0 = (a + b)/2$$
 and iterate for  $k = 0, 1, 2, 3, ...$  as follows:  
1. Set  $a_{k+1} = a_k, b_{k+1} = x_k$  if  $f(x_k)f(a_k) < 0$   
2. Set  $a_{k+1} = x_k, b_{k+1} = b_k$  if  $f(x_k)f(b_k) < 0$   
3. Set  $x_{k+1} = (a_{k+1} + b_{k+1})/2$   
4. Terminate if  $|b_{k+1} - a_{k+1}| \le \epsilon$ 

Visualization  $\rightsquigarrow$  board

## Recap

| 1:  | 1.0000e+00 | 9.0000e-01 |
|-----|------------|------------|
| 2:  | 7.5000e-01 | 9.0000e-01 |
| 3:  | 8.7500e-01 | 9.0000e-01 |
| 4:  | 9.3750e-01 | 9.0000e-01 |
| 5:  | 9.0625e-01 | 9.0000e-01 |
| 6:  | 8.9062e-01 | 9.0000e-01 |
| 7:  | 8.9844e-01 | 9.0000e-01 |
| 8:  | 9.0234e-01 | 9.0000e-01 |
| 9:  | 9.0039e-01 | 9.0000e-01 |
| 10: | 8.9941e-01 | 9.0000e-01 |
| 11: | 8.9990e-01 | 9.0000e-01 |
| 12: | 9.0015e-01 | 9.0000e-01 |
| 13: | 9.0002e-01 | 9.0000e-01 |
| 14: | 8.9996e-01 | 9.0000e-01 |
| 15: | 8.9999e-01 | 9.0000e-01 |
| 16: | 9.0001e-01 | 9.0000e-01 |
| 17: | 9.0000e-01 | 9.0000e-01 |



# What is the standard approach in numerics when we encounter a nonlinear problem? $\rightsquigarrow$ we linearize

 $\rightsquigarrow$  board



In one dimension, solve f(x) = 0:

Start with  $x_0$ , and compute  $x_1, x_2, \ldots$  from

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, \dots$$

Requires  $f'(x_k) \neq 0$  to be well-defined (i.e., tangent has nonzero slope).

In one dimension, solve f(x) = 0:

Start with  $x_0$ , and compute  $x_1, x_2, \ldots$  from

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, \ldots$$

Requires  $f'(x_k) \neq 0$  to be well-defined (i.e., tangent has nonzero slope).

Experiment: Solve  $f(x) = x^2 - c = 0$  with c = 0.81 and  $x_0 = 1$ 

$$\phi(x) = x - \frac{f(x)}{f'(x)} = x - \frac{x^2 - c}{2x} = x - \frac{x}{2} + \frac{c}{2x} = \frac{1}{2}\left(x + \frac{c}{x}\right)$$

Iterations

$$x_{k+1} = \frac{1}{2} \left( x_k + \frac{c}{x_k} \right)$$

```
1: format longE
2: c = 0.81;
3: xStar = sqrt(c);
4: x = 1;
5: res = [x, xStar];
6: for i=1:4
7: x = 0.5*(x + c/x);
8: res(end + 1, :) = [x, xStar];
9: end
10: res
```

```
1: format longE
2: c = 0.81;
3: xStar = sqrt(c);
4: x = 1;
5: res = [x, xStar];
6: for i=1:4
7: x = 0.5*(x + c/x);
8: res(end + 1, :) = [x, xStar];
9: end
10: res
```

| 1: res | =                      |                       |
|--------|------------------------|-----------------------|
| 2:     | 1.0000000000000000e+00 | 9.00000000000000e-01  |
| 3:     | 9.05000000000000e-01   | 9.000000000000000e-01 |
| 4:     | 9.000138121546961e-01  | 9.00000000000000e-01  |
| 5:     | 9.00000001059849e-01   | 9.00000000000000e-01  |
| 6:     | 9.000000000000000e-01  | 9.00000000000000e-01  |

 $\rightsquigarrow$  very quick convergence; certainly faster than linear convergence



### Newton's method

Let  $F : \mathbb{R}^n \to \mathbb{R}^n$ ,  $n \ge 1$  and solve

$$F(\mathbf{x}) = 0.$$

Truncated Taylor expansion of F about starting point  $x^0$ :

$$F(\mathbf{x}) \approx F(\mathbf{x}^0) + F'(\mathbf{x}^0)(\mathbf{x} - \mathbf{x}^0).$$

Hence:

$$x^1 = x^0 - F'(x^0)^{-1}F(x^0)$$

Newton iteration: Start with  $\mathbf{x}^0 \in \mathbb{R}^n$ , and for k = 0, 1, ... compute

$$\mathcal{F}'(\boldsymbol{x}^k)\Delta \boldsymbol{x}^k = -\mathcal{F}(\boldsymbol{x}^k), \quad \boldsymbol{x}^{k+1} = \boldsymbol{x}^k + \Delta \boldsymbol{x}^k$$

Requires that  $F'(\mathbf{x}^k) \in \mathbb{R}^{n \times n}$  is invertible.

## Newton's method

Newton iteration: Start with  $\mathbf{x}^0 \in \mathbb{R}^n$ , and for k = 0, 1, ... compute

$$F'(\mathbf{x}^k)\Delta\mathbf{x}^k = -F(\mathbf{x}^k), \quad \mathbf{x}^{k+1} = \mathbf{x}^k + \Delta\mathbf{x}^k$$

Equivalently:

$$\boldsymbol{x}^{k+1} = \boldsymbol{x}^k - F'(\boldsymbol{x}^k)^{-1}F(\boldsymbol{x}^k)$$

Newton's method is affine invariant, that is, the sequence is invariant to affine transformations  $\rightsquigarrow$  board

Newton is affine invoriant:  
Solving 
$$F(x) = 0$$
 is equivalent to solving  
 $AF(x) = 0$   
for vogular  $A \in \mathbb{R}^{n\times n}$   
Set  $G(x) = AF(x)$ , then apply Newton to G  
 $Y_{0+1} = Y_0 - G'(x_n)^{-1}G(x_n)$   
 $= Y_n - (AF'(y_n))^{-1}(AF(y_n))$   
 $= Y_n - [F'(y_n))^{-1}A^{-1}AF(y_n)$   
 $= Y_n - [F'(y_n))^{-1}F(y_n)$   
 $= y_n - [G'(y_n))^{-1}F(y_n)$   
 $= y_n - [F'(y_n))^{-1}F(y_n)$   
 $= y_n - [F'(y_n)]^{-1}F(y_n)$   
 $= y_n - [$ 

## Convergence of Newton's method

Assumptions on  $F: D \subset \mathbb{R}^n$  open and convex,  $F: D \to \mathbb{R}^n$  continuously differentiable with  $F'(\mathbf{x})$  invertible for all  $\mathbf{x}$ , and there exists  $\omega \ge 0$  such that

$$\|F'(\mathbf{x})^{-1}(F'(\mathbf{x}+s\mathbf{v})-F'(\mathbf{x}))\mathbf{v}\|\leq s\omega\|\mathbf{v}\|^2$$

for all  $s \in [0,1]$ ,  $\mathbf{x} \in D$ ,  $\mathbf{v} \in \mathbb{R}^n$  with  $\mathbf{x} + \mathbf{v} \in D$ .

Assumptions on  $x^*$  and  $x^0$ : There exists a solution  $x^* \in D$  and a starting point  $x^0 \in D$  such that

$$ho := \|oldsymbol{x}^* - oldsymbol{x}^0\| \leq rac{2}{\omega} ext{ and } B_
ho(oldsymbol{x}^*) \subset D$$

where

$$B_{\rho}(\boldsymbol{x}^*) = \{ \boldsymbol{y} \in \mathbb{R}^n \, | \, \| \boldsymbol{y} - \boldsymbol{x}^* \| < \rho \}$$

#### Q: Meaning of $\omega$ ?

Theorem: Under the assumptions of the previous slide, the Newton sequence  $\mathbf{x}^k$  stays in  $B_{\rho}(\mathbf{x}^*)$  and  $\lim_{k\to\infty} \mathbf{x}^k = \mathbf{x}^*$ , and

$$\|oldsymbol{x}^{k+1}-oldsymbol{x}^*\|\leq rac{\omega}{2}\|oldsymbol{x}^k-oldsymbol{x}^*\|^2$$

Moreover, the solution  $x^*$  is unique in  $B_{2/\omega}(x^*)$ .

Proof:  $\rightsquigarrow$  board

Consider the Lipschitz condition  
• 
$$|| F'(x)^{-1} (F'(x+sv) - F'(v)) v ||_{2} \leq sw ||v||_{2}^{2}$$
  
 $\forall s \in Co_{1}B, x \in D, v \in \mathbb{R}^{n} \times + v \in D$   
 $ousd$   
•  $\int [F'(x+s(y-x)) - F'(x)](y-x) ds = ... = F(y) - F(x) - F'(x)(y-x)$ 

Now take 
$$v = \gamma - x$$
 with  $\gamma \in D$ , then  

$$\int ||F'(x)^{-1} [F'(x + s(\gamma - x)) - F'(x)] (\gamma - x)|| ds$$

$$\leq \int sw ||(\gamma - x)|^{2} ds$$

$$||F'(x)^{-1} [F(y) - F(x) - F'(x)] (y - x)]|$$

$$\|F'(x)^{-1}[F(y) - F(x) - F'(x)](y - x)]\|$$

$$= \|\int_{0}^{0} F'(x)^{-1} [F'(x + s(y - x)) - F(x)](y - x)ds\|$$

$$\leq \int_{0}^{0} \|F'(x)^{-1} [F'(x + s(y - x)) - F(x)](y - x)\|ds$$

$$\leq \int_{0}^{0} |Sw| \| y - x(\|^{2} ds)$$

$$= w g_{2}^{2} \| |y - x||^{2} |_{0}^{1} = \frac{w}{2} \| |y - x||^{2} (K)$$

Now convergence of New ten  

$$x^{q_{+1}} - x^{q_{-1}} = x^{q_{-1}} - F(x^{q_{-1}})^{-1} (F(x^{q_{-1}}) - F(x^{q_{-1}}))$$

$$= F^{-1}(x^{q_{-1}})^{-1} [-F(x^{q_{-1}}) + F(x^{q_{-1}}) - F(x^{q_{-1}})(x^{q_{-1}} + x^{q_{-1}})]$$
with (a) follows  

$$||x^{q_{+1}} - x^{q_{-1}}|| \leq \frac{2}{2} (||x^{q_{-1}} - x^{q_{-1}}||^{2}) = g undership vote$$
Now show that sequence (x<sup>q\_{-1}</sup>) remains in bar(1 Bplkg)  

$$\mu(ave: 0 \leq 1 \times x^{q_{-1}} - x^{q_{-1}}|| \leq ||x^{q_{-1}} - x^{q_{-1}}|| = p$$

$$||x^{q_{+1}} - x^{q_{-1}}|| \leq ||x^{q_{-1}} - x^{q_{-1}}|| = p$$

$$||x^{q_{+1}} - x^{q_{-1}}|| \leq ||x^{q_{-1}} - x^{q_{-1}}|| = p$$

$$||x^{q_{+1}} - x^{q_{-1}}|| \leq ||x^{q_{-1}} - x^{q_{-1}}|| = p$$

$$||x^{q_{+1}} - x^{q_{-1}}|| \leq ||x^{q_{-1}} - x^{q_{-1}}|| = p$$
Now we need assumption about shorting point  
We have that  $x^{q_{-1}} \in D$  satisfies  

$$p = ||x^{q_{-1}} - x^{q_{-1}}|| \leq \frac{2}{2} and \beta_{p}(x^{q_{-1}}) \leq D$$

$$= p p \frac{4}{2} \leq 1$$

 $\|x^{n+1} - x^{\dagger}\| \leq \|x^{n} - x^{\dagger}\| \leq \|x^{\star} - x^{\circ}\| = \rho$ =>  $(x^{n})$  remains in  $B_{\rho}(x^{\star})$ 

L> 
$$x^{48} \in B_{2/4}(x^{*})$$
 is errother solution  
so  $t^{4}$  of  $F(x^{**}) = 0$  and  $\|x^{*} - x^{**}\| \le \frac{2}{4}$   
With (\*) we obtain  
 $\|x^{**} - x^{*}\|_{1}^{2} = \|0 - 0 - F'(x^{*})^{-1}F'(x^{*})(x^{**} - x^{*})\|_{1}^{2}$   
 $F(x^{*}) = F(x^{*+}) = 0$   
 $\|F'(x^{*})^{-1}(F(x^{*+}) - F(x^{*}) - F(x^{*}) - F(x^{*})x^{*} - x^{*})\|_{1}^{2}$   
 $(x^{*}) = \frac{2}{2} \|x^{**} - x^{*}\|_{1}^{2} \|x^{**} - x^{*}\|_{1}^{2}$   
 $+ \frac{2}{2} \|x^{**} - x^{*}\|_{1}^{2} \|x^{**} - x^{*}\|_{1}^{2}$ 

ہے

Theorem: Under the assumptions of the previous slide, the Newton sequence  $\mathbf{x}^k$  stays in  $B_{\rho}(\mathbf{x}^*)$  and  $\lim_{k\to\infty} \mathbf{x}^k = \mathbf{x}^*$ , and

$$\|oldsymbol{x}^{k+1}-oldsymbol{x}^*\|\leq rac{\omega}{2}\|oldsymbol{x}^k-oldsymbol{x}^*\|^2$$

Moreover, the solution  $x^*$  is unique in  $B_{2/\omega}(x^*)$ .

Proof:  $\rightsquigarrow$  board

Summary: The Newton method converges locally and quadratically.

## Role of initialization

. . .

Choice of initialization  $x^0$  is critical. Depending on the initialization, the Newton iteration might

- not converge (it could "blow up" or "oscillate" between two points)
- converge to different solutions
- fail because it hits a point where the Jacobian is not invertible (this cannot happen if the conditions of the convergence theorem are satisfied)

Sometimes, continuation ideas must be used to find good initializations: Solve simpler problems first and use solution as starting point for harder problems.

The "more nonlinear" a problem, the harder it is to solve.

$$\|F'(\mathbf{x})^{-1}(F'(\mathbf{x}+s\mathbf{v})-F'(\mathbf{x}))\mathbf{v}\|\leq s\omega\|\mathbf{v}\|^2$$

Very nonlinear  $\rightsquigarrow F'(x)$  changes a lot  $\rightsquigarrow \omega$  large (need  $x_0$  closers to  $x^*$  required)

The "more nonlinear" a problem, the harder it is to solve.

$$\|F'(\mathbf{x})^{-1}(F'(\mathbf{x}+s\mathbf{v})-F'(\mathbf{x}))\mathbf{v}\|\leq s\omega\|\mathbf{v}\|^2$$

Very nonlinear  $\rightsquigarrow F'(x)$  changes a lot  $\rightsquigarrow \omega$  large (need  $x_0$  closers to  $x^*$  required)

Computation of Jacobian can be costly/complicated  $\rightsquigarrow$  sometimes approximate  $F'(x^k)$ 

The "more nonlinear" a problem, the harder it is to solve.

$$\|F'(\mathbf{x})^{-1}(F'(\mathbf{x}+s\mathbf{v})-F'(\mathbf{x}))\mathbf{v}\|\leq s\omega\|\mathbf{v}\|^2$$

Very nonlinear  $\rightsquigarrow F'(x)$  changes a lot  $\rightsquigarrow \omega$  large (need  $x_0$  closers to  $x^*$  required)

Computation of Jacobian can be costly/complicated  $\rightsquigarrow$  sometimes approximate  $F'(x^k)$ 

There's no reliable black-box solver for nonlinear problems; at least for higher-dimensional problems, the structure of the problem must be taken into account.

The "more nonlinear" a problem, the harder it is to solve.

$$\|F'(\mathbf{x})^{-1}(F'(\mathbf{x}+s\mathbf{v})-F'(\mathbf{x}))\mathbf{v}\|\leq s\omega\|\mathbf{v}\|^2$$

Very nonlinear  $\rightsquigarrow F'(x)$  changes a lot  $\rightsquigarrow \omega$  large (need  $x_0$  closers to  $x^*$  required)

Computation of Jacobian can be costly/complicated  $\rightsquigarrow$  sometimes approximate  $F'(x^k)$ 

There's no reliable black-box solver for nonlinear problems; at least for higher-dimensional problems, the structure of the problem must be taken into account.

"Classification of mathematical problems as linear and nonlinear is like classification of the Universe as bananas and non-bananas."

## Nonlinear least squares—Gauss-Newton

## Nonlinear least-squares problems

Assume a least squares problem, where the parameters x do *not* enter linearly into the model.

Instead of

$$\min_{\boldsymbol{x}\in\mathbb{R}^n}\|\boldsymbol{A}\boldsymbol{x}-\boldsymbol{b}\|^2,$$

we have with  $F: D \to \mathbb{R}^m, m \ge n, D \subset \mathbb{R}^n$ :

$$\min_{\boldsymbol{x}\in\mathbb{R}^n}g(\boldsymbol{x}):=\frac{1}{2}\|F(\boldsymbol{x})\|^2,\quad\text{ where }F(\boldsymbol{x})_i=\varphi(t_i,\boldsymbol{x})-b_i,1\leq i\leq m$$

A (local) minimum  $x^*$  of this optimization problem satisfies:

$$g'(oldsymbol{x})=0, \quad g''(oldsymbol{x})$$
 is positive definite.

## Nonlinear least-squares problems The derivative of $g(\cdot)$ is

$$G(\mathbf{x}) := g'(\mathbf{x}) = F'(\mathbf{x})F(\mathbf{x})$$

Setting  $G(\mathbf{x}) = 0$  gives a nonlinear system in  $\mathbf{x}$ ,  $G : D \to \mathbb{R}^m$ .

Let's try to solve it  $G(\mathbf{x}) = 0$  using Newton's method:

$$G'(\mathbf{x}^k)\Delta\mathbf{x}^k = -G(\mathbf{x}^k), \quad \mathbf{x}^{k+1} = \mathbf{x}^k + \Delta\mathbf{x}^k$$

where

$$G'(\mathbf{x}) = F'(\mathbf{x})^T F'(\mathbf{x}) + F''(\mathbf{x})^T F(\mathbf{x})$$
 Hessian of g (objective)

 $\rightsquigarrow$  second-order information of F enters through  $F''(X)^T$ Q: What are you observing about how second-order information enters?

## Nonlinear least-squares problems The derivative of $g(\cdot)$ is

$$G(\mathbf{x}) := g'(\mathbf{x}) = F'(\mathbf{x})F(\mathbf{x})$$

Setting  $G(\mathbf{x}) = 0$  gives a nonlinear system in  $\mathbf{x}$ ,  $G : D \to \mathbb{R}^m$ .

Let's try to solve it  $G(\mathbf{x}) = 0$  using Newton's method:

$$G'(\mathbf{x}^k)\Delta\mathbf{x}^k = -G(\mathbf{x}^k), \quad \mathbf{x}^{k+1} = \mathbf{x}^k + \Delta\mathbf{x}^k$$

where

$$G'(\mathbf{x}) = F'(\mathbf{x})^T F'(\mathbf{x}) + F''(\mathbf{x})^T F(\mathbf{x})$$
 Hessian of g (objective)

 $\rightarrow$  second-order information of *F* enters through *F*<sup>"</sup>(*X*)<sup>*T*</sup> Q: What are you observing about how second-order information enters? → multiplied with *F*(*x*) If the data is compatible with the model, which means that the model can perfectly fit the data with zero training error, then  $F(\mathbf{x}^*) = 0$ 

Then, term involving  $F''(\mathbf{x}^*)$  drops out in  $G'(\mathbf{x}^*)$  anyway as we move towards  $\mathbf{x}^*$ .

If  $||F(\mathbf{x}^*)||$  is small, and thus data *almost* compatible with model, then neglecting that term might not make the convergence much slower.

Also, it's expensive to compute  $F''(\mathbf{x})$ 

## Nonlinear least-squares problems—Gauss-Newton

The resulting Newton method for the nonlinear least squares problem is called Gauss-Newton method: Initialize  $x^0$  and for k = 0, 1, ... solve

$$F'(\mathbf{x}^k)^T F'(\mathbf{x}^k) \Delta \mathbf{x}^k = -F'(\mathbf{x}^k)^T F(\mathbf{x}^k) \quad \text{(solve)} \tag{1}$$
$$\mathbf{x}^{k+1} = \mathbf{x}^k + \Delta \mathbf{x}^k. \quad \text{(update step)}$$

## Nonlinear least-squares problems—Gauss-Newton

The resulting Newton method for the nonlinear least squares problem is called Gauss-Newton method: Initialize  $x^0$  and for k = 0, 1, ... solve

$$F'(\mathbf{x}^{k})^{T}F'(\mathbf{x}^{k})\Delta\mathbf{x}^{k} = -F'(\mathbf{x}^{k})^{T}F(\mathbf{x}^{k}) \quad \text{(solve)} \tag{1}$$
$$\mathbf{x}^{k+1} = \mathbf{x}^{k} + \Delta\mathbf{x}^{k}. \quad \text{(update step)}$$

Q: Should we implement GN like this?

## Nonlinear least-squares problems—Gauss-Newton

The resulting Newton method for the nonlinear least squares problem is called Gauss-Newton method: Initialize  $x^0$  and for k = 0, 1, ... solve

$$F'(\mathbf{x}^{k})^{T}F'(\mathbf{x}^{k})\Delta\mathbf{x}^{k} = -F'(\mathbf{x}^{k})^{T}F(\mathbf{x}^{k}) \quad \text{(solve)}$$
(1)  
$$\mathbf{x}^{k+1} = \mathbf{x}^{k} + \Delta\mathbf{x}^{k}. \quad \text{(update step)}$$

Q: Should we implement GN like this?

The solve step is the normal equation for the linear least squares problem

$$\min_{\Delta \mathbf{x}} \|F'(\mathbf{x}^k) \Delta \mathbf{x}^k + F(\mathbf{x}^k)\|.$$
(2)

so we better solve (2) rather than directly (1)
#### Convergence of Gauss-Newton method

Assumptions on  $F: D \subset \mathbb{R}^n$  open and convex,  $F: D \to \mathbb{R}^m$ ,  $m \ge n$  continuously differentiable with  $F'(\mathbf{x})$  has full rank for all  $\mathbf{x}$ , and let  $\omega \ge 0, 0 \le \kappa^* < 1$  such that

$$\|F'(\mathbf{x})^+(F'(\mathbf{x}+s\mathbf{v})-F'(\mathbf{x}))\mathbf{v}\|\leq s\omega\|\mathbf{v}\|^2$$

for all  $s \in [0,1]$ ,  $\mathbf{x} \in D$ ,  $\mathbf{v} \in \mathbb{R}^n$  with  $\mathbf{x} + \mathbf{v} \in D$ .

Assumptions on  $x^*$  and  $x^0$ : Assume there exists a solution  $x^* \in D$  of the least squares problem and a starting point  $x^0 \in D$  such that

$$\|F'(\mathbf{x})^+ F(\mathbf{x}^*)\| \le \kappa^* \|\mathbf{x} - \mathbf{x}^*\|$$
$$\rho := \|\mathbf{x}^* - \mathbf{x}^0\| \le \frac{2(1 - \kappa^*)}{\omega} := \sigma$$

Theorem: Then, the sequence  $\mathbf{x}^k$  stays in  $B_{\rho}(\mathbf{x}^*)$  and  $\lim_{k\to\infty} \mathbf{x}^k = \mathbf{x}^*$ , and

$$\|\boldsymbol{x}^{k+1} - \boldsymbol{x}^*\| \leq \frac{\omega}{2} \|\boldsymbol{x}^k - \boldsymbol{x}^*\|^2 + \underbrace{\kappa^* \|\boldsymbol{x}^k - \boldsymbol{x}^*\|}_{\sim \rightarrow \text{ linear convergence if } \kappa^* > 0!}$$

 $\rightsquigarrow$  we usually want to choose models that are "almost compatible" which means  $\kappa^*$  is often very small



- Solving nonlinear systems of equations ("root finding") is iterative in nature in general
- The order of convergence matters; quadratic is good enough but mind costs per step
- Newton's method is second order but requires derivatives/Jacobian evaluations.
- In higher dimensions, a good initial guess is critical for Newton's method
- There are many variants of Newton's method (e.g., Quasi-Newton methods) that avoid the computational costs of computing the Hessian
- (Machine learning is using first-order methods only anyway...)

# Numerical Methods I MATH-GA 2010.001/CSCI-GA 2420.001

Benjamin Peherstorfer Courant Institute, NYU

Based on slides by G. Stadler and A. Donev

# Today

#### Two weeks ago

- Function approximation
- Interpolation with polynomials
- Interpolation beyond polynomials

#### Today

- Numerical integration
- Newton-Cotes

#### Announcements

Homework 5 is posted and due Mon, Nov 18 before class

Numerical quadrature

We want to approximate the definite integral

$$I(f) = I_a^b(f) = \int_a^b f(t) \, dt$$

numerically.

Properties of the integral:

I is linear

- positive, i.e., if f is nonnegative, then I(f) is nonnegative
- additive w.r.t. the interval bounds:  $I_a^c = I_a^b + I_b^c$



# Condition of numerical integration

Lets study the map

$$([a,b],f) \rightarrow \int_a^b f(t) dt,$$

where we use the  $L^1$ -norm for f

$$||f||_1 = \int_a^b |f(t)| \mathrm{d}t = I(|f|)$$

The absolute and relative condition numbers of integration are:

$$egin{aligned} \kappa_{\mathsf{abs}} &= 1, \ \kappa_{\mathsf{rel}} &= rac{I(|f|)}{|I(f)|}. \end{aligned}$$

What does this mean?



# Condition of numerical integration

Lets study the map

$$([a,b],f) \rightarrow \int_a^b f(t) dt$$

where we use the  $L^1$ -norm for f

$$||f||_1 = \int_a^b |f(t)| dt = I(|f|)$$

The absolute and relative condition numbers of integration are:

$$egin{aligned} \kappa_{\mathsf{abs}} &= 1, \ \kappa_{\mathsf{rel}} &= rac{I(|f|)}{|I(f)|}. \end{aligned}$$

What does this mean? Integration is harmless w.r.t. the absolute condition number, and problematic w.r.t. the relative condition number if I(f) is small and f changes sign  $\rightsquigarrow$  board

We are looking for a map

$$\hat{l}: egin{cases} C([a,b]) & o \mathbb{R} \ f & \mapsto \hat{l}(f) \end{cases}$$

such that the integration error  $|I(f) - \hat{I}(f)|$  is small.

What ideas come to your mind?

We are looking for a map

$$\hat{l}: egin{cases} C([a,b]) & o \mathbb{R} \ f & \mapsto \hat{l}(f) \end{cases}$$

such that the integration error  $|I(f) - \hat{I}(f)|$  is small.

What ideas come to your mind? Example: Trapezoidal sum  $\rightsquigarrow$  board

Tropezoidal sum  

$$\int_{t_0=0}^{t_1} f_1 + f_2 + f_3 = f_1 + f_1 + f_2 + f_1 + f_2 + f_1 + f_2 + f_2 + f_1 + f_1 + f_2 + f_1 +$$

We are looking for a map

$$\hat{l}: egin{cases} C([a,b]) & o \mathbb{R} \ f & \mapsto \hat{l}(f) \end{cases}$$

such that the integration error  $|I(f) - \hat{I}(f)|$  is small.

What ideas come to your mind? Example: Trapezoidal sum ~>> board

General quadrature formula:

$$\hat{f}(f) = \sum_{i=0}^n \lambda_i f(t_i),$$

with weights  $\lambda_i$  and nodal points  $t_i$ , i = 0, 1, ..., n.

Trapezoidal rule replaces f by easy-to-integrate piecewise linear approximation  $\hat{f}$ . What other easy-to-integrate approximations could we use? Trapezoidal rule replaces f by easy-to-integrate piecewise linear approximation  $\hat{f}$ . What other easy-to-integrate approximations could we use?

Polynomials!

Quick recap on polynomial interpolation

#### **Recap:** Interpolation

Consider *n* pairs of data samples  $(x_i, y_i), i = 1, ..., n$  with

$$y_i = f(x_i)$$

Based on  $\{(x_i, y_i)\}_{i=1}^n$ , we now would like to find an approximation  $\tilde{f} \in \mathcal{V}_n$  that is "close" to f.

For example, we could enforce the interpolation condition, namely that it holds

$$\tilde{f}(x_i) = f(x_i), \qquad i = 1, \ldots, n$$

We could also use regression (m > n) and minimize, e.g.,

$$\frac{1}{m}\sum_{i=1}^m |y_i - \tilde{f}(x_i)|^2$$

# Recap: Orthogonal polynomials

Define an inner product between functions:

$$(f,g) = \int_a^b \omega(x) f(x) g(x) \, dx,$$

where  $\omega(x) > 0$  for  $a \le x \le b$  is a weight function. The induced norm is  $||f|| := \sqrt{(f, f)}$ .

Let  $P_0, P_1, P_2, \ldots, P_K$  be polynomials of  $0, 1, 2, \ldots, K$  order, respectively. They are called orthogonal polynomials on [a, b] with respect to the weight function  $\omega(x)$  if it holds

$$(P_i, P_j) = \int_a^b \omega(x) P_i(x) P_j(x) \mathrm{d}x = \delta_{ij} \gamma_i, \qquad i, j = 0, \dots, K,$$

with  $\gamma_i = \|P_i\|^2 > 0$ .

# Recap

To define orthogonal polynomials uniquely, we normalize them so that the leading coefficient is one, i.e.,

$$P_k(x) = x^k + \dots$$

Theorem: There exist uniquely determined orthogonal polynomials  $P_k \in \mathbb{P}_k$  with leading coefficient 1. These polynomials satisfy the 3-term recurrence relation:

$$P_k(x) = (x + a_k)P_{k-1}(x) + b_kP_{k-2}(x), \quad k = 2, 3, \dots$$

with starting values  $P_0 = 1$ ,  $P_1 = x + a_1$ , where

$$a_k = -rac{(xP_{k-1}, P_{k-1})}{(P_{k-1}, P_{k-1})}, \quad b_k = -rac{(P_{k-1}, P_{k-1})}{(P_{k-2}, P_{k-2})}$$

### Recap: Lagrange basis

The Lagrange polynomials  $L_0, \ldots, L_n \in \mathbb{P}_n$  are uniquely defined for distinct  $x_0, \ldots, x_n$ 

$$L_i(x_j) = \delta_{ij}, \qquad L_i \in \mathbb{P}_n.$$



Lagrange polynomials up to order n = 4 for equidistant  $x_0, \ldots, x_4$ . [Figure: Deuflhard]

# Recap: Runge's phenomenon

Let's approximate

$$f(x) = rac{1}{1+x^2}, \qquad -5 \le x \le 5,$$

using polynomial interpolation on equally spaced nodes in [-5, 5].



[Figure: Quarteroni] Interpolants of degree n = 5 and n = 10 of  $f(x) = 1/(1 + x^2)$  on equidistant nodes. It can be shown that polynomial interpolation does not converge for |x| > 4 for this fIt is a very common situation that interpolation on equidistant nodes leads to high oscillations near the interval ends  $\rightsquigarrow$  Runge's phenomenon

#### Recap: Newton polynomial basis

The leading coefficient  $a_n$  of the interpolation polynomial (monomial basis!)

$$P_f(x|x_0,\ldots,x_n)=a_nx^n+\cdots+a_0$$

is called the *n*-th divided difference,  $[x_0, \ldots, x_n]f := a_n$ .

The divided differences are the coefficients  $c_0, \ldots, c_n$ : The interpolation polynomial  $P_f(\cdot|x_0, \ldots, x_n)$  for  $x_0 \le x_1 \le \cdots \le x_n$  (not necessarily distinct and thus need  $f \in C^{n+1}$ ) is given by

$$P(x) = \sum_{i=0}^{n} [x_0, \ldots, x_i] f \omega_i(x).$$

Furthermore,

$$f(x) = P(x) + [x_0, \ldots, x_n, x] f \omega_{n+1}(x).$$

Back to quadrature

#### Newton-Cotes formulas continued

Given fixed nodes  $t_0, \ldots, t_n$ , use polynomial approximation

$$\hat{f} = P_f(t|t_0, \dots, t_n) = \sum_{i=0}^n f(t_i) L_{in}(t)$$

with Lagrange polynomials  $L_{0n}, \ldots, L_{nn}$ 

Thus:

$$\hat{I}(f) = (b-a)\sum_{i=0}^{n} \lambda_{in}f(t_i),$$

where

$$\lambda_{in} = \frac{1}{b-a} \int_{a}^{b} L_{in}(t) dt$$

### Newton-Cotes formulas (cont'd)

Quadrature formulas defined in this way are exact for polynomials  $P \in \mathbb{P}_n$  of degree less than or equal to n

$$\widehat{I}(P) = I(P_n(P)) = I(P),$$
 for all  $P \in \mathbb{P}_n$ 

Theorem: For (n + 1) pairwise distinct nodes  $t_0, \ldots, t_n$ , there exists exactly one quadrature formula (i.e., unique weights  $\lambda_0, \ldots, \lambda_n$ )

$$\hat{l}(f) = (b-a)\sum_{i=0}^n \lambda_i f(t_i),$$

that is exact for all  $p \in \mathbb{P}_n$ .

Proof  $\rightsquigarrow$  board

n+1 poirvise distinct notes to,..., ty, then the exists one and only one good vule Î(f)= (b-a) Ž-?; p(1;) which is exact for all polynomials PEP. Lo hove I that is exact for Pethy insert Longrange polynomials for top..., ty Lin E Pn  $I(L_{in}) = \tilde{I}(L_{in}) = (b-o) \underbrace{\tilde{S}}_{j=0}^{2} \lambda_{j} \underbrace{L_{in}(t_{j})}_{S_{ij}}$   $= (b-o) \lambda_{j}$  $\mathcal{I}_{j} = (bo) I(L_{ju})$ As long one I(Lin) = I(Lin) we get the Same weights. => Uhigue

Equidistantly spaced nodes

$$h_i=h=rac{b-a}{n},\qquad t_i=a+ih,\qquad i=0,\ldots,n$$

then quadrature formulas are called the *Newton-Cotes formulas* with weights

$$\lambda_{in} = \frac{1}{b-a} \int_a^b \prod_{i \neq j} \frac{t-t_i}{t_i - t_j} dt = \frac{1}{n} \int_0^n \prod_{i \neq j} \frac{s-j}{i-j} ds$$

These weights are independent of the interval boundaries *a* and *b* and can be pre-computed once and for all:

Table 9.1. Newton-Cotes weights  $\lambda_{in}$  for  $n = 1, \ldots, 4$ .

| n | $\lambda_{0n},\ldots,\lambda_{nn}$                                        | Error                         | Name                                 |
|---|---------------------------------------------------------------------------|-------------------------------|--------------------------------------|
| 1 | $\frac{1}{2}$ $\frac{1}{2}$                                               | $rac{h^3}{12}f''(	au)$       | Trapezoidal rule                     |
| 2 | $\frac{1}{6}$ $\frac{4}{6}$ $\frac{1}{6}$                                 | $rac{h^{5}}{90}f^{(4)}(	au)$ | Simpson's rule, Kepler's barrel rule |
| 3 | $\frac{1}{8}$ $\frac{3}{8}$ $\frac{3}{8}$ $\frac{1}{8}$                   | $rac{3h^5}{80}f^{(4)}(	au)$  | Newton's 3/8-rule                    |
| 4 | $\frac{7}{90}  \frac{32}{90}  \frac{12}{90}  \frac{32}{90}  \frac{7}{90}$ | $rac{8h^7}{945}f^{(6)}(	au)$ | Milne's rule                         |

**Lemma** Let  $f \in C^2([a, b])$  be a twice continuously differentiable function. Then the integration error of the trapezoidal rule

$$T = \frac{b-a}{2}(f(a) + f(b))$$

with step size h = b - a can be expressed by

$$T - \int_{a}^{b} f = \frac{(b-a)^{3}}{12} f''(\tau),$$

for some  $\tau \in [a, b]$ 

Proof  $\rightsquigarrow$  board

Integration errors of other Newton-Cotes formulas are listed in the table on the previous slide.

He(per man volue theoren:  
Let g, h 
$$\in C([0,b])$$
 be cant. functions on  $[0,b]$ ,  
where g has only one sign,  
aither g(t)  $\ge 0$  or  $g(t) < 0$  on  $[0,b]$   
Hen there exists  $T \in (0,b]$  such that  
 $\int h(t)g(t) dt = h(t) \int g(t) dt$   
Let us ossume  $g(t) \ge 0$ .  
min  $h(t) \int g(s) ds \leq \int h(s)g(s) ds$   
 $t \in Co_1b$ ?  
Therefore, for cont. function  
 $F(t) = \int h(s)g(s) ds - h(t) \int g(s) ds$   
there exists to, for  $t \in [0,b]$  with  
 $F(t_0) \ge 0$   $f(t_1) \le 0$   
Becomese cont. function  $F(t_0) \ge 0$ .  
 $F(t_0) \ge 0$   $f(t_1) \le 0$   
 $F(t_0) \ge 0$   $f(t_1) \le 0$   
 $F(t_0) \ge 0$   $f(t_0) \le 0$ 

Error of tropezoidal rule: let  $f \in C^{2}([0, 5])$  be twice cont. Stiff. Then the opproximation error of the trop. rule  $T = \frac{b \cdot a}{2} \left( f(a) + f(b) \right)$ with step size h= b-on com be expressed as  $T - \int_{a}^{b} f = \frac{b}{12} f'(z), \quad c \in [a, b].$ lineon interpolotion PER, sortisfies f(1) = P(1) + [a, b, 1] p(1-a)(1-b)(~> Newley interpolation) Also know that for fe C2([3,6])  $[a,b,t] f = \frac{f''(\tau(t))}{2} \quad \mathcal{C}(t) \in \mathcal{C}_{0,b} ]$  $\int_{m}^{b} P(t) dt + \int_{0}^{m} [\partial_{1}b, f] P(t) dt + \int_{0}^{m} [\partial_{1}b, f] P(t) dt + \int_{0}^{m} [\partial_{1}b, f] P(t) dt$ 0 efeb Becomse g(1)=(1-0)(1-6) has one sign over [3,63, 77 (0,6) such that  $\int [\sigma_1 b_1 f] f g(k) = [\sigma_1 b_1 f] f \int g(k)$ 

 $\int_{0}^{b} f = \frac{1}{12} + \frac{f''(z(f))}{2} \int_{0}^{b} (f \cdot a)(f \cdot b) df$   $\int_{0}^{b} f''(z(f)) \int_{0}^{b} (f \cdot a)(f \cdot b) df$   $= -\frac{(b \cdot a)^{3}}{6}$  $T - \int_{0}^{b} f = \frac{(b-a)}{12} f'(z) \quad C \in (\overline{a}, b]$ 

We use equidistantly spaced nodes?

<sup>\*</sup>almost equal because the f does not change too much (smoothness) from  $t_i$  to  $t_{i+1}$ 

We use equidistantly spaced nodes? We know that this leads to poorly conditioned interpolation problems!

<sup>\*</sup>almost equal because the f does not change too much (smoothness) from  $t_i$  to  $t_{i+1}$ 

We use equidistantly spaced nodes? We know that this leads to poorly conditioned interpolation problems!

Recall: Polynomial interpolation can lead to Runge's phenomenon  $\rightsquigarrow$  high frequency oscillations  $\rightsquigarrow$  we saw that the relative condition number of numerical integration can increase for oscillatory functions

Another point of view: The weights  $\lambda_{n0}, \ldots, \lambda_{nn}$  of Newton-Cotes formulas can become *negative* for larger  $n \rightsquigarrow$  cancellation because we subtract "almost equal numbers<sup>\*</sup>" in

$$\hat{l}(f) = (b-a)\sum_{i=0}\lambda_i f(t_i)$$

Weights are positive up to order 7, then some start to become negative.

<sup>\*</sup>almost equal because the f does not change too much (smoothness) from  $t_i$  to  $t_{i+1}$ 

### Trapezoidal sums

To avoid poorly conditioned problems, let us split the integration interval [a, b] into n sub-intervals  $[t_{i-1}, t_i], i = 1, ..., n$ . Then consider the rule

$$\hat{I}(f) = \sum_{i=1}^{n} \hat{I}_{t_{i-1}}^{t_i}(f),$$

where  $\hat{I}_{t_{i-1}}^{t_i}$  is a quadrature formula on the interval  $[t_{i-1}, t_i]$ .



Same assumptions on f as before. We have seen already the trapezoidal sum with h = (b - a)/n

$$T(h) = \sum_{i=1}^{n} T_i = h\left(\frac{1}{2}(f(a) + f(b)) + \sum_{i=1}^{n-1} f(a + ih)\right)$$

It has error

$$T(h) - \int_{a}^{b} f = \frac{(b-a)h^2}{12} f''(\tau), \qquad \tau \in [a,b]$$

Proof  $\rightsquigarrow$  board
Tropezoidal sum  
L> 
$$\exists \tau_i \in [t_{i-1}, t_i]$$
 such that  
 $T_i - \int_{T_{i-1}}^{t_i} f = \frac{h^3}{12} f''(\tau_i) \int_{Shows'}^{Shows'}$   
 $T(h) - \int_{S}^{b} f = \sum_{i=1}^{n} (T_i - \int_{T_{i-1}}^{t_i} f)$   
 $= \sum_{i=1}^{n} \frac{h^3}{12} f''(\tau_i)$   
 $= \sum_{i=1}^{n} \frac{h^2}{12} \int_{Shows'}^{T'}(\tau_i)$   
 $= \frac{(b-a)h^2}{12} \int_{Shows'}^{T'}(\tau_i)$   
Now get rist of dependence of  $c$  on inbounds  
min  $f''(t) \in \frac{1}{n} \sum_{i=1}^{n} f''(\tau_i) \in \frac{1}{12} f''(t)$   
Hean volue theorem :  $\exists \tau \in [a_ib]$   
 $\int_{S}^{T} f''(\tau_i) = f''(\tau)$   
 $= T(h) - \int_{S}^{b} f = \frac{(b-a)h^2}{12} f''(\tau)$ 

Same assumptions on f as before. We have seen already the trapezoidal sum with h = (b - a)/n

$$T(h) = \sum_{i=1}^{n} T_i = h\left(\frac{1}{2}(f(a) + f(b)) + \sum_{i=1}^{n-1} f(a + ih)\right)$$

It has error

$$T(h) - \int_{a}^{b} f = \frac{(b-a)h^2}{12} f''(\tau), \qquad \tau \in [a,b]$$

Proof  $\rightsquigarrow$  board

What did we achieve with this?

Same assumptions on f as before. We have seen already the trapezoidal sum with h = (b - a)/n

$$T(h) = \sum_{i=1}^{n} T_i = h\left(\frac{1}{2}(f(a) + f(b)) + \sum_{i=1}^{n-1} f(a + ih)\right)$$

It has error

$$T(h) - \int_{a}^{b} f = \frac{(b-a)h^2}{12} f''(\tau), \qquad \tau \in [a,b]$$

Proof  $\rightsquigarrow$  board

What did we achieve with this?  $\rightsquigarrow$  We can increase *n* (and thus decrease *h*) to reduce the error without increasing the degree of the underlying polynomial

# Numerical Methods I MATH-GA 2010.001/CSCI-GA 2420.001

Benjamin Peherstorfer Courant Institute, NYU

Based on slides by G. Stadler and A. Donev

# Today

#### Last week

- Numerical integration
- Newton-Cotes formulas

#### Today

- Gauss quadrature
- Integration in multiple dimensions

#### Announcements

Homework 6 is posted and due Mon, Dec 2 before class

## Recap: Condition of numerical integration

Lets study the map

$$([a,b],f) \rightarrow \int_a^b f(t) dt,$$

where we use the  $L^1$ -norm for f

$$||f||_1 = \int_a^b |f(t)| \mathrm{d}t = I(|f|)$$

The absolute and relative condition numbers of integration are:

$$egin{aligned} \kappa_{\mathsf{abs}} &= 1, \ \kappa_{\mathsf{rel}} &= rac{I(|f|)}{|I(f)|}. \end{aligned}$$

What does this mean?

## Recap: Condition of numerical integration

Lets study the map

$$([a,b],f) \rightarrow \int_a^b f(t) dt,$$

where we use the  $L^1$ -norm for f

$$||f||_1 = \int_a^b |f(t)| \mathrm{d}t = I(|f|)$$

The absolute and relative condition numbers of integration are:

$$egin{aligned} \kappa_{\mathsf{abs}} &= 1, \ \kappa_{\mathsf{rel}} &= rac{I(|f|)}{|I(f)|}. \end{aligned}$$

What does this mean? Integration is harmless w.r.t. the absolute condition number, and problematic w.r.t. the relative condition number if I(f) is small and f changes sign

#### Recap: Newton-Cotes formulas

Given fixed nodes  $t_0, \ldots, t_n$ , use polynomial approximation

$$\hat{f}=P_f(t|t_0,\ldots,t_n)=\sum_{i=0}^n f(t_i)L_{in}(t)$$

with Lagrange polynomials  $L_{0n}, \ldots, L_{nn}$ 

Thus:

$$\hat{I}(f) = (b-a)\sum_{i=0}^{n} \lambda_{in}f(t_i),$$

where

$$\lambda_{in} = \frac{1}{b-a} \int_{a}^{b} L_{in}(t) dt$$

### Recap: Newton-Cotes formulas (cont'd)

Quadrature formulas defined in this way are exact for polynomials  $P \in \mathbb{P}_n$  of degree less than or equal to n

$$\widehat{I}(P) = I(P_n(P)) = I(P)$$
, for all  $P \in \mathbb{P}_n$ 

Theorem: For (n + 1) pairwise distinct nodes  $t_0, \ldots, t_n$ , there exists exactly one quadrature formula (i.e., unique weights  $\lambda_0, \ldots, \lambda_n$ )

$$\hat{I}(f) = (b-a)\sum_{i=0}^n \lambda_i f(t_i),$$

that is exact for all  $p \in \mathbb{P}_n$ .

## Recap

Equidistantly spaced nodes

$$h_i=h=rac{b-a}{n},\qquad t_i=a+ih,\qquad i=0,\ldots,n$$

then quadrature formulas are called the *Newton-Cotes formulas* with weights

$$\lambda_{in} = \frac{1}{b-a} \int_a^b \prod_{i \neq j} \frac{t-t_i}{t_i - t_j} dt = \frac{1}{n} \int_0^n \prod_{i \neq j} \frac{s-j}{i-j} ds$$

These weights are independent of the interval boundaries *a* and *b* and can be pre-computed once and for all:

Table 9.1. Newton-Cotes weights  $\lambda_{in}$  for  $n = 1, \ldots, 4$ .

| n | $\lambda_{0n},\ldots,\lambda_{nn}$                                        | Error                         | Name                                 |
|---|---------------------------------------------------------------------------|-------------------------------|--------------------------------------|
| 1 | $\frac{1}{2}$ $\frac{1}{2}$                                               | $\frac{h^3}{12}f''(\tau)$     | Trapezoidal rule                     |
| 2 | $\frac{1}{6}$ $\frac{4}{6}$ $\frac{1}{6}$                                 | $rac{h^{5}}{90}f^{(4)}(	au)$ | Simpson's rule, Kepler's barrel rule |
| 3 | $\frac{1}{8}$ $\frac{3}{8}$ $\frac{3}{8}$ $\frac{1}{8}$                   | $\frac{3h^5}{80}f^{(4)}(	au)$ | Newton's 3/8-rule                    |
| 4 | $\frac{7}{90}  \frac{32}{90}  \frac{12}{90}  \frac{32}{90}  \frac{7}{90}$ | $rac{8h^7}{945}f^{(6)}(	au)$ | Milne's rule                         |

### Recap: Trapezoidal sums

To avoid poorly conditioned problems, let us split the integration interval [a, b] into n sub-intervals  $[t_{i-1}, t_i], i = 1, ..., n$ . Then consider the rule

$$\hat{I}(f) = \sum_{i=1}^{n} \hat{I}_{t_{i-1}}^{t_i}(f),$$

where  $\hat{I}_{t_{i-1}}^{t_i}$  is a quadrature formula on the interval  $[t_{i-1}, t_i]$ .



28 / 48

## Recap: Error of Trapezoidal sum

Trapezoidal sum with h = (b - a)/n

$$T(h) = \sum_{i=1}^{n} T_i = h\left(\frac{1}{2}(f(a) + f(b)) + \sum_{i=1}^{n-1} f(a + ih)\right)$$

It has error

$$T(h) - \int_{a}^{b} f = \frac{(b-a)h^2}{12} f''(\tau), \qquad \tau \in [a,b]$$

What did we achieve with this? $\rightsquigarrow$ 

## Recap: Error of Trapezoidal sum

Trapezoidal sum with h = (b - a)/n

$$T(h) = \sum_{i=1}^{n} T_i = h\left(\frac{1}{2}(f(a) + f(b)) + \sum_{i=1}^{n-1} f(a + ih)\right)$$

It has error

$$T(h) - \int_{a}^{b} f = \frac{(b-a)h^2}{12} f''(\tau), \qquad \tau \in [a,b]$$

What did we achieve with this? $\rightsquigarrow$  We can increase n (and thus decrease h) to reduce the error without increasing the degree of the underlying polynomial

## Gauss-Christoffel quadrature

Besides piecewise approximations, what else could we do to avoid issues with high-degree polynomials?

## Gauss-Christoffel quadrature

Besides piecewise approximations, what else could we do to avoid issues with high-degree polynomials? Change the nodes

So far, we allowed to choose weights but the nodes were given (e.g., equidistant). Now, let's allow changing the nodes  $t_0, \ldots, t_n$  too.

What highest degree can we hope for?

## Gauss-Christoffel quadrature

Besides piecewise approximations, what else could we do to avoid issues with high-degree polynomials? Change the nodes

So far, we allowed to choose weights but the nodes were given (e.g., equidistant). Now, let's allow changing the nodes  $t_0, \ldots, t_n$  too.

What highest degree can we hope for? The best we can hope for is exact interpolation up to polynomials of degree 2n + 1 (2(n + 1) coefficients) based on a non-rigorous counting argument of having n + 1 DoFs because of nodes  $t_0, \ldots, t_n$  and n + 1 DoFs because of weights  $\lambda_0, \ldots, \lambda_n$ .

Also, for generalization, we consider quadrature of weighted integrals, with a positive weight function  $\omega(t)$ :

$$U(f) = \int_{a}^{b} \omega(t) f(t) \, dt$$

with weight functions  $\omega(t)=1, \omega(t)=1/\sqrt{1-t^2}, \ldots$ 

Our goal is the construction of quadrature formulas of the form

$$\hat{I}_n(f) = \sum_{i=0}^n \lambda_{in} f(\tau_{in}),$$

to approximate I(f). Thus, for a given *n*, we seek n + 1 notes  $\tau_{0n}, \ldots, \tau_{nn}$  and n + 1 weights  $\lambda_{0n}, \ldots, \lambda_{nn}$  so that polynomials up to as high degree *N* as possible can be integrated exactly

$$\hat{I}_n(P) = I(P)$$
, for all  $P \in \mathbb{P}_N$ 

## Gauss-Christoffel quadrature (cont'd)

Can we say something about the nodes  $\tau_{0n}, \ldots, \tau_{nn}$ ?

If 
$$\overline{1}_{u}$$
 is exact for all polynomials  $P \in |P_{2u+1}|$ , then the  
polynomials  $\overline{P_j}$  that are defined by their rook  
representation  
 $P_{j+i}(t) = (t - \overline{z_j}) \dots (t - \overline{z_{jj}}) \in |P_{u+1}|$   
are only began of with respect to the solar product  
that is induced by w  
 $(f_i g) = \int w(t) f(t) g(t) dt$   
from  $f: \overline{L}_{u}$  exact for polynomials in  $|P_{2u+1}|$   
 $p_{i} = \int w(t) f(t) g(t) dt$   
 $(P_{j} | P_{u+1}) = \int w P_{j} P_{u+1} \in |P_{2u+1}|$   
 $(P_{j} | P_{u+1}) = \int w P_{j} P_{u+1} = \overline{1}_{u} (P_{j} P_{u+1})$   
 $= \sum_{i=0}^{n} \overline{z_{in}} P_{j}(\tau_{in}) \frac{P_{u+1}(\tau_{in})}{=0} = 0$   
becomes  $P_{u+1}(t) = \overline{11}(t - \tau_{in})$ .

### Gauss-Christoffel quadrature (cont'd)

Can we say something about the nodes  $\tau_{0n}, \ldots, \tau_{nn}$ ?

Theorem: For  $n \in \mathbb{N}$ , consider nodes  $\tau_{0n}, \ldots, \tau_{nn}$ . For an *n*, define  $\hat{I}$  as

$$\hat{l}_n(f) = \sum_{i=0}^n \lambda_{in} f(\tau_{in})$$

and let it be exact for polynomials  $p \in \mathbb{P}_{2n+1}$ 

$$\hat{I}_n(p) = \int_a^b \omega(t) p(t) \mathrm{d}t$$

Then, the polynomials  $\{P_n\}$  given by

$$P_{n+1}(t) = (t - \tau_{0n}) \cdot \ldots \cdot (t - \tau_{nn}) \in \mathbb{P}_{n+1}$$

are orthogonal with respect to the scalar product induced by  $\omega(t) \rightsquigarrow \text{proof}$ 

# Gauss-Christoffel quadrature (cont'd)

Therefore, the nodes  $\tau_{in}$  have to be roots of pairwise orthogonal polynomials  $\{P_j\}$  of degree deg $(P_j) = j$ 

For a given  $\omega$ , we already know that the set of orthogonal polynomials  $\{P_j\}$  is unique (if leading coefficient is 1)

We also know that the roots of these polynomials are real and have to lie in  $(a, b) \rightsquigarrow$  proof board

For each  $\omega$  and  $n \in \mathbb{N}$ , this gives us a unique set of nodes, namely the roots of the corresponding orthogonal polynomial  $P_{n+1}$ 

We thus have fixed n + 1 degrees of freedom so far...

The orthogonal polynomial 
$$Pq \in Pq$$
 passess exactly  
 $e Simple roots in (0,6).$   
Let  $f_{1,...,tm}$  be in distinct paints in (0,6)  
of which  $Pq$  changes sign. We now show knot unch.  
Consider the polynomial  
 $Q(t) = (t-t_1)(t-t_2) \dots (t-t_m)$   
The polynomial changes sign of the same points  
in (0,6) as  $Pq$ . Thus :  $w(t)Q(t)Pq(t)$  does not  
change sign  
 $(Q, Pq) = \int w(t)Q(t)Pq(t) dt \neq 0$   
But  $Pq$  with good to all  $P \in Pq_{n-1}$  , thus  
 $deg(Q) = m \neq R$ .

What do we know about the weights for fixed  $t_0, \ldots, t_n$  when we want to integrate exactly polynomials up to degree n?

What do we know about the weights for fixed  $t_0, \ldots, t_n$  when we want to integrate exactly polynomials up to degree n?

Because we want to be able to exactly integrate polynomials up to degree 2n + 1, we already know that to even achieve exactness up to degree n, the weights are fixed for given nodes  $t_0, \ldots, t_n$ :

$$\lambda_{in} = \frac{1}{b-a} \int_{a}^{b} L_{in}(t) dt$$
, Lagrange poly  $L_{in}(\tau_{jn}) = \delta_{ij}$ 

("For n + 1 pairwise distinct nodes, the exists only one quadrature formula that exactly integrate polynomials up to degree n.")

Theorem: Let  $\tau_{0n}, \ldots, \tau_{nn}$  be the roots of the (n + 1)st orthogonal polynomial for the weight  $\omega$ . Then any quadrature formula  $\hat{I}$  is exact for polynomials up to order n if and only if it is exact up to order 2n + 1.

#### Proof

$$\int w P = \int w Q P_{n+1} + \int w R = \int w R = \tilde{I}_n(R)$$

$$\widehat{I}_{n}(R) = \sum_{i=0}^{n} 2_{in} R(\tau_{in})$$

$$= \sum_{i=0}^{n} 2_{in} (Q(\tau_{in}) P_{n+i}(\tau_{in}) + R(\tau_{in})) = \widehat{I}_{n}(P)$$

$$= \sum_{i=0}^{n} 2_{in} (Q(\tau_{in}) P_{n+i}(\tau_{in}) + R(\tau_{in})) = \widehat{I}_{n}(P)$$

Weight functions for Gauss-Christoffel quadrature

| _ | $\omega(t)$              | Interval $I = [a, b]$ | Orthogonal polynomials      |
|---|--------------------------|-----------------------|-----------------------------|
|   | $\frac{1}{\sqrt{1-t^2}}$ | [-1, 1]               | Chebyshev polynomials $T_n$ |
|   | $e^{-t}$                 | $[0,\infty]$          | Laguerre polynomials $L_n$  |
|   | $e^{-t^2}$               | $[-\infty,\infty]$    | Hermite polynomials $H_n$   |
|   | 1                        | [-1,1]                | Legendre polynomials $P_n$  |

Corresponding quadrature rules are usually prefixed with "Gauss-", i.e., "Gauss-Legendre quadrature", or "Gauss-Chebyshev quadrature".

## Summary of Gauss quadrature

There exist uniquely determined nodes  $\tau_{0n}, \ldots, \tau_{nn}$  and weights  $\lambda_{0n}, \ldots, \lambda_{nn}$  such that the quadrature formula

$$\hat{I}_n(f) = \sum_{i=0}^n \lambda_{in} f(\tau_{in})$$

integrates exactly all polynomials of degree less than or equal to 2n + 1, i.e.,

$$\hat{I}_n(P) = \int_a^b \omega P, \qquad P \in \mathbb{P}_{2n+1}.$$

The nodes  $\tau_{in}$  are the roots of the n + 1-st orthogonal polynomial  $P_{n+1}$  with respect to the weight function  $\omega$  and the weights are

$$\lambda_{in} = \frac{1}{b-a} \int_a^b L_{in}(t) \mathrm{d}t \,,$$

with the Lagrange polynomials  $L_{in}(\tau_{jn}) = \delta_{ij}$ . Furthermore, the weights are all positive  $\lambda_{in} > 0$ .  $\rightsquigarrow$  proof

Unique nodes ton, ..., then and Weights Row, ..., Run  
Such that  

$$I_n(f) = \sum_{i=0}^{n} Z_{in} f(T_{in})$$
  
integrates acadly Pelleut, The weights are positive.  
Let Q elleut, be a polynomial so that  
Tan is the only node of which it doesnot vouich  
 $Q(T_{an}) \neq O_i$  Q(T\_{in})=O i  $\neq R$   
There  
 $\int_{0}^{\infty} Q = I_n(Q) = Z_{an} Q(T_{an})$   
and so  $Z_{an} = \frac{L}{Q(T_{an})} \int_{0}^{\infty} Q$ .  
if we set  
 $Q(t) = (\frac{P_{n+1}(t)}{(t-T_{an})})^2$ 

then QEIPzy has these properties

Weights   

$$2g_{n} = \frac{1}{Q(r_{nn})} \int_{0}^{b} Q = \int_{W} \left( \frac{P_{n+1}(t)}{P_{n+1}(r_{nn})(t-r_{nn})}^{2} dt > 0 \right)$$

$$Q(\tau_{n-1}) = \left( P_{n+1}(\tau_{n-1}) \right)^2$$

### Approximation error

For any function  $f \in C^{2n+2}$ , the approximation error of Gauss quadrature can be expressed in the form

$$\int_{a}^{b} \omega f - \hat{l}_{n}(f) = \frac{f^{(2n+2)}(\tau)}{(2n+2)!} (P_{n+1}, P_{n+1}),$$

with some  $\tau \in [a, b]$ .

 $\rightsquigarrow$  proof

For any function 
$$f \in C^{2+rL}$$
, the appreciation  
graph of Gauss quotivature can be appreciat as  
 $\int u f - I_n(f) = \frac{f^{(2n+2)}(c)}{(2n+2)!} (P_{n+1}, P_{n+1})$   
with some  $c \in [0, b]$ ,  $P_{n+1}$  with  $p_{n+1}$ .  
We employ the Newton remainter of the Mermite  
Interpolant  $P \in P_{2n+1}$  of  $f$  for the norths  
Tow ton  $f = P(f) + [f_1, con, con, con] f$   $(f - Gotf..., (f - con)^2$   
Notice that  
 $(f - con)^2 \dots (f - con)^2 = P_{n+1}^2$   
Because  $I_n$  integrates  $P \exp(f_1)$  we have  
 $\int u f - \int u P + \frac{p^{(2n+2)}(c)}{(2n+2)!} \int u P_{n+1}^2$   
 $= \sum_{i=0}^{n} P(c_{in}) + \frac{p^{(2n+2)}(c)}{(2n+2)!} (P_{n+1}, P_{n+1})$ 

# Summary of Gauss quadrature (cont'd)

- Gauss quadrature gives the highest degree 2n + 1 of polynomials that can be exactly integrated with n + 1 function evaluations in general
- Accuracy in Gauss-(Chebyshev, Laguerre, Hermite, Legendre,...) w.r.t. to polynomial degree can only be improved by increasing number of points; not by better weights
- Of particular interest are quadrature points for infinite intervals (Laguerre, Hermite)
- ▶ Interval partitioning superior, but only possible for  $\omega \equiv 1$  (Gauss-Legendre); otherwise weight function is different in each sub-interval
- Gauss quadrature is typically used in finite-element approximation to integrate over a local element. However, in many other cases in scientific computing, interval partitioning is superior.

# Adaptive interval partitioning

Idea: On each sub-interval, estimate the quadrature error by either:

- Using a higher-order quadrature (e.g., Simpson rule), or



Such a method refines the nodes a posteriori (after having seen the function to integrate).

# Difficult cases for numerical integration

(Unknown) discontinuities in f: adaptive quadrature continues to refine, which can be used to locate discontinuities

Highly oscillating integrals



► (Weakly) singular integrals

# Numerical Methods I MATH-GA 2010.001/CSCI-GA 2420.001

Ø

Benjamin Peherstorfer Courant Institute, NYU

# Today

#### Last time

Interpolation and quadrature in one dimension

#### Today

- Function approximation and interpolation in higher dimensions
- Quadrature in higher dimensions

#### Announcements

► Homework 6 is due Mon, Dec 2 before class

#### Recap: Newton-Cotes formulas

Given fixed nodes  $t_0, \ldots, t_n$ , use polynomial approximation

$$\hat{f}=P_f(t|t_0,\ldots,t_n)=\sum_{i=0}^n f(t_i)L_{in}(t)$$

with Lagrange polynomials  $L_{0n}, \ldots, L_{nn}$ 

Thus:

$$\hat{I}(f) = (b-a)\sum_{i=0}^{n} \lambda_{in}f(t_i),$$

where

$$\lambda_{in} = \frac{1}{b-a} \int_{a}^{b} L_{in}(t) dt$$
### Recap

Equidistantly spaced nodes

$$h_i=h=rac{b-a}{n},$$
  $t_i=a+ih,$   $i=0,\ldots,n$ 

then quadrature formulas are called the *Newton-Cotes formulas* with weights

$$\lambda_{in} = \frac{1}{b-a} \int_a^b \prod_{i \neq j} \frac{t-t_i}{t_i - t_j} dt = \frac{1}{n} \int_0^n \prod_{i \neq j} \frac{s-j}{i-j} ds$$

These weights are independent of the interval boundaries *a* and *b* and can be pre-computed once and for all:

Table 9.1. Newton-Cotes weights  $\lambda_{in}$  for  $n = 1, \ldots, 4$ .

| n | $\lambda_{0n},\ldots,\lambda_{nn}$                                        | Error                         | Name                                 |
|---|---------------------------------------------------------------------------|-------------------------------|--------------------------------------|
| 1 | $\frac{1}{2}$ $\frac{1}{2}$                                               | $\frac{h^3}{12}f''(\tau)$     | Trapezoidal rule                     |
| 2 | $\frac{1}{6}$ $\frac{4}{6}$ $\frac{1}{6}$                                 | $rac{h^{5}}{90}f^{(4)}(	au)$ | Simpson's rule, Kepler's barrel rule |
| 3 | $\frac{1}{8}$ $\frac{3}{8}$ $\frac{3}{8}$ $\frac{1}{8}$                   | $\frac{3h^5}{80}f^{(4)}(	au)$ | Newton's 3/8-rule                    |
| 4 | $\frac{7}{90}  \frac{32}{90}  \frac{12}{90}  \frac{32}{90}  \frac{7}{90}$ | $rac{8h^7}{945}f^{(6)}(	au)$ | Milne's rule                         |

#### Recap: Trapezoidal sums

To avoid poorly conditioned problems, let us split the integration interval [a, b] into n sub-intervals  $[t_{i-1}, t_i], i = 1, ..., n$ . Then consider the rule

$$\hat{I}(f) = \sum_{i=1}^{n} \hat{I}_{t_{i-1}}^{t_i}(f),$$

where  $\hat{I}_{t_{i-1}}^{t_i}$  is a quadrature formula on the interval  $[t_{i-1}, t_i]$ .



### Recap: Error of Trapezoidal sum

Trapezoidal sum with h = (b - a)/n

$$T(h) = \sum_{i=1}^{n} T_i = h\left(\frac{1}{2}(f(a) + f(b)) + \sum_{i=1}^{n-1} f(a + ih)\right)$$

It has error

$$T(h) - \int_{a}^{b} f = \frac{(b-a)h^2}{12} f''(\tau), \qquad \tau \in [a,b]$$

What did we achieve with this? $\rightsquigarrow$ 

### Recap: Error of Trapezoidal sum

Trapezoidal sum with h = (b - a)/n

$$T(h) = \sum_{i=1}^{n} T_i = h\left(\frac{1}{2}(f(a) + f(b)) + \sum_{i=1}^{n-1} f(a + ih)\right)$$

It has error

$$T(h) - \int_{a}^{b} f = \frac{(b-a)h^2}{12} f''(\tau), \qquad \tau \in [a,b]$$

What did we achieve with this? $\rightsquigarrow$  We can increase n (and thus decrease h) to reduce the error without increasing the degree of the underlying polynomial

# Summary of Gauss quadrature

There exist uniquely determined nodes  $\tau_{0n}, \ldots, \tau_{nn}$  and weights  $\lambda_{0n}, \ldots, \lambda_{nn}$  such that the quadrature formula

$$\hat{I}_n(f) = \sum_{i=0}^n \lambda_{in} f(\tau_{in})$$

integrates exactly all polynomials of degree less than or equal to 2n + 1, i.e.,

$$\hat{I}_n(P) = \int_a^b \omega P, \qquad P \in \mathbb{P}_{2n+1}.$$

The nodes  $\tau_{in}$  are the roots of the n + 1-st orthogonal polynomial  $P_{n+1}$  with respect to the weight function  $\omega$  and the weights are

$$\lambda_{in} = rac{1}{b-a} \int_a^b L_{in}(t) \mathrm{d}t \,,$$

with the Lagrange polynomials  $L_{in}(\tau_{jn}) = \delta_{ij}$ . Furthermore, the weights are all positive  $\lambda_{in} > 0$ .

Integration in higher dimensions

#### Integration in higher dimensions

A separable integral can be integrated dimension-wise:

$$I_L = \int_a^b \int_a^b \phi(x, y) \mathrm{d}x \mathrm{d}y = \int_a^b \phi^{(x)}(x) \mathrm{d}x \int_a^b \phi^{(y)}(y) \mathrm{d}x \,,$$

where

$$\phi(x, y) = \phi^{(x)}(x)\phi^{(y)}(y)$$
(1)

Recall that one idea of numerical quadrature is to replace f with an easy-to-integrate  $\hat{f}$ 

• Choose a basis  $\phi_1(x, y), \ldots, \phi_n(x, y)$  and approximate

$$f(x,y) \approx \sum_{i=1}^{n} c_i \phi_i(x,y)$$

and choose  $\phi_i(x, y)$  such that (1) holds.

Then integrate

$$I(f) \approx \sum_{i=1}^{n} c_i \hat{I}(\phi_i^{(x)}) \hat{I}(\phi_i^{(y)})$$

One way to build such a basis is via tensor products of linear functions (multi-dimensional analog to piecewise linear quadrature)

Define the "mother hat" function



If we want  $n = 2^{l} + 1$  basis functions, then translate and dilate it to center it on the grid points



 $\rightsquigarrow$  lead to a basis of the piecewise bilinear functions in two dimensions



[Figure: A. Donev]

What type of basis is this?

What type of basis is this? The basis  $\{\phi_{ij}\}$  is a nodal point basis for piecewise bilinear functions in  $[0,1]^2 \rightsquigarrow$ 

$$\hat{f}(x,y) = \sum_{i,j} f(x_i, y_j) \phi_{ij}(x, y)$$

interpolates f at the nodes  $\{(x_i, y_j)\}_{i,j=0}^n$ 

Integrate the bilinear basis functions  $\{\phi_{ij}\}$  to obtain the weights  $\lambda_{ij}$  and then approximate

$$\widehat{I}(f) = \sum_{i,j} f(x_i, y_i) \lambda_{ij} \,,$$

In multiple dimensions, adaptivity is essential to keep the computational costs manageable





[Figure: A. Donev]

Sparse grids

# Curse of dimensionality

- The curse of dimensionality is a term coined by Bellmann (1961) that refers to an exponential increase of costs with the dimension of a problem
- For example, consider an approximation with a prescribed accuracy ε > 0, let the costs of achieving this approximation scale as O(ε<sup>-d</sup>) in d dimensions → exponential increase of the costs as we increase d
- Consider a simple uniform grid over the domain Ω = [0,1]<sup>d</sup>. To have a mesh with mesh width h = 1/9 in d = 1, we need N = 10 grid points. In d = 2 dimensions, need N<sup>2</sup> = 100 grid points. In d = 5 dimensions, need N<sup>5</sup> = 10<sup>5</sup> → exponential growth of cost and storage requirements as we increase dimension d while keeping mesh width h ("accuracy") fixed

# Curse of dimensionality

- The curse of dimensionality is a term coined by Bellmann (1961) that refers to an exponential increase of costs with the dimension of a problem
- For example, consider an approximation with a prescribed accuracy ε > 0, let the costs of achieving this approximation scale as O(ε<sup>-d</sup>) in d dimensions → exponential increase of the costs as we increase d
- Consider a simple uniform grid over the domain Ω = [0,1]<sup>d</sup>. To have a mesh with mesh width h = 1/9 in d = 1, we need N = 10 grid points. In d = 2 dimensions, need N<sup>2</sup> = 100 grid points. In d = 5 dimensions, need N<sup>5</sup> = 10<sup>5</sup> → exponential growth of cost and storage requirements as we increase dimension d while keeping mesh width h ("accuracy") fixed

The curse can be circumvented (to some extent) if?

# Curse of dimensionality

- The curse of dimensionality is a term coined by Bellmann (1961) that refers to an exponential increase of costs with the dimension of a problem
- For example, consider an approximation with a prescribed accuracy ε > 0, let the costs of achieving this approximation scale as O(ε<sup>-d</sup>) in d dimensions → exponential increase of the costs as we increase d
- Consider a simple uniform grid over the domain Ω = [0,1]<sup>d</sup>. To have a mesh with mesh width h = 1/9 in d = 1, we need N = 10 grid points. In d = 2 dimensions, need N<sup>2</sup> = 100 grid points. In d = 5 dimensions, need N<sup>5</sup> = 10<sup>5</sup> → exponential growth of cost and storage requirements as we increase dimension d while keeping mesh width h ("accuracy") fixed
- The curse can be circumvented (to some extent) if? if we make stronger assumptions on the functions to approximate ~> topic of today

# Sparse grids\*

\*Follows lecture by H.-J. Bungartz. See also, Bungartz, Griebel, Sparse grids, Acta Numerica, 2004

# SG: Motivating example

Approximate the integral

$$\int_0^1 4x(1-x)\mathrm{d}x = \frac{2}{3}$$

**Board!** 

 $\int 4x (1-x) dx = \frac{2}{3}$ 











# SG: Hierarchical decomposition 1D

**Archimedes Quadrature** 



| depth                    | 1   | 2    | 3     | 4      |     | t                                   |
|--------------------------|-----|------|-------|--------|-----|-------------------------------------|
| interval length h        | 1/2 | 1/4  | 1/8   | 1/16   |     | $2^{-t}$                            |
| number of triangles      | 1   | 2    | 4     | 8      |     | $\frac{1}{2}2^t$                    |
| surplus v                | 1   | 1/4  | 1/16  | 1/64   | ••• | $4 \cdot 2^{-2t}$                   |
| triangle area $D_1$      | 1/2 | 1/16 | 1/128 | 1/1024 |     | $4 \cdot 2^{-3t}$                   |
| sum (of this $t$ )       | 1/2 | 1/8  | 1/32  | 1/128  |     | $2 \cdot 2^{-2t}$                   |
| overall sum ( $\leq t$ ) | 1/2 | 5/8  | 21/32 | 85/128 |     | $\frac{2}{3}\left(1-2^{-2t}\right)$ |
| error                    | 1/6 | 1/24 | 1/96  | 1/384  |     | $\frac{2}{3}2^{-2t}$                |

What do we observe with respect to depth *t*?

| depth                    | 1   | 2    | 3     | 4      | <br>t                                   |
|--------------------------|-----|------|-------|--------|-----------------------------------------|
| interval length h        | 1/2 | 1/4  | 1/8   | 1/16   | <br>$2^{-t}$                            |
| number of triangles      | 1   | 2    | 4     | 8      | <br>$rac{1}{2}2^t$                     |
| surplus v                | 1   | 1/4  | 1/16  | 1/64   | <br>$4 \cdot 2^{-2t}$                   |
| triangle area $D_1$      | 1/2 | 1/16 | 1/128 | 1/1024 | <br>$4 \cdot 2^{-3t}$                   |
| sum (of this $t$ )       | 1/2 | 1/8  | 1/32  | 1/128  | <br>$2 \cdot 2^{-2t}$                   |
| overall sum ( $\leq t$ ) | 1/2 | 5/8  | 21/32 | 85/128 | <br>$\frac{2}{3}\left(1-2^{-2t}\right)$ |
| error                    | 1/6 | 1/24 | 1/96  | 1/384  | <br>$\frac{2}{3}2^{-2t}$                |

What do we observe with respect to depth t? Contribution (e.g., "sum (of this t)") goes down with rate  $2^{-2t}$ 

# SG: Approximation of functions

Analyze this approach in more general context.

Let  $\phi_1, \ldots, \phi_n$  be basis functions and represent

$$u(x) = \sum_{i=1}^{n} \alpha_i \phi_i(x)$$

Obtain

$$\int_{a}^{b} u(x) \mathrm{d}x = \sum_{i=1}^{n} \alpha_{i} \int_{a}^{b} \phi_{i}(x) \mathrm{d}x \,,$$

i.e., a quadrature rule as a weighted sum of the coefficients  $\alpha_1, \ldots, \alpha_n$ 

# SG: Approximation of functions (cond't)

Represent a continuous, piecewise linear u in nodal point basis



The coefficient  $\alpha_1, \ldots, \alpha_n$  are the function values of u at the nodal points

$$u(x) = \sum_{i=1}^{n} \alpha_i \phi_i(x)$$

 $\Rightarrow$  instead of nodal point basis, consider a **hierarchical** basis

#### SG: Piecewise linear functions

Consider only functions  $u: [0,1] \to \mathbb{R}$  with u(0) = u(1) = 0 in the following.

Need the following quantities

- mesh width  $h_I = 2^{-I}$
- grid points  $x_{l,i} = ih_l = i2^{-l}$
- ► Basis function

$$\phi_{I,i}(x) = \phi\left(\frac{x-x_{I,i}}{h_I}\right), \qquad \phi(x) = \max\{1-|x|,0\}$$

• Nodal point basis 
$$\Phi_I = \{\phi_{I,i} : 1 \le i < 2^I\}$$

#### Visualize these basis functions on the board!



#### SG: Piecewise linear functions

Consider only functions  $u : [0, 1] \to \mathbb{R}$  with u(0) = u(1) = 0 in the following.

Need the following quantities

- mesh width  $h_I = 2^{-I}$
- grid points  $x_{l,i} = ih_l = i2^{-l}$
- Basis function

$$\phi_{I,i}(x) = \phi\left(\frac{x-x_{I,i}}{h_I}\right), \qquad \phi(x) = \max\{1-|x|,0\}$$

• Nodal point basis 
$$\Phi_I = \{\phi_{I,i} : 1 \le i < 2^I\}$$

#### Visualize these basis functions on the board!

The space  $V_l = \text{span}(\Phi_l)$  is the space of piecewise linear, continuous functions with respect to the grid points  $x_{l,i}$  for  $i = 1, ..., 2^l - 1$ 

### SG: Hierarchical basis

For the hierarchical representation, we consider the hierarchical increment  $W_I$ , spanned by the basis functions  $\phi_{I,i}$  such that

 $V_l = V_{l-1} \oplus W_l$ 

is a direct sum (each  $u_l \in V_l$  can be uniquely decomposed as  $u_l = u_{l-1} + w_l$  with  $u_{l-1} \in V_{l-1}$  and  $w_l \in W_l \rightarrow$  remember the triangles in approach by Archimedes)

Because dim $(V_l) = 2^l - 1$  and dim $(V_l) = \dim(V_{l-1}) + \dim(W_l)$  we need dim $(W_l) = 2^{l-1}$ . These are given by  $\phi_{l,i}$  with

$$i \in I_I = \{j : 1 \le j < 2^I, j \text{ odd}\}$$

Then

$$W_I = \operatorname{span}\{\phi_{I,i}, i \in I_I\}$$

Note that  $W_1 = V_1$ 



#### SG: Hierarchical basis cont'd Obtain

$$V_n = \bigoplus_{l=1}^n W_l \,,$$

so that there is a unique representation for each  $u \in V_n$  as

$$u = \sum_{l=1}^{n} w_{l} = \sum_{l=1}^{n} \sum_{i \in I_{l}} v_{l,i} \phi_{l,i}$$

Coefficients  $v_{I,i}$  in case of interpolation  $\rightsquigarrow$  visualize on board

The coefficients  $v_{l,i}$  are hierarchical differences

$$v_{l,i} = u^*(x_{l,i}) - \frac{u(x_{l,i-1}) + u(x_{l,i+1})}{2}$$

where  $u^*$  is the function to be interpolated



### SG: Analysis of hierarchical decomposition

We now analyze the hierarchical decomposition

$$u_n = \sum_{l=1}^n w_l = \sum_{l=1}^n \sum_{i \in I_l} v_{l,i} \phi_{l,i}$$

when interpolating a *u*. What would we like to obtain?

#### SG: Analysis of hierarchical decomposition

We now analyze the hierarchical decomposition

$$u_n = \sum_{l=1}^n w_l = \sum_{l=1}^n \sum_{i \in I_l} v_{l,i} \phi_{l,i}$$

when interpolating a *u*. What would we like to obtain?

For our decomposition, we first calculate the norms of the basis functions



Show decay rate of  

$$w_e = \sum_{i \in I_e} v_{e,i} q_{e,i}$$
  
Represent coefficients as [BGn, Lemma 3.2]  
 $v_{e,i} = \int q_{e,i}(x) \frac{\partial^2}{\partial x^2} u(x) dx$   
La  $q_{e,i} = -\frac{b_e}{2} q_{e,i}$   
La requires twice differentiable  $u = \frac{1}{1} \frac{1}{1}$   
 $w_{e,i} = \frac{b_e}{2} q_{e,i}$   
Note bound coefficients  
 $\frac{1v_{e,i}}{2} \leq \frac{b_e}{2} \frac{1}{2} q_{e,i} \frac{\partial^2}{\partial x^2} u_{1,i} \frac{\partial^2}{\partial x^2} u_{1,i} \frac{\partial^2}{\partial x^2}$   
where  $v_{1,i}$  is  $u$  restricted to support  
 $T_i = [x_{e,i-1}, x_{e,i+1}]$  of  $q_{e,i}$ 

# Numerical Methods I MATH-GA 2010.001/CSCI-GA 2420.001

Benjamin Peherstorfer Courant Institute, NYU
## Today

#### Last time

- Quadrature in higher dimensions
- Sparse grids

#### Today



#### Announcements

- Homework 6 is due Mon, Dec 2 before class
- Wed, Nov 27 will be a Q&A session. No new material will be discussed. All notes will be posted online. Send me questions via email by Tue, Nov 26, 4.55pm.

#### Recap: Curse of dimensionality

- The curse of dimensionality is a term coined by Bellmann (1961) that refers to an exponential increase of costs with the dimension of a problem
- For example, consider an approximation with a prescribed accuracy ε > 0, let the costs of achieving this approximation scale as O(ε<sup>-d</sup>) in d dimensions → exponential increase of the costs as we increase d
- Consider a simple uniform grid over the domain Ω = [0,1]<sup>d</sup>. To have a mesh with mesh width h = 1/9 in d = 1, we need N = 10 grid points. In d = 2 dimensions, need N<sup>2</sup> = 100 grid points. In d = 5 dimensions, need N<sup>5</sup> = 10<sup>5</sup> → exponential growth of cost and storage requirements as we increase dimension d while keeping mesh width h ("accuracy") fixed

#### Recap: Curse of dimensionality

- The curse of dimensionality is a term coined by Bellmann (1961) that refers to an exponential increase of costs with the dimension of a problem
- For example, consider an approximation with a prescribed accuracy ε > 0, let the costs of achieving this approximation scale as O(ε<sup>-d</sup>) in d dimensions → exponential increase of the costs as we increase d
- Consider a simple uniform grid over the domain Ω = [0,1]<sup>d</sup>. To have a mesh with mesh width h = 1/9 in d = 1, we need N = 10 grid points. In d = 2 dimensions, need N<sup>2</sup> = 100 grid points. In d = 5 dimensions, need N<sup>5</sup> = 10<sup>5</sup> → exponential growth of cost and storage requirements as we increase dimension d while keeping mesh width h ("accuracy") fixed

The curse can be circumvented (to some extent) if?

#### Recap: Curse of dimensionality

- The curse of dimensionality is a term coined by Bellmann (1961) that refers to an exponential increase of costs with the dimension of a problem
- For example, consider an approximation with a prescribed accuracy ε > 0, let the costs of achieving this approximation scale as O(ε<sup>-d</sup>) in d dimensions → exponential increase of the costs as we increase d
- Consider a simple uniform grid over the domain Ω = [0,1]<sup>d</sup>. To have a mesh with mesh width h = 1/9 in d = 1, we need N = 10 grid points. In d = 2 dimensions, need N<sup>2</sup> = 100 grid points. In d = 5 dimensions, need N<sup>5</sup> = 10<sup>5</sup> → exponential growth of cost and storage requirements as we increase dimension d while keeping mesh width h ("accuracy") fixed
- The curse can be circumvented (to some extent) if? if we make stronger assumptions on the functions to approximate ~> topic of today

# Recap: SG: Hierarchical decomposition 1D

**Archimedes Quadrature** 



### SG: Hierarchical basis cont'd



#### SG: Hierarchical basis

For the hierarchical representation, we consider the hierarchical increment  $W_I$ , spanned by the basis functions  $\phi_{I,i}$  such that

 $V_l = V_{l-1} \oplus W_l$ 

is a direct sum (each  $u_l \in V_l$  can be uniquely decomposed as  $u_l = u_{l-1} + w_l$  with  $u_{l-1} \in V_{l-1}$  and  $w_l \in W_l \rightarrow$  remember the triangles in approach by Archimedes)

Because dim $(V_l) = 2^l - 1$  and dim $(V_l) = \dim(V_{l-1}) + \dim(W_l)$  we need dim $(W_l) = 2^{l-1}$ . These are given by  $\phi_{l,i}$  with

$$i \in I_I = \{j : 1 \le j < 2^I, j \text{ odd}\}$$

Then

$$W_I = \operatorname{span}\{\phi_{I,i}, i \in I_I\}$$

Note that  $W_1 = V_1$ 

#### SG: Hierarchical basis cont'd Obtain

 $V_n = \bigoplus_{I=1}^n W_I,$ 

so that there is a unique representation for each  $u \in V_n$  as

$$u = \sum_{l=1}^{n} w_{l} = \sum_{l=1}^{n} \sum_{i \in I_{l}} v_{l,i} \phi_{l,i}$$



Coefficients  $v_{I,i}$  in case of interpolation  $\rightsquigarrow$  visualize on board

The coefficients  $v_{l,i}$  are hierarchical differences

$$v_{l,i} = u^*(x_{l,i}) - \frac{u(x_{l,i-1}) + u(x_{l,i+1})}{2}$$

where  $u^*$  is the function to be interpolated

#### SG: Analysis of hierarchical decomposition

We now analyze the hierarchical decomposition

$$u_n = \sum_{l=1}^n w_l = \sum_{l=1}^n \sum_{i \in I_l} v_{l,i} \phi_{l,i}$$

when interpolating a u. What would we like to obtain?

#### SG: Analysis of hierarchical decomposition

We now analyze the hierarchical decomposition

$$u_n = \sum_{l=1}^n w_l = \sum_{l=1}^n \sum_{i \in I_l} v_{l,i} \phi_{l,i}$$

when interpolating a *u*. What would we like to obtain?

For our decomposition, we first calculate the norms of the basis functions



Show decay of  

$$w_{e} = \sum_{i \in I_{e}} v_{e_{ii}} \phi_{e_{ii}}$$
Represent hierori w( adeficient D)  

$$\frac{v_{e_{ii}}}{v_{e_{ii}}} = \int \Psi_{e_{ii}} (x) \frac{\partial^{2}}{\partial x^{2}} u(x) dx$$

$$\frac{\partial^{2}}{\partial x^{2}} u(x) dx$$

$$w_e = \sum_{i \in I_e} v_{e_i} \phi_{e_i}$$

$$\| well_{2}^{(0)} = \int_{0}^{1} w_{e}^{2}(x) dx =$$

$$= \int_{0}^{1} \left( \sum_{i \in L_{e}} v_{e_{ii}} \, \psi_{e_{ii}}(x) \right)^{2} dx$$

$$\leq \sum_{i \in L_{e}} v_{e_{ii}}^{2} \, \| \phi_{e_{ii}} \|_{2}^{2}$$

$$\leq \frac{h_{e}^{3}}{6} \frac{2h_{e}}{3} \, \sum_{i \in L_{e}} \mu_{2}(u(T_{i})^{2})$$

$$= \frac{h_{e}^{4}}{9} \, \mu_{2}(u)^{2}$$

$$\sum_{i \in L_{e}} (h_{e}) = c \, (\mathcal{T}_{e})^{2}$$

Recall

$$u_n = \sum_{l=1}^n w_l = \sum_{l=1}^n \sum_{i \in I_l} v_{l,i} \phi_{l,i}$$

If *u* is twice differentiable, the  $\|\cdot\|_2$  norm of the increments

$$w_{l} = \sum_{i \in I_{l}} v_{l,i} \phi_{l,i}$$

decays as  $\mathcal{O}(h_I^2) \rightsquigarrow \text{board}$ 

Recall

$$u_n = \sum_{l=1}^n w_l = \sum_{l=1}^n \sum_{i \in I_l} v_{l,i} \phi_{l,i}$$

If *u* is twice differentiable, the  $\|\cdot\|_2$  norm of the increments

$$w_{I} = \sum_{i \in I_{I}} v_{I,i} \phi_{I,i}$$

decays as  $\mathcal{O}(h_I^2) \rightsquigarrow \mathsf{board}$ 

This means, we can write a twice differentiable u as a series

$$u=\sum_{l=1}^{\infty}w_l\,,$$

that converges because  $||w_l||_2 \in \mathcal{O}(h_l^2)$ . In particular, obtain

$$u-u_n=\sum_{l=n+1}^{\infty}w_l$$

 $\rightsquigarrow$  decay of  $||w_l||_2$  helps us to understand error  $u - u_n$ 

We can leave out nodes and still get a reasonable approximation in contrast to a nodal-point basis

- We can leave out nodes and still get a reasonable approximation in contrast to a nodal-point basis
- Adding a new level requires us to compute the coefficients of the new level only but keeps the coefficients at the previous levels unchanged

What will "can remove nodes and still get reasonable results" amount to in higher dimension?

- We can leave out nodes and still get a reasonable approximation in contrast to a nodal-point basis
- Adding a new level requires us to compute the coefficients of the new level only but keeps the coefficients at the previous levels unchanged

What will "can remove nodes and still get reasonable results" amount to in higher dimension? In the multi-dimensional case, we will now see that many of the hierarchical increments have high costs and low benefit in terms of error  $\rightarrow$  we will then remove those hierarchical increments and obtain *sparse grids* 

#### SG: Hierarchical basis in multivariate case

Let now  $\mathbf{x} = [x_1, \ldots, x_d]$  with  $d \in \mathbb{N}$  and d > 1.

Again consider the domain  $\Omega = [0, 1]^d$  and functions  $u|_{\partial\Omega} = 0$ 

Multidimensional level  $I = [I_1, \ldots, I_d] \in \mathbb{N}^d$ 

Multidimensional mesh width  $h_I = [h_1, \ldots, h_d] = [2^{-l_1}, \ldots, 2^{-l_d}]$ . Note that different mesh width in different dimensions allowed

Define  $|I|_1 = I_1 + \dots + I_d$  and  $|I|_{\infty} = \max\{I_1, \dots, I_d\}$ 

Grid points are  $\mathbf{x}_{I,i} = [i_1 h_1, \dots, i_d h_d]$ 

## SG: Notation



#### SG: Piecewise *d*-linear functions

Generalize continuous, piecewise linear functions to continuous, piecewise d-linear functions with respect to  $h_I$ :

$$\phi_{\boldsymbol{I},\boldsymbol{i}}(\boldsymbol{x}) = \prod_{j=1}^{d} \phi_{l_j,l_j}(x_j)$$

For d = 2, the functions  $\phi_{[1,1],[1,1]}$ and  $\phi_{[2,3],[3,5]}$  are plotted on the right









### SG: Spaces

Consider

$$\Phi_{\boldsymbol{I}} = \{\phi_{\boldsymbol{I},\boldsymbol{i}} : 1 \leq \boldsymbol{i} < 2^{\boldsymbol{I}}\},\$$

where the  $\leq$  is to be read component-wise: each  $i_j$  must be at least 1 and at most  $2^{l_j} - 1$ 

The space of piecewise d-linear functions is

 $V_{I} = \operatorname{span}\{\Phi_{I}\}$ 

with dimension

$$\dim(V_{I}) = (2^{I_1} - 1) \cdots (2^{I_d} - 1) \in \mathcal{O}(2^{|I|_1})$$

Special case  $I_1 = \cdots = I_d$  set  $V_n = V_{[n,\dots,n]}$ 

#### SG: Hierarchical increments

Define the hierarchical increment  $W_I$  as

$$W_{I} = \operatorname{span}\{\phi_{I,i} : i \in I_{I}\},\$$

where  $I_I = \{i : 1 \le i < 2^I, all i_j odd\}$ 

Contains just those functions from  $V_I$  that vanish at all points of coarser grid

full grid

hierarchical increments





## SG: Hierarchical subspace decomposition

Obtain unique representation of  $u_I \in V_I$  for  $I \in \mathbb{N}^d$  as

$$u_{I}=\sum_{I'\leq I}w_{I'},$$

with  $w_{l'} \in W_{l'}$ 

Now it will be worthwhile to estimate the norm of  $w_I$  to understand which contribute most to the accuracy of the representation

 $\rightsquigarrow$  **board** 

Multi - dimensional case: Represent UEVe CENT as U= 2 we', we'e Wer eige =sestimate norm of we Hierochical Coefficient  $\begin{aligned}
\nabla e_{ii} &= \int \Psi_{e_{ii}} \partial^{2\sigma} U \, dx , \quad \Psi_{e_{ii}} &= 2^{-1e_{i}} \partial^{2\sigma} e_{ii} \\
& Eo_{i} \partial^{2\sigma} U &= \frac{\partial^{2\sigma} U}{\partial x_{i}^{2} \dots \partial x_{d}^{2}} \quad \text{mixed } \mathcal{E}_{i} - \int_{\sigma} \mathcal{E}_{i} \partial^{2\sigma} U \, du \\
\end{aligned}$ => STRONG assumption  $\|w_e\|_2 \leq 3^{-d} \frac{-2la}{2} \|y_e\|_2$ Ostain decays fast with level e => undorstand cost/barefit of each of these increments we

Costs: humber of grid points of the  

$$C(e) = 2^{|e|_{1}} d$$
benefit: Let  $L \subseteq |W|^{d}$  be osed of levels that over  
Selected  

$$U_{L} = \sum_{e \in L} w_{e}$$
Then  

$$U - U_{L} = \sum_{e \notin L} w_{e}$$
For each component have bound  

$$||well_{L} \leq S(e) \mu(u)$$

$$||U - U_{L}||_{2} \leq \sum_{e \notin L} ||well_{2} \leq (\sum_{e \notin L} S(e)) \mu(u)$$

$$= \left[\sum_{e \notin V} S(e) - \sum_{e \in V} S(e)\right] \mu(u)$$

$$= \left[\sum_{e \notin V} S(e) - \sum_{e \in V} S(e)\right] \mu(u)$$

if select e with s(c) big, then aron 11 u-uclly reduced -> s(e) is benefit of We With this new tool, led US Onolyze the wollbarfit of or a full grid", Ln = 3 e : 1eh = 43 then colculations show  $\sum_{n \in \mathbb{N}} \sum_{n \in \mathbb{N}} \left(\frac{1}{3}\right)^{n} \left(1 - \alpha 2^{-2n}\right)$ lely Res 4-2 ~  $\sum_{\substack{\ell \in \mathcal{M}, \mathcal{A}}} S(\ell) = \left(\frac{1}{3}\right)^{d}$  $\sum_{i \in \mathbb{N}^d} S(i) = \sum_{i \in \mathbb{N}^d} S(i) = \left(\frac{1}{3}\right)^d - \left(\frac{1}{3}\right)^d \left(1 - d2^{-2u}\right)$ lent so that , u <sup>4</sup>  Details in [Bungartz et al., 2004]: Hierarchical coefficient is now

$$v_{\boldsymbol{I},\boldsymbol{i}} = \int_{[0,1]^d} \psi_{\boldsymbol{I},\boldsymbol{i}} \partial^{2d} \boldsymbol{u} \mathrm{d}\boldsymbol{x} \,,$$

which now depends on **mixed** 2d-fold derivative

$$\partial^{2d} u = \frac{\partial^{2d}}{\partial x_1^2 \cdots \partial x_d^2}$$

and  $\psi_{\boldsymbol{l},\boldsymbol{i}} = 2^{-|\boldsymbol{l}|_1 - d} \phi_{\boldsymbol{l},\boldsymbol{i}}$ 

It is very important to note that the following holds *only* for functions with  $(L_2-)$ bounded  $\partial^{2d} u \Rightarrow$  strong assumption on function (smoothness)

Obtain

$$||w_I||_2 \le 3^{-d} 2^{-2|I|_1} ||\partial^{2d} u||_2$$

Now we select those subspaces from the subspace scheme that minimize cost and maximize benefit for approximation function  $u : [0,1]^d \to \mathbb{R}$  with sufficient smoothness

How should we measure costs?

Now we select those subspaces from the subspace scheme that minimize cost and maximize benefit for approximation function  $u : [0,1]^d \to \mathbb{R}$  with sufficient smoothness

How should we measure costs? We measure cost via the number of grid points

$$c(I)=2^{|I|_1-d}$$

How should we measure benefit?

Now we select those subspaces from the subspace scheme that minimize cost and maximize benefit for approximation function  $u : [0,1]^d \to \mathbb{R}$  with sufficient smoothness

How should we measure costs? We measure cost via the number of grid points

$$c(I) = 2^{|I|_1 - d}$$

How should we measure benefit? Measure benefit of subspace selection via introduced error if left out. Let  $L \subset \mathbb{N}^d$  of levels that are selected, then obtain

$$u_L = \sum_{I \in L} w_I$$

and

$$u-u_L=\sum_{I\not\in L}w_I$$

For each component  $w_l$  have derived bounds of the form

 $\|w_I\| \leq s(I)\mu(u)$ 

where  $\mu(u)$  was typically  $\|\partial^{2d}u\|_2$ . Then obtain

$$\|u - u_L\| \leq \sum_{I \notin L} \|w_I\|_2 \leq \left(\sum_{I \notin L} s(I)\right) \mu(u)$$
$$= \left[\left(\sum_{I \in \mathbb{N}^d} s(I)\right) - \left(\sum_{I \in L} s(I)\right)\right] \mu(u)$$

Thus, if we select I with s(I) big, then the error  $||u - u_L||$  is reduced  $\rightarrow$  use s(I) as the benefit of subspace  $W_I$ 

### SG: Quality of full-grid space

With this new tool in hand, let us analyze the cost/benefit of a "full grid", i.e., a grid corresponding to the selection

$$L_n = \{I : |I|_\infty \leq n\}$$

In the  $L_2$  norm, we have bounds of the order

$$s(\boldsymbol{I}) = 2^{-2|\boldsymbol{I}|_1}$$

Then, calculations show that

$$\sum_{I\in L_n} s(I) \geq \left(\frac{1}{3}\right)^d (1-d2^{-2n})$$

and for 
$$n
ightarrow\infty$$

$$\sum_{\boldsymbol{I}\in\mathbb{N}^d} \boldsymbol{s}(\boldsymbol{I}) = \left(\frac{1}{3}\right)^d$$

Thus

$$\sum_{\boldsymbol{I}\in\mathbb{N}^d} \boldsymbol{s}(\boldsymbol{I}) - \sum_{\boldsymbol{I}\in L_n} \boldsymbol{s}(\boldsymbol{I}) \leq \left(\frac{1}{3}\right)^d - \left(\frac{1}{3}\right)^d \left(1 - d2^{-2n}\right) \leq \frac{d}{3^d} 2^{-2n}$$

# SG: Approximation quality of full-grid space Obtain

$$\|u-u_{L_n}\|_2 \leq C \sum_{I \not\in L_n} s(I) \leq \frac{Cd}{3^d} 2^{-2n} \in \mathcal{O}(h_n^2)$$

This is what we expect from a piecewise linear approximation

What additional insights have we obtained?



Berefit: 2-2(el,

# SG: Approximation quality of full-grid space

$$\|u-u_{L_n}\|_2 \leq C \sum_{\boldsymbol{l}\notin L_n} s(\boldsymbol{l}) \leq \frac{Cd}{3^d} 2^{-2n} \in \mathcal{O}(h_n^2)$$

This is what we expect from a piecewise linear approximation

What additional insights have we obtained?

The sum of local benefits

$$\sum_{\boldsymbol{l}\in L_n} 2^{-2|\boldsymbol{l}|_1}\,,$$

means that subspace on diagonals (i.e., with constant  $|I|_1$ ) have the same benefit.

Also, as we move further to the bottom right, the benefit gets less and less



If we now look at the costs  $c(I) = 2^{|I|_1-d}$ (which is the number of grid points), then we see that the costs are constant on diagonals as well


If we now look at the costs  $c(I) = 2^{|I|_1-d}$ (which is the number of grid points), then we see that the costs are constant on diagonals as well



Thus, the cost/benefit ratio c(I)/s(I) is *constant* on diagonals. In particular, for lower-triangular diagonals, we add subspaces with worse and worse cost/benefit ratios  $\Rightarrow$  what should we do with them?

If we now look at the costs  $c(I) = 2^{|I|_1-d}$ (which is the number of grid points), then we see that the costs are constant on diagonals as well



Thus, the cost/benefit ratio c(I)/s(I) is *constant* on diagonals. In particular, for lower-triangular diagonals, we add subspaces with worse and worse cost/benefit ratios  $\Rightarrow$  what should we do with them? let's truncate them

Consider the diagonal cut  $L_n^{(1)} = \{ \boldsymbol{I} : |\boldsymbol{I}|_1 \leq n + d - 1 \}$  and the sparse grid space

$$oldsymbol{V}_n^{(1)} = igoplus_{ert I ert_1 \leq n+d-1} W_{oldsymbol{I}}$$

Here is an example of a sparse grid



## SG: Properties of sparse grids

The number of grid points of a sparse grid grows as  $\mathcal{O}(2^n n^{d-1})$  in contrast to  $\mathcal{O}(2^{nd})$  of a full grid

If u has  $(L_2-)$  bounded mixed derivatives up to order 2d, then

$$\|u-u_n^{(1)}\|_2 \in \mathcal{O}(2^{-2n}n^{d-1}),$$

whereas a full-grid space achieves

$$\|u-u_n\|_2\in\mathcal{O}(2^{-2n})$$

Sparse-grid spaces achieve slightly worse error than full-grid space but drastically reduced points in higher dimensions d

Comparing the number of grid points corresponding to full-grid and sparse-grid spaces:

Dimension d = 2:

| n                            | 1 | 2 | 3  | 4   | 5   | <br>10        |
|------------------------------|---|---|----|-----|-----|---------------|
| $\dim V_n = (2^n - 1)^2$     | 1 | 9 | 49 | 225 | 961 | <br>1 046 529 |
| $\dim V_n^1 = 2^n (n-1) + 1$ | 1 | 5 | 17 | 49  | 129 | <br>9217      |

Dimension d = 3:

| $\overline{n}$                                                      | 1 | 2  | 3   | 4     | <br>10            |
|---------------------------------------------------------------------|---|----|-----|-------|-------------------|
| $\dim V_n = (2^n - 1)^3$                                            | 1 | 27 | 343 | 3 375 | <br>1 070 590 167 |
| $\dim V_n^1 = 2^n \left(\frac{n^2}{2} - \frac{n}{2} + 1\right) - 1$ | 1 | 7  | 31  | 111   | <br>47 103        |



Exploit the additional smoothness given by the assumption on the mixed derivatives of function u

The hierarchical basis is a key ingredient:

Exploit the additional smoothness given by the assumption on the mixed derivatives of function u

The hierarchical basis is a key ingredient:

- Exploits smoothness by having "semi-global" support (i.e., function is smoother, so we can reach far over the domain and know it won't change too much),
- ► Introduced a hierarchy/multilevel and the coefficients in this hierarchy/multilevel basis decay fast (→ multigrid, multilevel Monte Carlo)

(Logarithmic dependence can be avoided if measure error in energy norm)

Details: Bungartz, Griebel, Acta Numerica, 2004

## SG: Combination technique

Formally, sparse grids are superpositions of coarser full grids



# Numerical Methods I MATH-GA 2010.001/CSCI-GA 2420.001

Benjamin Peherstorfer Courant Institute, NYU

Based on slides by G. Stadler and A. Donev

Equidistantly spaced nodes

$$h_i=h=rac{b-a}{n},\qquad t_i=a+ih,\qquad i=0,\ldots,n$$

then quadrature formulas are called the Newton-Cotes formulas with weights

$$\lambda_{in} = \frac{1}{b-a} \int_a^b \prod_{i \neq j} \frac{t-t_i}{t_i - t_j} dt = \frac{1}{n} \int_0^n \prod_{i \neq j} \frac{s-j}{i-j} ds$$

These weights are independent of the interval boundaries *a* and *b* and can be pre-computed once and for all:

Table 9.1. Newton-Cotes weights  $\lambda_{in}$  for  $n = 1, \ldots, 4$ .

Generic rule  

$$\begin{array}{l}
f(f) = (b-a) \stackrel{i}{\underset{i=0}{\sum}} 2_i f(f_i) \\
\hline Tropezordol \\
\left( \stackrel{f}{=} 1_T(f_i) = (\underline{b}-a) \left( \frac{1}{2} f(a) + \frac{1}{2} f(b) \right) \\
\hline Simpson \\
\hline I_S(f) = (\underline{b}-a) \left( \frac{1}{6} f(a) + \frac{4}{6} f(\frac{o+b}{2}) + \frac{1}{6} f(b) \right) \\
\hline Logrange polynomiols: x_0 = 0 \ r \ x_i = b \\
\hline l_i(x) = \prod_{\substack{j=0\\j\neq i}}^{n} \frac{(x-x_j)}{(x_i-x_j)} \\
\hline l_o(x) = \frac{(x-b)}{(a-b)} \qquad \int_{0}^{b} l_o(x) \ dx = \frac{b-a}{2} \\
\hline l_i(x) = \frac{(x-a)}{(b-a)} \qquad \int_{0}^{b} l_i(x) \ dx = \frac{b-a}{2}
\end{array}$$

For n+1 pairwise distinct notes to,..., to there exists one and ong one guadrohn rule  $\widehat{1}(f) = (b-a) \sum_{i=0}^{n} \mathcal{I}_i P(t_i)$ which is exact for PEPs. Howe I that is exact for PEPs,

=>insert Logranye polynomials for to,..., to  $L_{in} \in IP_n$   $I(L_{in}) = \widehat{I}(L_{in}) = (b - a) \sum_{j=0}^{n} 2_j L_{in}(f_j)$   $= (b - a) 2_i$   $2_i = (b - a) I(L_{in})$ 

### Newton-Cotes formulas continued

Given fixed nodes  $t_0, \ldots, t_n$ , use polynomial approximation

$$\hat{f}=P_f(t|t_0,\ldots,t_n)=\sum_{i=0}^n f(t_i)L_{in}(t)$$

with Lagrange polynomials  $L_{0n}, \ldots, L_{nn}$ 

Thus:

$$\hat{I}(f) = (b-a)\sum_{i=0}^{n} \lambda_{in}f(t_i),$$

where

$$\lambda_{in} = \frac{1}{b-a} \int_{a}^{b} L_{in}(t) dt$$

## Gauss-Christoffel quadrature (cont'd)

Can we say something about the nodes  $\tau_{0n}, \ldots, \tau_{nn}$ ?

### Gauss-Christoffel quadrature (cont'd)

Can we say something about the nodes  $\tau_{0n}, \ldots, \tau_{nn}$ ?

Theorem: For  $n \in \mathbb{N}$ , consider nodes  $\tau_{0n}, \ldots, \tau_{nn}$ . For an *n*, define  $\hat{I}$  as

$$\hat{I}_n(f) = \sum_{i=0}^n \lambda_{in} f(\tau_{in})$$

and let it be exact for polynomials  $p \in \mathbb{P}_{2n+1}$ 

$$\hat{I}_n(p) = \int_a^b \omega(t) p(t) \mathrm{d}t$$

Then, the polynomials  $\{P_n\}$  given by

$$P_{n+1}(t) = (t - \tau_{0n}) \cdot \ldots \cdot (t - \tau_{nn}) \in \mathbb{P}_{n+1}$$

are orthogonal with respect to the scalar product induced by  $\omega(t)$ 

# Gauss-Christoffel quadrature (cont'd)

Therefore, the nodes  $\tau_{in}$  have to be roots of pairwise orthogonal polynomials  $\{P_j\}$  of degree deg $(P_j) = j$ 

For a given  $\omega$ , we already know that the set of orthogonal polynomials  $\{P_j\}$  is unique (if leading coefficient is 1)

We also know that the roots of these polynomials are real and have to lie in (a, b)For each  $\omega$  and  $n \in \mathbb{N}$ , this gives us a unique set of nodes, namely the roots of the corresponding orthogonal polynomial  $P_{n+1}$ 

We thus have fixed n + 1 degrees of freedom so far...

What do we know about the weights for fixed  $t_0, \ldots, t_n$  when we want to integrate exactly polynomials up to degree n?

What do we know about the weights for fixed  $t_0, \ldots, t_n$  when we want to integrate exactly polynomials up to degree n?

Because we want to be able to exactly integrate polynomials up to degree 2n + 1, we already know that to even achieve exactness up to degree n, the weights are fixed for given nodes  $t_0, \ldots, t_n$ :

$$\lambda_{in} = \frac{1}{b-a} \int_{a}^{b} L_{in}(t) dt$$
, Lagrange poly  $L_{in}(\tau_{jn}) = \delta_{ij}$ 

("For n + 1 pairwise distinct nodes, the exists only one quadrature formula that exactly integrate polynomials up to degree n.")

Theorem: Let  $\tau_{0n}, \ldots, \tau_{nn}$  be the roots of the (n + 1)st orthogonal polynomial for the weight  $\omega$ . Then any quadrature formula  $\hat{I}$  is exact for polynomials up to order n if and only if it is exact up to order 2n + 1.

#### Proof

Let  $T_{0n}, \dots, T_{nn}$  be the roots of the (n+1)-st ortho. polynomial with weight w. then any null  $\tilde{I}_{n}(f) = \sum_{i=0}^{n} \lambda_{i} f(\lambda_{i})$ 

Satisfis

 $I_{n} = exact on P_{n} \neq T_{n} exact on P_{2n+1}$   $= a^{-5}$   $= Suppose P \in P_{2n+1}, \text{ then there exists}$   $Q_{1} R \in P_{n}$   $P = Q P_{n+1} + R$   $P_{n+1} = on Hopponol + o P_{n} = so Hool$   $\int_{0}^{b} w P = \int_{0}^{b} w Q P_{n+1} + \int w R = \int w R = \overline{I}(R) =$  = 0

$$-\underline{\hat{1}}(R) = \underbrace{\hat{\xi}}_{i=0} \lambda_{in} R(\tau_{in})$$

$$= \underbrace{\hat{\xi}}_{i=0} \lambda_{in} \left( Q(\tau_{in}) P_{n+1}(\tau_{in}) + R(\tau_{in}) \right)$$

$$= \underline{\hat{1}}(P)$$

Logrange Vs Newton  

$$\begin{array}{l}
\mathcal{C}_{i}(x) = \prod_{\substack{j=0 \\ i \neq j}}^{n} \frac{(x - x_{j})}{(x_{i} - x_{j})} & \omega_{i}(x) = \prod_{\substack{j=0 \\ j \neq j}}^{i-1} (x - x_{j})
\end{array}$$

Recap: Polynomial interpolation in Newton basis

The Newton basis  $\omega_0, \ldots, \omega_n$  is given by

$$\omega_i(x) := \prod_{j=0}^{i-1} (x - x_j) \in \mathbb{P}_i.$$

Would like to find coefficients  $c_0, c_1, \ldots, c_n$  of interpolating polynomial in Newton basis

$$P_f(x|x_0,\ldots,x_n)=c_0\omega_0(x)+c_1\omega_1(x)+\cdots+c_n\omega_n(x)$$

# Today '

#### Last time

- Function approximation in higher dimensions
- Quadrature in higher dimensions

### Today

Monte Carlo

#### Announcements

- Homework 7 is posted and due Mon, Dec 9 before class (1 week)
- Next week, Mon Dec 9, recap of important topics—highly recommended!
- Email me by Wed, Dec 4 if you need special accommodations for the final exam

### There are many opportunities for asking questions

| Mon, Dec 2  | office hour                                                                                   |
|-------------|-----------------------------------------------------------------------------------------------|
| Wed, Dec 4  | lecture (virtual) [not part of final exam]                                                    |
| Fri, Dec 6  | office hour (grader)                                                                          |
| Mon, Dec 9  | recap and Q&A                                                                                 |
| Mon, Dec 9  | office hour                                                                                   |
| Wed, Dec 11 | extra office hour, 6.10pm ET (WWH 421)<br>(all HWs graded; no HW re-grading after Thu, Dec 12 |
| Mon, Dec 16 | final exam                                                                                    |

Double check that all homeworks are entered correctly in Brightspace

- Will go through example final exam problems next week
- Expect to write some code in the final exam
- Be in the room 10min early on the day of the final exam (most likely room changed to what is in Albert now)

High-dimensional interpolation and quadrature

## SG: Hierarchical basis cont'd



### SG: Hierarchical basis cont'd Obtain

$$V_n = \bigoplus_{l=1}^n W_l \,,$$

so that there is a unique representation for each  $u \in V_n$  as

$$u = \sum_{l=1}^{n} w_{l} = \sum_{l=1}^{n} \sum_{i \in I_{l}} v_{l,i} \phi_{l,i}$$

Coefficients  $v_{I,i}$  in case of interpolation  $\rightsquigarrow$  visualize on board

The coefficients  $v_{l,i}$  are hierarchical differences

$$v_{l,i} = u^*(x_{l,i}) - \frac{u(x_{l,i-1}) + u(x_{l,i+1})}{2}$$

where  $u^*$  is the function to be interpolated

Consider the diagonal cut  $L_n^{(1)} = \{ \boldsymbol{I} : |\boldsymbol{I}|_1 \leq n + d - 1 \}$  and the sparse grid space

$$oldsymbol{V}_n^{(1)} = igoplus_{ert I ert_1 \leq n+d-1} W_{oldsymbol{I}}$$

Here is an example of a sparse grid



## SG: Properties of sparse grids

The number of grid points of a sparse grid grows as  $\mathcal{O}(2^n n^{d-1})$  in contrast to  $\mathcal{O}(2^{nd})$  of a full grid

If u has  $(L_2-)$  bounded mixed derivatives up to order 2d, then

$$|u-u_n^{(1)}||_2 \in \mathcal{O}(2^{-2n}n^{d-1}),$$

whereas a full-grid space achieves

$$\|u-u_n\|_2\in\mathcal{O}(2^{-2n})$$

Sparse-grid spaces achieve slightly worse error than full-grid space but drastically reduced points in higher dimensions d

Comparing the number of grid points corresponding to full-grid and sparse-grid spaces:

Dimension d = 2:

| n                            | 1 | 2 | 3  | 4   | 5   | <br>10        |
|------------------------------|---|---|----|-----|-----|---------------|
| $\dim V_n = (2^n - 1)^2$     | 1 | 9 | 49 | 225 | 961 | <br>1 046 529 |
| $\dim V_n^1 = 2^n (n-1) + 1$ | 1 | 5 | 17 | 49  | 129 | <br>9217      |

Dimension d = 3:

| $\overline{n}$                                                      | 1 | 2  | 3   | 4     | <br>10            |
|---------------------------------------------------------------------|---|----|-----|-------|-------------------|
| $\dim V_n = (2^n - 1)^3$                                            | 1 | 27 | 343 | 3 375 | <br>1 070 590 167 |
| $\dim V_n^1 = 2^n \left(\frac{n^2}{2} - \frac{n}{2} + 1\right) - 1$ | 1 | 7  | 31  | 111   | <br>47 103        |

Exploit the additional smoothness given by the assumption on the mixed derivatives of function u

The hierarchical basis is a key ingredient:

Exploit the additional smoothness given by the assumption on the mixed derivatives of function u

The hierarchical basis is a key ingredient:

- Exploits smoothness by having "semi-global" support (i.e., function is smoother, so we can reach far over the domain and know it won't change too much),
- ► Introduced a hierarchy/multilevel and the coefficients in this hierarchy/multilevel basis decay fast (→ multigrid, multilevel Monte Carlo)

(Logarithmic dependence can be avoided if measure error in energy norm)

Details: Bungartz, Griebel, Acta Numerica, 2004

## SG: Combination technique

Formally, sparse grids are superpositions of coarser full grids


# SG: Combination technique (cont'd)

This works for grids and also for functions (in certain situations)

- interpolation
- quadrature
- $\blacktriangleright$  solutions of partial differential equations  $\rightarrow$  limited
- $\Rightarrow$  we are interested in quadrature

For quadrature, Smolyak has developed a related approach already in 1963

## SG: Smolyak quadrature - 1D

Set D = [-1, 1] and consider a one-dimensional function  $f : D \to \mathbb{R}$  and we are interested in

$$If = \int_D f(x) \mathrm{d}x$$

One-dimensional quadrature rule

$$Q_l^1 f = \sum_{i=1}^{n_l} w_i f(x_i)$$

with weights  $w_1, \ldots, w_{n_l}$  and points  $x_1, \ldots, x_{n_l}$  and

$$X_I = \{x_i : 1 \le i \le n_I\}$$

Quadrature rules are nested if  $X_I \subset X_{I+1}$ 

## SG: Smolyak quadrature

Define the difference formula

$$\Delta_k f = (Q_k^1 - Q_{k-1}^1)f ,$$

with  $Q_0^1 f = 0$ . What does the difference formula remind you of?

### SG: Smolyak quadrature

Define the difference formula

$$\Delta_k f = (Q_k^1 - Q_{k-1}^1)f,$$

with  $Q_0^1 f = 0$ . What does the difference formula remind you of? hierarchical coefficients

Smolyak's quadrature rule is

$$Q_l^d f = \sum_{|\mathbf{k}|_1 \leq n+d-1} (\Delta_{k_1}^1 \otimes \cdots \otimes \Delta_{k_d}^1) f,$$

where the tensor product of quadrature rules is

$$(\Delta_{k_1}^1 \otimes \cdots \otimes \Delta_{k_d}^1) f = \sum_{i_1=1}^{n_{k_1}} \cdots \sum_{i_d=1}^{n_{k_d}} w_{k_1,i_1} \cdots w_{k_d,i_d} f(x_{k_1,i_1},\ldots,x_{k_d,i_d})$$

# SG: Smolyak grid w.r.t. Clenshaw-Curtis rule



Left: sparse grid w.r.t. trapezoidal rule (piecewise constant), right: sparse grid obtained with Clenshaw-Curtis rule

# SG: Alternative representations of Smolyak

A non-hierarchical representation is

$$Q_{l}^{d}f = \sum_{n \leq |I|_{1} \leq n+d-1} (-1)^{n+d-1-|I|_{1}} {d-1 \choose |I|_{1}-n} (Q_{l_{1}}^{1} \otimes \cdots \otimes Q_{l_{d}}^{1})f$$

Non-hierarchical: Can work on regular grids as with combination technique

- Simple to implement
- (Equivalence to hierarchical representation not obvious.)

## Conclusions

- Computations in higher dimensions are typically affected by the curse of dimensionality, which means that computational costs become exponentially more expensive as the dimension is increased.
- We have two options in high dimension. The first option is using randomized methods and Monte Carlo which can circumvent the curse
- The other option is exploiting additional structure in the problem that can help to circumvent the curse to some extent.
- In case of sparse grids, we can circumvent the curse by assuming additional smoothness of the function to be interpolated.
- Sparse grids are very useful for quadrature in moderately high dimensions (10 up to few 100s of dimensions). Quadrature based on sparse grids is sometimes called Smolyak quadrature.

### Monte Carlo methods and numerical methods

### Known unknowns



NOAA

# No hope to model physics exhaustively



# Rapidly changing dynamics



Kenway, G. K., Martins, J. R., & Kennedy, G. J. (2014). Aerostructural optimization of the Common Research Model configuration. Group (ADODG), 6(7), 8-9. 21/39

### Uncertainties due to data



Figures: Petra, Ghattas, Isaac, Martin, Stadler, et al.

# Intro: Model

#### Model of system of interest

- Model describes response of system to inputs, parameters, configurations
- Response typically is a quantity of interest
- Evaluating a model means numerically simulating the model
- Many models given in form of partial differential equations



#### Mathematical formulation

$$f:\mathcal{D}\to\mathcal{Y}$$

Input domain  $\mathcal{D}$  and output domain  $\mathcal{Y}$ 

• Maps  $m{z} \in \mathcal{D}$  input onto  $m{y} \in \mathcal{Y}$  output (quantity of interest)

Intro: Model - Navier-Stokes equations

$$\rho\left(\frac{\partial u}{\partial t} + u \cdot \nabla u\right) = -\nabla p + \mu \Delta u + g$$

#### Examples of inputs

- $\blacktriangleright$  Density  $\rho$
- $\blacktriangleright$  Dynamic viscosity  $\mu$

#### **Examples of outputs (quantities of interest)**

- Velocity at monitoring point
- Average pressure



Intro: Model - Diffusion-convection-reaction flow

$$\frac{\partial u}{\partial t} = \Delta u - v \nabla u + g(u, \boldsymbol{\mu})$$

#### Examples of inputs

Activation energy and pre-exponential factor (Arrhenius-type reaction)

- Temperature at boundary
- Ratio of fuel and oxidizer

#### **Examples of outputs**

Average temperature in chamber



### Intro: Uncertain inputs

#### Inputs are uncertain

- Measurement errors in boundary conditions
- Manufacturing variations
- Model parameters determined by engineering judgment, etc.

#### Mathematically formulate uncertain inputs as random variables

$$Z:\Omega \to \mathcal{D}$$

#### Quantify effect of uncertainties in inputs on model outputs



## Intro: General sampling-based approach

► Take many realizations of input random variable Z

 $\boldsymbol{z}_1,\ldots,\boldsymbol{z}_n\in\mathcal{D}$ 

 $\blacktriangleright$  Evaluate model f at all  $z_1, \ldots, z_n$  realizations

$$\boldsymbol{y}_1 = f(\boldsymbol{z}_1), \ldots, \boldsymbol{y}_n = f(\boldsymbol{z}_n)$$

Estimate statistics from outputs  $y_1, \ldots, y_n$ 



### Intro: General sampling-based approach

► Take many realizations of input random variable Z

 $\boldsymbol{z}_1,\ldots,\boldsymbol{z}_n\in\mathcal{D}$ 

 $\blacktriangleright$  Evaluate model f at all  $z_1, \ldots, z_n$  realizations

$$\boldsymbol{y}_1 = f(\boldsymbol{z}_1), \ldots, \boldsymbol{y}_n = f(\boldsymbol{z}_n)$$

Estimate statistics from outputs  $y_1, \ldots, y_n$ 



### Monte Carlo methods

► Given X<sub>1</sub>,..., X<sub>n</sub> iid random variables that are distributed as X, the basic Monte Carlo estimator of E[X] is

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

- Note that each of the  $n X_1, \ldots, X_n$  is a random variable, and thus  $\overline{X}_n$  is a random variable too
- ▶ Thus, it makes sense to consider  $\mathbb{E}[\bar{X}_n]$  and  $Var[\bar{X}_n]$
- Once the samples have been drawn/realized, the estimate  $\overline{X}_n$  is a real number (here; clash of terminology)

#### Monte Carlo estimators

▶ Unbiasedness of Monte Carlo estimator  $\mathbb{E}[\bar{X}_n] = \mathbb{E}[X]$ 

• Variance is 
$$Var[\bar{X}_n] = \sigma^2/n$$

With unbiasedness follows

$$\mathbb{E}\left[\left(\bar{X}_n - \mathbb{E}[X]\right)^2\right] = \operatorname{Var}\left[\bar{X}_n\right] = \frac{\sigma^2}{n}$$

The mean-squared error rate is 1/n.

### VR: Control variates

The constant in the MC rate is the variance Var[X] of the random variable from which MC samples are being drawn. By designing an equivalent MC approximation with lower variance, we can reduce the MSE

#### Auxiliary random variable

Let X be a random variable and Y be a another random variable that is correlated to X, i.e.,

 $|\rho(X,Y)|>0\,.$ 

The (Pearson) correlation coefficient  $\rho(X, Y)$  is defined as

$$\rho(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}[X]\operatorname{Var}[Y]}}$$

with the covariance

$$Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

Control variates exploit the correlation of X and Y to reduce the MSE

Let X be a random variable and Y be an auxiliary random variable with known  $\mathbb{E}[Y]$ and correlation coefficient  $\rho = \rho(X, Y)$ . Consider the control variate estimator

$$\theta = \bar{X}_m + \alpha(\mathbb{E}[Y] - \bar{Y}_m)$$

For

$$\alpha^* = \rho \sqrt{\frac{\operatorname{Var}[X]}{\operatorname{Var}[Y]}} \,,$$

the MSE of the unbiased estimator  $\theta$  of  $\mathbb{E}[X]$  is

$$e( heta) = (1 - 
ho^2) rac{\mathsf{Var}[X]}{m}$$

 $\mathsf{Proof} \rightsquigarrow \mathsf{board}$ 

#### Which important point for us (numerical analysis!) does this analysis completely miss?

#### Which important point for us (numerical analysis!) does this analysis completely miss?

#### costs per sample/realization

Need to connect this analysis of Monte Carlo methods to our setting where each sample entails a numerical computation

# VR: Cost complexity

Let  $w_1 = c(X)$  be the costs of sampling X and let  $w_2 = c(Y)$  be the costs of sampling the control variate.  $\rightsquigarrow$  board

### VR: Cost complexity

Let  $w_1 = c(X)$  be the costs of sampling X and let  $w_2 = c(Y)$  be the costs of sampling the control variate.  $\rightsquigarrow$  board

Plain Monte Carlo achieves MSE  $\leq \epsilon$  with costs

$$c( heta^{\mathsf{MC}}) \leq rac{\mathsf{Var}[X]}{\epsilon} w_1$$
 .

Control variates estimator

$$c( heta^{\mathsf{CV}}) \leq rac{\mathsf{Var}[X]}{\epsilon}(1-
ho^2)(w_1+w_2)$$

The control variate estimator has lower costs than the plain Monte Carlo estimator if

$$1 - \rho^2 < \frac{w_1}{w_1 + w_2}$$

The inequality combines  $\rho$  and the costs  $\rightarrow$  cost vs. accuracy trade-off that we know from numerical analysis

X is RV, T is RV with known EC.] conduction p(X, 7) @= xm+ ~ ( [E[7] - 7m) unbiasedness IE[0] = (E[x\_] + ~ (E[y] - (E[x\_]) = IE[xm] = IE[X] MSE  $e(\Theta) = Vor[\Theta]$ =  $Vor[X_m] + \prec^2 Vor[IE[7] - Y_m] +$ 2 Cov [Xm (1[[]) - 7m))  $= \dots = \frac{V_{ON}[X]}{m} + q^2 V_{ON}[Y] - 2q \prod_{m} \sum_{i=1}^{m} C_{ON}[X_{i}, Y_{i}]$  $= \frac{V_{on}(x)}{m} + \frac{q^2 V_{on}(x)}{m} - 2q \frac{1}{m} \rho \sqrt{V_{FJVFJ}}$ find at by minimizing e(0) w.r.ly:  $\int_{\alpha} e(\alpha) = 2 \propto \frac{V_{0N}(\gamma)}{m} - 2 \frac{1}{m} \rho \sqrt{V(R)} \sqrt{R}$ =0:  $q^{2} = P \sqrt{\sqrt{x_{2}}}$  $e(0) = \frac{Vor(\mathcal{X})}{m} ((-p^2))$ plug in :

## Example: Control variates (cont'd)

- $X \sim \mathcal{U}(0,1)$  and  $f(x) = 10\sin(x)$
- Now consider  $g(x) = 10(x x^3/6)$  (Taylor approximation)
- ► Compute mean  $\mathbb{E}[g(X)] = 10(1/2 1/24)$  analytically

Set

$$F_i = f(X_i), \qquad G_i = g(X_i), \qquad i = 1, ..., m$$

Set synthetic costs

$$w_1 = 3$$
,  $w_2 = w_1/100$ 

• Measure  $\rho(f(X), g(X)) \approx 9.999861330445534e - 01$  and Var[f(X)] and Var[g(X)]

Control variate estimator

$$\theta = \frac{1}{m} \sum_{i=1}^{m} F_i + \alpha^* \left( \mathbb{E}[g(X)] - \frac{1}{m} \sum_{i=1}^{m} G_i \right)$$

• Compare MSE of  $\theta$  to plain vanilla Monte Carlo estimator

## Example: Numerical example



## VR: Control variates with unknown expectation

Assumed we know  $\mathbb{E}[g(X)]$ , i.e., the mean of the control variate. Typically unavailable; for example if g is an approximation of f. Instead, now  $\mathbb{E}[g(X)]$  is unknown and needs to be estimated. We obtain the control variate estimator

$$\theta^{CV} = \bar{F}_{m_1} + \alpha(\underbrace{\bar{G}_{m_2}}_{\text{estimates } \mathbb{E}[G]} - \bar{G}_{m_1})$$

- There are two m's now: m<sub>1</sub> plays the same role as m before; additionally have m<sub>2</sub> which gives the number of samples used to estimate the mean E[G] of the control variate
- ▶ Is this an unbiased estimator of  $\mathbb{E}[F]$ ?
- Optimal choice of  $\alpha$ ?
- Optimal choice of number of samples  $m_1$  and  $m_2$  to achieve MSE  $\epsilon$  with minimal costs?

 $\rightsquigarrow$  board

 $\Theta = \frac{1}{m_{*}} \sum_{i=1}^{m_{*}} \beta(x_{i}) + \gamma^{*} \left( \frac{1}{m_{*}} \sum_{i=1}^{m_{*}} \beta(x_{i}) - \frac{1}{m_{*}} \sum_{i=1}^{n_{*}} \beta(x_{i}) \right)$ 

Somples mª cmª  $\times_{1,\dots,1} \times_{m_{1}^{*}} \times_{m_{1}^{*}+1} \times_{m_{2}^{*}} \times_{m_{2}^{*}}$ 

Unbrosedness: Q= Fm, + ~ (Gm2 - Gm, )  $|E[G] = (E[F_m] = |E[f(x)])$ MSE VOR[O] = V[Fm,] + a V[Gm, - Gm,] + 2 ~ Cov [Fm, Gm, - Gm] =... = V[Fm,] + ~ 2 V[Gm2] + ~ 2 V[Gm] - 22° C [ Gm, ] - 2~ ([ Fm, , Gm, ] + 2a CLFm, , Gmz ]  $C[\overline{G}_{m_2},\overline{G}_{m_1}] = \dots = \frac{1}{m_2} V [g(x)]$ 

Similar transformation:  

$$Var[\Theta] = \frac{1}{m_2} \left( V[P(x)] + \alpha^2 V[g(x)] - 2\gamma p VV[x] V[r]^2 \right)$$
  
 $-\frac{1}{m_2} \left( \alpha^2 V[g(x)] - 2\gamma p VV[x] V[r]^2 \right)$ 



#### VR: Properties of control variate estimator

Consider two functions f and g with evaluation costs  $w_1$  and  $w_2$ , respectively. Assume  $w_1 > w_2$ . Consider the random variable X and set  $\rho = \rho(f(X), g(X))$  and let  $\sigma_F$  and  $\sigma_G$  be the standard deviation of f(X) and g(X), respectively. Set

$$\alpha^* = \rho \frac{\sigma_F}{\sigma_G}, \qquad r^* = \sqrt{\frac{w_1 \rho^2}{w_2 (1 - \rho^2)}}$$

The estimator

$$heta = rac{1}{m_1^*}\sum_{i=1}^{m_1^*}f(X_i) + lpha^*\left(rac{1}{m_2^*}\sum_{i=1}^{m_2^*}g(X_i) - rac{1}{m_1^*}\sum_{i=1}^{m_1^*}g(X_i)
ight)$$

is unbiased w.r.t.  $\mathbb{E}[f(X)]$  if  $X_1, \ldots, X_{m_1}, X_{m_1+1}, \ldots, X_{m_2} \sim X$  and achieves an MSE  $e(\theta) \leq \epsilon$  with costs

$$c_{\epsilon}( heta) \leq rac{\sigma_F^2}{\epsilon} \left(1 - \left(1 - rac{1}{r^*}
ight)
ho^2
ight) (w_1 + r^*w_2)$$

if

$$m_1^* = \frac{\sigma_F^2}{\epsilon} \left( 1 - \left( 1 - \frac{1}{r^*} \right) \rho^2 \right) , m_2^* = m_1^* r_* .$$

The  $m_1^*, m_2^*, \alpha^*$  are optimal in the sense that they minimize the costs  $c_{\epsilon}(\theta)$ . Note that control variate reuses samples

### **VR:** Comparison

Plain vanilla Monte Carlo

$$c_{\epsilon}( heta) \leq rac{\sigma_F^2}{\epsilon} w_1$$

Control variates if mean of control variate known

$$c_{\epsilon}( heta) \leq rac{\sigma_{F}^2}{\epsilon}(1-
ho^2)(w_1+w_2)$$

Control variates if mean of control variate unknown

$$c_{\epsilon}( heta) \leq rac{\sigma_F^2}{\epsilon} \left(1 - \left(1 - rac{1}{r^*}
ight)
ho^2
ight) (w_1 + r^*w_2)$$

Notice that the rate with respect to  $\epsilon$  is the same but the constants change

VR: Example (cont'd)



# Today

#### Last time

Monte Carlo

#### Today

Multi-level Monte Carlo

#### Announcements

- Homework 7 is posted and due Mon, Dec 9 before class (1 week)
- Next week, Mon Dec 9, recap of important topics—highly recommended!
# What follows won't be on the final exam

# Monte Carlo + Numerical Analysis



- Bounding costs instead of, e.g., number of samples
- Need to take into account numerical PDE solver costs

Level

Instead of describing the discretization with the number of degrees of freedom N, we describe it by the level  $\ell \in \mathbb{N}$ 

- ▶ Level  $\ell \in \mathbb{N}$ , mesh width  $h = 2^{-\ell}$
- Number of degrees of freedom in 1-dimensional spatial domain  $N = 2^{\ell} + 1 \in \mathcal{O}(2^{\ell})$
- In 2-dimensional spatial domain
    $N = (2^{\ell} + 1)^2 \in \mathcal{O}(4^{\ell})$
- In 3-dimensional spatial domain
    $N = (2^{\ell} + 1)^3 \in \mathcal{O}(8^{\ell})$

▶ General 
$$N \in \mathcal{O}(s^{\ell})$$
 with  $s \in \mathbb{N}$ 



## A first analysis of MC in the context of UQ

The following summary follows the analysis in [Cliffe et al., 2011].

To estimate the expectation  $\mathbb{E}[Q]$  of a (random) quantity of interest Q, assume only approximations  $Q_{\ell} \approx Q$  are computable, where  $\ell \in \mathbb{N}$  is a discretization level such that

$$\lim_{\ell\to\infty}\mathbb{E}[Q_\ell]=\mathbb{E}[Q]\,.$$

More precisely, we assume the error converges in mean (in distribution) with a rate  $\alpha > 0$ 

$$|\mathbb{E}[Q-Q_\ell]| \lesssim s^{-\elllpha}\,,$$

where  $\leq$  means up to constants independent of  $\ell$  and  $\alpha$ .

With increasing  $\ell$ , the costs of solving the corresponding system may increase

$$c(Q_\ell) \lesssim s^{\ell\gamma}\,, \qquad \gamma > 0$$

# A first analysis of MC (cont'd)

▶ Let  $\bar{Q}_{\ell}$  be an unbiased estimator of  $\mathbb{E}[Q_{\ell}]$ 

#### Summary:

- Q is the QoI that is unavailable ("continuous solution of PDE solution")
- $Q_{\ell}$  is the approximation of Q ("numerical approximation")
- $\blacktriangleright$   $\mathbb{E}[Q]$  is what we want to estimate ("no numerical error; no statistical error")
- $\blacktriangleright \mathbb{E}[Q_{\ell}] \text{ is mean of } Q_{\ell} \text{ (``no statistical error'')}$
- $\bar{Q}_{\ell}$  is an unbiased estimator of  $\mathbb{E}[Q_{\ell}]$  ("Monte Carlo estimator of  $\mathbb{E}[Q_{\ell}]$ ")

▶ The mean-squared error (MSE) of  $\bar{Q}_{\ell}$  is

$$\mathbb{E}[(\bar{Q}_{\ell} - \mathbb{E}[Q])^2] = \underbrace{\mathsf{Var}[\bar{Q}_{\ell}]}_{\mathsf{variance}} + \underbrace{\mathbb{E}[Q_{\ell} - Q]^2}_{\mathsf{bias}}$$

• Measure bias w.r.t.  $\mathbb{E}[Q]$ 

▶ Bias w.r.t.  $\mathbb{E}[Q_{\ell}]$  is zero because  $\bar{Q}_{\ell}$  unbiased by assumption

How can we control the variance and bias?

# A first analysis of MC (cont'd)

▶ Let  $\bar{Q}_{\ell}$  be an unbiased estimator of  $\mathbb{E}[Q_{\ell}]$ 

#### Summary:

- Q is the QoI that is unavailable ("continuous solution of PDE solution")
- ▶  $Q_{\ell}$  is the approximation of Q ("numerical approximation")
- $\blacktriangleright$   $\mathbb{E}[Q]$  is what we want to estimate ("no numerical error; no statistical error")
- $\mathbb{E}[Q_{\ell}]$  is mean of  $Q_{\ell}$  ("no statistical error")
- $\bar{Q}_{\ell}$  is an unbiased estimator of  $\mathbb{E}[Q_{\ell}]$  ("Monte Carlo estimator of  $\mathbb{E}[Q_{\ell}]$ ")

▶ The mean-squared error (MSE) of  $\bar{Q}_{\ell}$  is

$$\mathbb{E}[(\bar{Q}_{\ell} - \mathbb{E}[Q])^2] = \underbrace{\mathsf{Var}[\bar{Q}_{\ell}]}_{\mathsf{variance}} + \underbrace{\mathbb{E}[Q_{\ell} - Q]^2}_{\mathsf{bias}}$$

- Measure bias w.r.t.  $\mathbb{E}[Q]$
- ▶ Bias w.r.t.  $\mathbb{E}[Q_{\ell}]$  is zero because  $\bar{Q}_{\ell}$  unbiased by assumption
- How can we control the variance and bias?
  - ▶ Variance: Improve estimator  $\bar{Q}_{\ell}$  of  $\mathbb{E}[Q_{\ell}] \rightarrow$  statistics
  - Bias: Improve accuracy of  $Q_\ell$  w.r.t.  $Q \rightarrow$  deterministic solver

# Cost complexity of basic Monte Carlo

Assume that

► (A0) the variance 
$$Var[Q_{\ell}]$$
 is constant w.r.t.  $\ell$ ,

$$\blacktriangleright$$
 (A1)  $|\mathbb{E}[Q-Q_\ell]|\lesssim s^{-\elllpha}\,,\qquad lpha>0$ ,

$$\blacktriangleright (A2) c(Q_{\ell}) \lesssim s^{\ell \gamma}, \qquad \gamma > 0.$$

Consider the Monte Carlo estimator  $\bar{Q}_{\ell,m}^{MC}$   $(=\bar{Q}_{\ell,m})$  of  $\mathbb{E}[Q_{\ell}]$  with  $m \in \mathbb{N}$  iid copies  $Q_{\ell}^{(1)}, \ldots, Q_{\ell}^{(m)}$  of  $Q_{\ell}$ . For  $\epsilon > 0$ , the Monte Carlo estimator  $\bar{Q}_{\ell,m}^{MC}$  achieves the mean-squared error (MSE)

$$\mathbb{E}[(\bar{Q}_{\ell,m}^{\mathsf{MC}} - \mathbb{E}[Q])^2] \leq \epsilon$$

with costs

$$c_\epsilon(ar{Q}_{\ell,m}^{\sf MC}) \lesssim \epsilon^{-1-\gamma/(2lpha)}$$
 .

In terms of the root-mean-squared error (RMSE), the costs are bounded by  $e^{-2-\gamma/\alpha}$ .

know that  

$$Van \left[ \overline{Q}_{e_{1}m}^{TTC} \right] = \frac{Van \left[ \overline{Q}_{e} \right]}{m}$$
and thus  

$$IE\left[ \left( \overline{Q}_{e_{1}m}^{TTC} - IE[Q] \right)^{2} \right] = \frac{Van \left[ \overline{Q}_{e} \right]}{m} + IE\left[ \overline{Q}_{e} - Q \right]^{2}$$
depends on only (A0) on the level  
would be find lowed on such that  

$$IE\left[ \left( \overline{Q}_{e_{1}m}^{TTC} - IE(Q) \right)^{2} \right] \leq E$$

$$= 2 bolowice (20100000 bis out votioned)$$
(1) Vaniance
(1) Vania

$$Vort [Q_{e}] \leq \frac{\varepsilon}{2} \quad (=) \quad \frac{2}{\sqrt{vort} [Q_{e}] \cdot \varepsilon} \leq \frac{10}{2}$$

(1) Bias  

$$E[Q-Q_{1}]^{2} \stackrel{(AI)}{\leq} (c_{1}s^{-l_{0}})^{2} \stackrel{!}{\leq} \frac{\varepsilon}{2}$$

$$E[Q-Q_{1}]^{2} \stackrel{(AI)}{\leq} (c_{1}s^{-l_{0}})^{2} \stackrel{!}{\leq} \frac{\varepsilon}{2}$$

(nvoke (A2)

(Al)  

$$C(\overline{Q}_{l,m}) \leq m$$
  $C_2 \leq^{l} g_1$   
 $\# somples$   
 $to occieve \leq E$ , set  $m = 2$  Vor( $\overline{Q}_{l} \geq E^{-1}$  and  
 $se($  level  $l \leq v. \leq 1$  that  
 $\leq^{l} = E^{-t_0}(\sqrt{2}c_1)^{\frac{1}{2}}$ 

$$C_{\varepsilon}(\overline{Q}_{e,m}) \leq c_{\varepsilon} \geq 2 \operatorname{Von}[Q_{e}] \varepsilon' \varepsilon' \varepsilon' (\sqrt{2}c_{e})^{N_{\varepsilon}}$$
  
=  $\frac{1}{2} \sum_{\varepsilon \in \mathcal{F}} \frac{1}{2} \sum_{\varepsilon \in$ 



47 / 53

m

# MLMC: Multilevel Monte Carlo

- Multilevel Monte Carlo (MLMC) uses control variates in a judicious way
- First ideas for high-dimensional quadrature by Heinrich, 2000
  Heinrich S. (2001) Multilevel Mente Carlo Methods. In: Methods.

Heinrich S. (2001) Multilevel Monte Carlo Methods. In: Margenov S., Waśniewski J., Yalamov P. (eds) Large-Scale Scientific Computing. LSSC 2001. Lecture Notes in Computer Science, vol 2179. Springer, Berlin, Heidelberg

Independently discovered and popularized by Giles, 2007 in the context of stochastic differ-

ential equations in mathematical finance (one of the most influential papers in UQ!) Michael B. Giles, Multilevel Monte Carlo Path Simulation, Operations Research 2008 56:3, 607-617

First papers in the context of UQ

- Cliffe, K.A., Giles, M.B., Scheichl, R. et al. Comput. Visual Sci. (2011) 14: 3. https://doi.org/10.1007/s00791-011-0160-x
- Barth, A., Schwab, C. & Zollinger, N. Numer. Math. (2011) 119: 123. https://doi.org/10.1007/s00211-011-0377-0

# MLMC: Multilevel Monte Carlo

- Multilevel Monte Carlo (MLMC) uses control variates in a judicious way
- First ideas for high-dimensional quadrature by Heinrich, 2000 Heinrich S. (2001) Multilevel Monte Carlo Methods. In: Margenov S., Waśniewski J., Yalamov P. (eds) Large-Scale Scientific Computing. LSSC 2001. Lecture Notes in Computer Science, vol 2179. Springer, Berlin, Heidelberg
- Independently discovered and popularized by Giles, 2007 in the context of stochastic differ
  - ential equations in mathematical finance (one of the most influential papers in UQ!) Michael B. Giles, Multilevel Monte Carlo Path Simulation, Operations Research 2008 56:3, 607-617
- First papers in the context of UQ
  - Cliffe, K.A., Giles, M.B., Scheichl, R. et al. Comput. Visual Sci. (2011) 14: 3. https://doi.org/10.1007/s00791-011-0160-x
  - Barth, A., Schwab, C. & Zollinger, N. Numer. Math. (2011) 119: 123. https://doi.org/10.1007/s00211-011-0377-0

## MLMC: Multilevel estimator

- ▶ Key idea: use realizations of  $Q_{\ell}$  on a hierarchy of different levels, i.e., for different values  $\ell = 1, ..., L$  of the discretization parameter ( $\rightarrow$  recall sparse grids)
- Make the following decomposition (telescoping sum)

$$\mathbb{E}[Q_{\mathcal{N}_L}] = \mathbb{E}[Q_{\mathcal{N}_0}] + \sum_{\ell=1}^L \mathbb{E}[Q_{\mathcal{N}_\ell} - Q_{\mathcal{N}_{\ell-1}}] = \sum_{\ell=0}^L \mathbb{E}[Y_\ell],$$

where  $N_0 \in \mathbb{N}$  and  $N_\ell = sN_{\ell-1}$  for  $\ell = 1, \ldots, L$  and  $s \in \mathbb{N} \setminus \{1\}$  and

$$Y_0 = Q_{N_0} , \qquad Y_\ell = Q_{N_\ell} - Q_{N_{\ell-1}}$$

• Given (unbiased) estimators  $\overline{Y}_{\ell,m_{\ell}}$  for  $\mathbb{E}[Y_{\ell}]$ , the estimator

$$ar{Q}_{L,oldsymbol{m}}^{\mathsf{ML}} = \sum_{\ell=0}^L ar{Y}_{\ell,m_\ell}$$

is a multilevel estimator of Q with  $\boldsymbol{m} = [m_0, \ldots, m_L]$ 

## MLMC: Multilevel Monte Carlo estimator

► All estimators  $\overline{Y}_{\ell,m_{\ell}}$  sampled independently, then

$$\operatorname{Var}[ar{Q}_{L,oldsymbol{m}}^{\mathsf{ML}}] = \sum_{\ell=0}^{L} \operatorname{Var}[ar{Y}_{\ell,m_{\ell}}]$$

► If each  $\bar{Y}_{\ell}$  is a plain Monte Carlo estimator

$$ar{Y}_{0,m_0} = rac{1}{m_0} \sum_{i=1}^{m_0} Q_{N_0}^{(i)} \,, \qquad Q_{N_0}^{(i)} \sim Q_{N_0} \,,$$

and

$$ar{Y}_{\ell,m_\ell} = rac{1}{m_\ell} \sum_{i=1}^{m_\ell} Q_{N_\ell}^{(i)} - Q_{N_{\ell-1}}^{(i)} \, ,$$

one obtains a multilevel Monte Carlo estimator

The MSE of the multilevel Monte Carlo estimator is

$$\mathbb{E}\left[\left(\bar{Q}_{L,\boldsymbol{m}}^{\mathsf{MLMC}} - \mathbb{E}[Q]\right)^{2}\right] = \sum_{\ell=0}^{L} \frac{\mathsf{Var}[Y_{\ell}]}{m_{\ell}} + \mathbb{E}[Q_{L} - Q]^{2}$$

## MLMC: Variance reduction

$$\mathbb{E}\left[\left(\bar{Q}_{L,\boldsymbol{m}}^{\mathsf{MLMC}} - \mathbb{E}[Q]\right)^{2}\right] = \sum_{\ell=0}^{L} \frac{\mathsf{Var}[Y_{\ell}]}{m_{\ell}} + \mathbb{E}[Q_{L} - Q]^{2}$$

Why do we have hope for variance reduction (=lower cost for same variance)?

## MLMC: Variance reduction

$$\mathbb{E}\left[\left(\bar{Q}_{L,\boldsymbol{m}}^{\mathsf{MLMC}} - \mathbb{E}[Q]\right)^{2}\right] = \sum_{\ell=0}^{L} \frac{\mathsf{Var}[Y_{\ell}]}{m_{\ell}} + \mathbb{E}[Q_{L} - Q]^{2}$$

Why do we have hope for variance reduction (=lower cost for same variance)?

► As we coarsen the problem, the cost per sample decays rapidly from level to level → observed this already in the control variates example → sampling gets cheaper and cheaper

## MLMC: Variance reduction

$$\mathbb{E}\left[\left(\bar{Q}_{L,\boldsymbol{m}}^{\mathsf{MLMC}} - \mathbb{E}[Q]\right)^{2}\right] = \sum_{\ell=0}^{L} \frac{\mathsf{Var}[Y_{\ell}]}{m_{\ell}} + \mathbb{E}[Q_{L} - Q]^{2}$$

Why do we have hope for variance reduction (=lower cost for same variance)?

- ► As we coarsen the problem, the cost per sample decays rapidly from level to level → observed this already in the control variates example → sampling gets cheaper and cheaper
- ▶ Since  $Q_{N_{\ell}} \to Q$ , we have  $Var[Y_{\ell}] = Var[Q_{N_{\ell}} Q_{N_{\ell-1}}] \to 0$  going to 0 fast for  $\ell \to \infty$ , allowing for smaller and smaller sample sizes  $m_{\ell}$  to estimate the difference  $Q_{N_{\ell}} Q_{N_{\ell-1}}$  on finer and finer (more and more expensive) levels.

# MLMC: Cost complexity

Theorem (Giles 2008; Cliffe, Giles, Scheichl, Teckentrup 2011) Let  $\bar{Y}_{\ell} = \bar{Y}_{\ell,m_{\ell}}^{MC}$  and suppose that there are positive constants  $\alpha, \beta, \gamma > 0$  such that  $\alpha \geq \frac{1}{2}\min(\beta, \gamma)$  and

- $\blacktriangleright$  (A1)  $|\mathbb{E}[Q_{N_\ell} Q]| \lesssim N_\ell^{-lpha}$
- $\blacktriangleright (A2) \operatorname{Var}[Y_{\ell}] \lesssim N_{\ell}^{-\beta}$
- $\blacktriangleright$  (A3)  $w_\ell \lesssim N_\ell^\gamma$  .

Then, for any  $\sqrt{\epsilon} < e^{-1}$ , there exist a value  $L \in \mathbb{N}$  and  $\boldsymbol{m} = [m_0, \dots, m_L]$  such that

$$\mathbb{E}\left[\left(\bar{Q}_{L,\boldsymbol{m}}^{\boldsymbol{M}\boldsymbol{L}\boldsymbol{M}\boldsymbol{C}}-\mathbb{E}[\boldsymbol{Q}]\right)\right]<\epsilon\,,$$

and

$$c_{\epsilon}(ar{Q}_{L,oldsymbol{m}}^{MLMC})\lesssim egin{cases} \epsilon^{-1} & ext{if }eta > \gamma, \ \epsilon^{-1}(\log\epsilon^{1/2})^2, & ext{if }eta = \gamma, \ \epsilon^{-1-(\gamma-eta)/(2lpha)}, & ext{if }eta < \gamma. \end{cases}$$

(4)  $|E[Q_{N_{e}} - Q]| \leq N_{e}$ (42)  $Vor[Y_{e}] \leq {}^{2}N_{e} - \beta$ (43)  $ve \leq {}^{3}N_{e}^{\delta 1}$   $|E[(\overline{Q}_{L_{i}m}^{MUNC} - IE[Q])^{2}] \leq \varepsilon$ and costs  $C_{\varepsilon}(\overline{Q}_{L_{i}m}^{MUNC}) \leq \begin{cases} (\varepsilon^{-1}, if \beta > \mu) \\ \vdots \end{cases}$ 

Recoll Ne = SNe-1, C=1,..., L 1 No=1 Approver: four concer coase, bound bios by E and variance by E and then bound costs hidden Constant Bias: Set Set  $L = \int q^{-1} \log_s \left( \frac{e^{-1/2}}{2} \sqrt{2!} \frac{q}{q} \right) \int \frac{d^2}{dt}$ ∠ ~ logs (ε 2 √2 (,) +1 IE[Q1-Q] E Z

Vorionie  
Cose 
$$\beta > g_1$$
: Set  
 $m_e = \left[2 e^{-l} c_2 \left(1 - s^{-(\beta - g_1)/2}\right)^{-l} s^{-(\beta - g_1)g_2}\right]$   
 $\sum_{k=0}^{L} \frac{1}{2} \left[2 e^{-l} c_2 \left(1 - s^{-(\beta - g_1)/2}\right)^{-l} s^{-(\beta - g_1)g_2}\right]$   
 $\sum_{k=0}^{L} \frac{1}{2} \left[2 e^{-l} c_2 \left(1 - s^{-(\beta - g_1)/2}\right)^{-l} s^{-(\beta - g_1)g_2}\right]$   
 $\sum_{k=0}^{L} \frac{1}{2} \left[2 e^{-l} c_2 \left(1 - s^{-(\beta - g_1)/2}\right)^{-l} s^{-(\beta - g_1)g_2}\right]$   
 $\sum_{k=0}^{L} \frac{1}{2} \left[2 e^{-l} c_2 \left(1 - s^{-(\beta - g_1)/2}\right)^{-l} s^{-(\beta - g_1)g_2}\right]$   
 $\sum_{k=0}^{L} \frac{1}{2} \left[2 e^{-l} c_2 s^{-l}\right]$   
 $\sum_{k=0}^{L} \frac{1}{2} \left[2 e^{-l} c_2 s^{-l}\right]$ 

$$\leq \frac{1}{2} \varepsilon \left( 1 - s^{-(p-y)/2} \right) \sum_{\substack{e=0 \\ e=0 \\ s}} \frac{1}{2} \varepsilon \left( 1 - s^{-(p-y)/2} \right) \sum_{\substack{e=0 \\ e=0 \\ s}} \frac{1}{s} \varepsilon \left( 1 - s^{-(p-y)/2} \right) \sum_{\substack{e=0 \\ e=0 \\ s}} \left( s^{-(p-y)/2} \right)^{e} \frac{1}{s} \frac{1 - s^{-(p-y)/2}}{s^{-(p-y)/2}} \frac{1}{s} \frac{1 - s^{-(p-y)/2}}{s^{-(p-y)/2}} \frac{1$$

428

Costs:  $C(\overline{Q}_{L,m}^{\text{MLMC}}) = \sum_{\ell=0}^{L} w_{\ell} m_{\ell}$ 

 $\leq \sum_{e=0}^{2} c_{3} s^{e_{3}} (2e^{-c_{2}(1-s^{-(p-p)/2})^{-1}s^{-(p+p)/2}+1)$ ⊆ C 3 2 E' C2 (1- 5-(B-aV2)-1 S S S E=0 "  $+ c_3 \overline{S} S^{\text{gr}}$ S-(13-27)e/2 geo. series - c/2-ge)/2(L+1) (1-5-(1-1)/2) いわれん(しもり)  $= c_3 2 \varepsilon' c_2 (1 - \varepsilon^{-n v_2})^{-2} (1$ **τ C**3 Σ.  $\leq C \epsilon' + c_3 \xi \epsilon^{e_3}$ و'چ ٤' *≤ ⊆ ↑* become of vounding 17 -> fechnical lemon for the other cases: 1> Jr, 1>=7

# MLMC: Interpreting the cost complexity

For idealized flows through a porous medium (Darcy flow):

- ▶ Numerically observed deterministic error  $\Rightarrow$  rate  $\alpha \approx 3/8$
- ▶ Numerically observed cost/sample  $\Rightarrow$  rate  $\gamma \approx 1$

Consideration generalization of the problem in d = 1, 2, 3 dimensional spatial domain. It has been observed  $\alpha \approx 3/4d^{-1}, \gamma \approx 1, \beta \approx 2\alpha$ .

Using the complexity theorems of MC and MLMC and the costs per sample  $\epsilon^{-\gamma/(2\alpha)}$  obtain

| d | MC                             | MLMC                           | per sample on finest level     |
|---|--------------------------------|--------------------------------|--------------------------------|
| 1 | $\mathcal{O}(\epsilon^{-5/3})$ | $\mathcal{O}(\epsilon^{-1})$   | $\mathcal{O}(\epsilon^{-2/3})$ |
| 2 | $\mathcal{O}(\epsilon^{-7/3})$ | $\mathcal{O}(\epsilon^{-4/3})$ | $\mathcal{O}(\epsilon^{-4/3})$ |
| 3 | $\mathcal{O}(\epsilon^{-3})$   | $\mathcal{O}(\epsilon^{-2})$   | $\mathcal{O}(\epsilon^{-2})$   |

# MLMC: Interpreting the cost complexity

For idealized flows through a porous medium (Darcy flow):

- ▶ Numerically observed deterministic error  $\Rightarrow$  rate  $\alpha \approx 3/8$
- ▶ Numerically observed cost/sample  $\Rightarrow$  rate  $\gamma \approx 1$

Consideration generalization of the problem in d = 1, 2, 3 dimensional spatial domain. It has been observed  $\alpha \approx 3/4d^{-1}, \gamma \approx 1, \beta \approx 2\alpha$ .

Using the complexity theorems of MC and MLMC and the costs per sample  $\epsilon^{-\gamma/(2\alpha)}$  obtain

| d | MC                             | MLMC                           | per sample on finest level     |
|---|--------------------------------|--------------------------------|--------------------------------|
| 1 | $\mathcal{O}(\epsilon^{-5/3})$ | $\mathcal{O}(\epsilon^{-1})$   | $\mathcal{O}(\epsilon^{-2/3})$ |
| 2 | $\mathcal{O}(\epsilon^{-7/3})$ | $\mathcal{O}(\epsilon^{-4/3})$ | $\mathcal{O}(\epsilon^{-4/3})$ |
| 3 | $\mathcal{O}(\epsilon^{-3})$   | $\mathcal{O}(\epsilon^{-2})$   | $\mathcal{O}(\epsilon^{-2})$   |

MLMC costs asymptotically the same as **one** deterministic solve to accuracy  $\epsilon$  for  $d > 1 \rightarrow$  "UQ is for free"

# Today •

#### Today

Review of *some* important topics

#### Announcements

- ► Be 10min earlier in the room for the final exam
- Mind that the room has been updated; check Albert
- Double check that all homeworks are entered correctly in brightspace

# There are many opportunities for asking questions

| Mon, Dec 2  | office hour                                                                                   |
|-------------|-----------------------------------------------------------------------------------------------|
| Wed, Dec 4  | lecture (virtual) [not part of final exam]                                                    |
| Fri, Dec 6  | office hour (grader)                                                                          |
| Mon, Dec 9  | recap and Q&A                                                                                 |
| Mon, Dec 9  | office hour                                                                                   |
| Wed, Dec 11 | extra office hour, 6.10pm ET (WWH 421)<br>(all HWs graded; no HW re-grading after Thu, Dec 12 |
| Mon, Dec 16 | final exam                                                                                    |



Linear systems and linear least-squares problems

# Eigenproblems

Iterative methods for linear systems and nonlinear systems

# Interpolation



# Condition of a problem

Consider a generic problem: given F and data/input x, find output y such that

F(x,y)=0

Let's assume there is a unique solution so that we can write

$$y=f(x),$$

for a function f in the following

- Well-posed: Unique solution + If we perturb the input x a little bit, the solution y gets perturbed by a small amount.
- Otherwise, the problem is ill-posed; no numerical method can help with that. (What should we do in such a situation?

# Condition of a problem

Consider a generic problem: given F and data/input x, find output y such that

F(x,y)=0

Let's assume there is a unique solution so that we can write

 $y=f(x)\,,$ 

for a function f in the following

- Well-posed: Unique solution + If we perturb the input x a little bit, the solution y gets perturbed by a small amount.
- Otherwise, the problem is ill-posed; no numerical method can help with that. (What should we do in such a situation? ~> change the problem)

# Condition of a problem (cont'd)

Absolute condition number at x is

$$\kappa_{\mathsf{abs}} = \lim_{\delta \to 0} \sup_{\|x - \hat{x}\| \le \delta} \frac{\|f(x) - f(\hat{x})\|}{\|x - \hat{x}\|}$$

Relative condition number at x is

$$\kappa_{\mathsf{rel}} = \lim_{\delta \to 0} \sup_{\|x - \hat{x}\| \le \delta} \frac{\|f(x) - f(\hat{x})\| / \|f(x)\|}{\|x - \hat{x}\| / \|x\|}$$

• If f is differentiable in x, then

$$\kappa_{\mathsf{abs}} = \|f'(x)\| \qquad \kappa_{\mathsf{rel}} = \frac{\|x\|}{\|f(x)\|} \|f'(x)\|,$$

where ||f'(x)|| is the norm of the Jacobian f'(x) in the operator norm

$$||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||} = \sup_{||x||=1} ||Ax||$$

# Revisiting stability

An algorithm  $\tilde{f}$  for a problem f is backward stable if for each  $x \in X$  we have  $\tilde{f}(x) = f(\tilde{x})$  for an  $\tilde{x}$  with

$$\frac{|\tilde{x}-x||}{\|x\|}\in\mathcal{O}(u)\,,$$

where *u* is the roundoff unit

- Recall that, loosely speaking, the symbol O(u) means "on the order of the roundoff unit."
- ► By allowing u → 0 (which is implied here by the O), we consider an idealization of a computer (in practice, u is fixed). So what we mean is that the error should decrease in proportion to u or faster.

Suppose a backward stable algorithm is applied to solve a problem  $f : X \to Y$  with relative condition number  $\kappa$ . Then, the relative errors satisfy

$$\frac{\|\tilde{f}(x)-f(x)\|}{\|f(x)\|}\in\mathcal{O}(\kappa(x)u)\,.$$

# Condition of solving system of linear equations

Recall that we derived the condition number  $\kappa(\mathbf{A}) = \|\mathbf{A}\| \|\mathbf{A}^{-1}\|$  of a matrix  $\mathbf{A}$ Problem1: pix A, consider b +> A'b  $f: R^{n} \to R^{n}$ ,  $f(b) = A^{-1}b$  $k_{obs} = (l A^{-} l l)$  $\operatorname{krel} = \frac{\|b\|}{\|A^{-'}b\|} \|A^{-'}\| \leq \|A\| \|A^{-'}\| = \operatorname{k}(A)$ Problem 2: fix b, AHSA'b  $e_{rel} \leq (|A|| ||A^{-1}|| = B(A))$ 

Problem 1: Show that  $\rho(A) \leq ||A||$  for any induced matrix norm, where  $\rho(A)$  is the spectral radius of A (the largest absolute eigenvalue).

$$\|A\| = \sup_{x \neq x} \frac{\|A_{x}\|}{\|x\|} \ge \frac{\|A_{x}\|}{\|x\|} = \frac{\|P(A)_{x}\|}{\|x\|} = P(A)$$

Solving systems of linear equations

Gauss elimination and LU factorization by Cil and subtract  $(1)^{-}$  $\mathcal{Q}_{12}^{(1)}$ (l) $b_{l}$  $\frac{\mathcal{Q}_{2l}^{(1)}}{\overline{\mathcal{D}_{ll}^{(1)}}}$  $\mathcal{O}_{ZZ}^{(i)}$  $\mathcal{O}_{\mathcal{I}_{l}}^{(l)}$ XZ a<sup>(1)</sup> a(1) (i) $\frac{q_{3l}^{(l)}}{D_{ll}}$ (1) $\leq \ell_{31}$ (1)Qie D13 Ь, (1) C()De 3 azz  $\times_{\zeta}$ -2, 5, $|5_3^{(1)} - c_{31} 5, |1|$ **Q**<sub>13</sub> 935 - (3, 2,3) 8/ 11 / 47

For any square (regular or singular) matrix A, partial (row) pivoting ensures existance of

$$PA = LU$$

where  $\boldsymbol{P}$  is a permutation matrix

Furthermore, pivoting (w.r.t.  $\max |a_{ij}|$ ) leads to a backward stable algorithm.

Once an LU factorization is available, solving a linear system is cheap:

$$Ax = LUx = L(Ux) = Ly = b$$

or

$$PAx = LUx = L(Ux) = Ly = Pb$$



Solve for x by using *backward substitution* Ux = y
# Recap: Costs

For forward [backward] substitution at step k there are  $\approx k [(n - k)]$  multiplications and subtractions plus a few divisions. The total over all n steps is

$$\sum_{k=1}^n k \in \mathcal{O}(n^2)$$

 $\rightsquigarrow$  the number of floating-point operations (FLOPs) scales as  $\mathcal{O}(n^2)$ 

For Gaussian elimination, at step k, there are  $\approx (n - k)^2$  operations. Thus, the total scales as

$$\sum_{k=1}^{n} (n-k)^2 \in \mathcal{O}(n^3)$$

Summary:

- ▶ Directly applying Gaussian elimination (=LU + fwd/bwd) scales as  $O(n^3)$
- Computing LU decomposition scales as  $\mathcal{O}(n^3)$
- Forward/backward substitution scales as  $\mathcal{O}(n^2)$
- ▶ LU + forward/backward scales as  $\mathcal{O}(n^3) \rightsquigarrow$  can reuse LU for other b

Consider non-square matrices  $A \in \mathbb{R}^{m \times n}$  with  $m \ge n$  and rank(A) = n. Then the system

$$Ax = b$$

does, in general, not have a solution (more equations than unknowns). We thus instead solve a minimization problem

$$\min_{x} \|Ax - b\|^2 = \min_{x} \Phi(x)$$

min 
$$(|A \times -b||_2^2)$$
  
 $x \in \mathbb{R}^n$   
 $x \in \mathbb{R}^n$   
 $\overline{x} = \log \min (|A \times -b||_2^2)$   
 $\overline{x} = \log \min (|A \times -b||_2^2)$   
 $x = Pb$   
 $A \times = Pb$ 

### Linear least-squares problems

Now for the least-squares problem  $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2$ . The relative condition number  $\kappa$  in the Euclidean norm is bounded by

► With respect to perturbations in **b**:

$$\kappa \leq rac{\kappa_2(A)}{\cos( heta)}$$

With respect to perturbations in **A**:

$$\kappa \leq \kappa_2(A) + \kappa_2(A)^2 \tan(\theta)$$

Small residual problems, small angle  $\theta \cos(\theta) \approx 1$ ,  $\tan(\theta) \approx 0$ : behavior similar to linear system. Large residual problems, large angle  $\theta \cos(\theta) \ll 1$ ,  $\tan(\theta) \approx 1$ : behavior very different from linear system because  $\kappa_2(A)^2$  shows up One would like to avoid the multiplication  $A^T A$  (normal equations) and use a suitable factorization of A that avoids solving the normal equation directly:

One would like to avoid the multiplication  $A^T A$  (normal equations) and use a suitable factorization of A that avoids solving the normal equation directly:

$$A = QR = \begin{bmatrix} Q_1, Q_2 \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix} = Q_1 R_1,$$

where  $Q \in \mathbb{R}^{m \times m}$  is an orthonormal matrix  $(QQ^T = I)$ , and  $R \in \mathbb{R}^{m \times n}$  consists of an upper triangular matrix and a block of zeros.

How can the QR factorization be used to solve the least-squares problem?

One would like to avoid the multiplication  $A^T A$  (normal equations) and use a suitable factorization of A that avoids solving the normal equation directly:

$$A = QR = \begin{bmatrix} Q_1, Q_2 \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix} = Q_1 R_1,$$

where  $Q \in \mathbb{R}^{m \times m}$  is an orthonormal matrix  $(QQ^T = I)$ , and  $R \in \mathbb{R}^{m \times n}$  consists of an upper triangular matrix and a block of zeros.

How can the QR factorization be used to solve the least-squares problem?

$$\begin{split} \min_{x} \|Ax - b\|^{2} &= \min_{x} \|Q^{T}(Ax - b)\|^{2} &= \min_{x} \|\begin{bmatrix} b_{1} - R_{1}x \\ b_{2} \end{bmatrix}\|^{2}, \\ &= \min_{x} \|b_{1} - R_{1}x\|^{2} + \|b_{2}\|^{2} \end{split}$$

where  $Q^T b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ .

Thus, the least squares solution is  $x = R^{-1}b_1$  and the residual is  $||b_2||$ .

Problem 2: What is the following algorithm doing when applied to an  $m \times n$  matrix A and is it a good idea to use it?

for 
$$j = 1, ..., n$$
  
 $v_j = A_{:,j}$   
 $R_{1:j-1,j} = Q_{:,1:j-1}^T A_{:,j}$   
 $v_j = v_j - Q_{:,1:j-1} R_{1:j-1,j}$   
 $R_{jj} = ||v_j||_2$   
 $Q_{:,j} = v_j / R_{jj}$ 

Problem 2: What is the following algorithm doing when applied to an  $m \times n$  matrix A and is it a good idea to use it?

for j = 1, ..., n  $v_j = A_{:,j}$   $R_{1:j-1,j} = Q_{:,1:j-1}^T A_{:,j}$   $v_j = v_j - Q_{:,1:j-1} R_{1:j-1,j}$   $R_{jj} = ||v_j||_2$  $Q_{:,j} = v_j / R_{jj}$ 

Computes the reduced QR decomposition with Gram-Schmidt. This is not modified Gram-Schmidt, so the columns in Q can be far from orthogonal.

Instead of directly computing

$$\mathbf{v}_j = \mathbf{a}_j - (\mathbf{q}_1^T \mathbf{a}_j) \mathbf{q}_1 - (\mathbf{q}_2^T \mathbf{a}_j) \mathbf{q}_2 - \cdots - (\mathbf{q}_{j-1}^T \mathbf{a}_j) \mathbf{q}_{j-1}$$

based on  $a_j$ , the modified Gram-Schmidt procedure computes  $v_j$  iteratively

$$\begin{aligned} \mathbf{v}_{j}^{(1)} &= \mathbf{a}_{j}, \\ \mathbf{v}_{j}^{(2)} &= \mathbf{v}_{j}^{(1)} - \mathbf{q}_{1}\mathbf{q}_{1}^{T}\mathbf{v}_{j}^{(1)}, & \text{"subtract from } \mathbf{v}_{j}^{(1)} \text{ what is already in } \mathbf{q}_{1}^{"} \\ \mathbf{v}_{j}^{(3)} &= \mathbf{v}_{j}^{(2)} - \mathbf{q}_{2}\mathbf{q}_{2}^{T}\mathbf{v}_{j}^{(2)}, & \text{"subtract from } \mathbf{v}_{j}^{(2)} \text{ what is already in } \mathbf{q}_{2}^{"} \\ &\vdots \\ \mathbf{v}_{j} &= \mathbf{v}_{j}^{(j)} = \mathbf{v}_{j}^{(j-1)} - \mathbf{q}_{j-1}\mathbf{q}_{j-1}^{T}\mathbf{v}_{j}^{(j-1)} \end{aligned}$$

Computing a QR factorization with the modified Gram-Schmidt procedure is stabler than with the classical Gram-Schmidt procedure. However, even the modified Gram-Schmidt procedure can lead to vectors  $q_1, \ldots, q_n$  that are far from orthogonal if the condition number of A is large (see, Golub et al., Matrix Computations, Section 5.2.9)

# Eigenproblems

For a matrix  $A \in \mathbb{C}^{n \times n}$  (potentially real), we want to find  $\lambda \in \mathbb{C}$  and  $x \neq 0$  such that

$$A\mathbf{x} = \lambda \mathbf{x}.$$

## Eigenproblems

For a matrix  $A \in \mathbb{C}^{n \times n}$  (potentially real), we want to find  $\lambda \in \mathbb{C}$  and  $x \neq 0$  such that

$$A\mathbf{x} = \lambda \mathbf{x}.$$

Let  $\mathbf{A} \in \mathbb{C}^{n \times n}$  be diagonalizable matrix and  $\lambda_1$  be a simple eigenvalue with

 $|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_n|$ 

Let  $x_0$  be an initial guess that is not orthogonal to the eigenspace of  $\lambda_1$ , then  $x_k$  obtained via the iterations

$$\boldsymbol{z}_{k+1} = \boldsymbol{A}\boldsymbol{x}_k \tag{1}$$

$$\mathbf{x}_{k+1} = \mathbf{z}_{k+1} / \|\mathbf{z}_{k+1}\|_2$$
 (2)

will converge to the normalized eigenvector of **A** corresponding to  $\lambda_1$  for  $k \to \infty$ .

This process is called the power method. How did we proof convergence?

# Problem 3: Computing eigenvectors

Problem 3: Starting with  $p_0 = q_0 = 1$ , define the iteration

$$p_{n+1} = p_n + q_n$$
$$q_{n+1} = p_{n+1} + p_n$$

for n = 0, 1, 2, ... The ratio  $q_n/p_n$  converges to  $\sqrt{2}$  as  $n \to \infty$ .

Prove convergence of this algorithm using the power method. I.e., write the problem as an eigenvalue problem and show that the power method for this eigenvalue problem converges to an eigenvector and deduce from this eigenvector that  $q_n/p_n \rightarrow \sqrt{2}$ . (*Hint:* det(A) = ad - bc for a 2 × 2 matrix with  $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ .)

$$\begin{aligned} g_{0} = P_{0} = I \\ P_{n+1} = P_{n} + q_{n} \\ q_{n+1} = R_{n+1} + P_{n} \end{aligned}$$

$$\begin{aligned} W_{n}(t) = g_{n+1} = \begin{pmatrix} I & I \\ 2 & I \end{pmatrix} \begin{pmatrix} P_{n} \\ q_{n} \end{pmatrix} \\ \begin{pmatrix} P_{n+1} \\ q_{n+1} \end{pmatrix} = \begin{pmatrix} I & I \\ 2 & I \end{pmatrix} \begin{pmatrix} P_{n} \\ q_{n} \end{pmatrix} \\ compute cigenvalues of A \\ del(A - 2I) = del\begin{pmatrix} I - 2 & I \\ 2 & I - 2 \end{pmatrix} \\ &= (I - 2)(I - 2) - I \cdot 2 \\ &= 2^{2} - 22 - I \end{aligned}$$

$$\begin{aligned} = (I - 2)(I - 2) - I \cdot 2 \\ &= 2^{2} - 22 - I \\ 2I/2 = \dots = I \pm \sqrt{2}^{1} \\ = 2 \quad dominon I \quad [EV: I + \sqrt{2}] > (I - \sqrt{2}) I \\ compute \quad [EV \quad P_{n} + \sqrt{2}] = 2I \\ 0 = (A - 2I) \quad [V_{1}] = \begin{bmatrix} I - (I + \sqrt{2}) & I \\ 2 & I - (I + \sqrt{2}) \end{bmatrix} \begin{pmatrix} V_{1} \\ V_{2} \end{pmatrix} \end{aligned}$$

$$= \begin{bmatrix} -\sqrt{2} & 1 \\ 2 & -\sqrt{2} \end{bmatrix} \begin{bmatrix} \sqrt{1} \\ \sqrt{2} \end{bmatrix}$$

$$V_{1} = \sqrt{2} \quad \sqrt{2} \quad (x)$$

$$\text{dtain } \begin{bmatrix} \sqrt{1} \\ \sqrt{2} \end{bmatrix} = \begin{bmatrix} \sqrt{2} \\ 1 \end{bmatrix} \text{ as an EV}$$

$$\text{starting point } \begin{bmatrix} P_{0} \\ P_{0} \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad i \text{ not onthorously the } \begin{bmatrix} \sqrt{2} \\ \sqrt{2} \end{bmatrix}$$

$$\text{power method converges for an eigenvectors}$$

$$\text{For all eigenvectors have } (x)$$

$$\frac{P_{0}}{P_{0}} = \frac{\sqrt{2}}{V_{1}} = \frac{\sqrt{2}}{V_{2}} = \sqrt{2}$$

Iterative methods for linear systems

## Iterative solution of linear systems

Target problems: very large ( $n = 10^5, 10^6, ...$ ), A is usually sparse and has specific properties.

To solve

$$A\mathbf{x} = \mathbf{b}$$

we construct a sequence

 $\boldsymbol{x}_1, \boldsymbol{x}_2, \dots$ 

of iterates that converges fast to the solution x, where  $x_{k+1}$  can be cheaply computed from  $\{x_1, \ldots, x_k\}$  (e.g., one matrix-vector multiplication).

Thought experiment: If we can compute one iteration with cost  $\mathcal{O}(n)$  (e.g., one matrix-vector multiplication with a sparse matrix) and need a constant  $\mathcal{O}(1)$  number of iterations to reach desired precision, then we solve Ax = b with costs  $\mathcal{O}(n)$ . Intuitively, we cannot do better than that because we solve for n quantities and thus need to touch each at least once.

Let Q be invertible, then

$$egin{aligned} & \mathcal{A}m{x} = m{b} \Leftrightarrow Q^{-1}(m{b} - \mathcal{A}m{x}) = 0 \ & \Leftrightarrow (I - Q^{-1}\mathcal{A})m{x} + Q^{-1}m{b} = m{x} \ & \Leftrightarrow Gm{x} + m{c} = m{x} \end{aligned}$$

Leads to fixed-point iteration

$$\boldsymbol{x}_{k+1} = \boldsymbol{G}\boldsymbol{x}_k + \boldsymbol{c}$$

and with **G** invertible obtain that  $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$  is a stationary point

## Extreme cases for selecting Q

What are two extreme cases for selecting Q (need it to be invertible)?

#### Extreme cases for selecting Q

What are two extreme cases for selecting Q (need it to be invertible)?

Choose  $Q = A^{-1}$ , then our iteration becomes

$$egin{aligned} & \mathcal{A} egin{aligned} & \mathcal{A} egin{aligned} & \mathcal{A} egin{aligned} & \mathcal{A} & \mathcal{A} & \mathcal{A} \ & \mathcal$$

and we are done in just a single step

$$x_{k+1} = x$$

Thus, if we "know the solution" (in form of having the inverse  $A^{-1}$ ) then no further work is needed here because we already did all the work when finding  $A^{-1}$ 

The other extreme is setting Q = I, this leads to the Richardson method

$$\boldsymbol{x}_{k+1} = (\boldsymbol{I} - \boldsymbol{A})\boldsymbol{x}_k + \boldsymbol{b}$$

We have invested zero costs in finding Q and so we intuitively expect that Q = I will require high costs in terms of number of iterations to converge in general, if it converges at all

What is the problem with the Richardson method and what can we do about it?

#### What is the problem with the Richardson method and what can we do about it?

Converges only for limited set of matrices. Use linear combination between new and previous iterate:

$$\mathbf{x}_{k+1} = \omega \underbrace{(\mathbf{G}\mathbf{x}_k + \mathbf{c})}_{\mathbf{x}'_{k+1}} + (1 - \omega)\mathbf{x}_k = \mathbf{G}_{\omega}\mathbf{x}_k + \omega \mathbf{c},$$

where  $\omega > 0$  is a damping/relaxation parameter. Goal is to choose  $\omega$  such that  $\rho(G_{\omega})$  is minimal.

► What are other reasonable choices for *Q*?

#### What is the problem with the Richardson method and what can we do about it?

Converges only for limited set of matrices. Use linear combination between new and previous iterate:

$$\mathbf{x}_{k+1} = \omega \underbrace{(\mathbf{G}\mathbf{x}_k + \mathbf{c})}_{\mathbf{x}'_{k+1}} + (1 - \omega)\mathbf{x}_k = \mathbf{G}_{\omega}\mathbf{x}_k + \omega \mathbf{c},$$

where  $\omega > 0$  is a damping/relaxation parameter. Goal is to choose  $\omega$  such that  $\rho(G_{\omega})$  is minimal.

► What are other reasonable choices for *Q*?

Jacobi uses Q = D and Gauss-Seidel uses Q = L + D, which both can be computed quickly from A.

What property of A critically influences how quickly these relaxation methods converge?

#### What is the problem with the Richardson method and what can we do about it?

Converges only for limited set of matrices. Use linear combination between new and previous iterate:

$$\mathbf{x}_{k+1} = \omega \underbrace{(\mathbf{G}\mathbf{x}_k + \mathbf{c})}_{\mathbf{x}'_{k+1}} + (1 - \omega)\mathbf{x}_k = \mathbf{G}_{\omega}\mathbf{x}_k + \omega \mathbf{c},$$

where  $\omega > 0$  is a damping/relaxation parameter. Goal is to choose  $\omega$  such that  $\rho(G_{\omega})$  is minimal.

► What are other reasonable choices for *Q*?

Jacobi uses Q = D and Gauss-Seidel uses Q = L + D, which both can be computed quickly from A.

What property of A critically influences how quickly these relaxation methods converge? The spectral radius p(A) of A In the following A is symmetric positive definite.

Formulate solving Ax = b as an optimization problem: Define

$$f(x) = \frac{1}{2}x^T A x - b^T x,$$

and minimize

 $\min_{x\in\mathbb{R}^n}f(x)$ 

Because A is positive definite, we have  $f(x) = 0 \iff Ax = b$ . It is sufficient to look at the gradient

$$\nabla f(x) = \frac{1}{2}A^T x + \frac{1}{2}Ax - b = Ax - b = -r(x) = 0 \iff Ax = b$$



[Figure: Kuusela et al., 2009]

The convergence behavior of steepest descent in this context can be poor: we eventually get arbitrarily close to the minimum but we can always destroy something of the already achieved when applying the update  $\rightsquigarrow$  can we find better search directions?

# Conjugate gradient method

All methods so far (relaxation, steepest descent) use information about  $x_{k-1}$  to get  $x_k$ . All information about earlier iterations is ignored.

## Conjugate gradient method

- All methods so far (relaxation, steepest descent) use information about  $x_{k-1}$  to get  $x_k$ . All information about earlier iterations is ignored.
- The conjugate gradient (CG) method is a variation of steepest descent that has a memory.
- Let  $p_1, \ldots, p_k$  be the directions up to step k, then CG uses the space

$$x_0 + \operatorname{span}\{p_1, \ldots, p_k\}, \qquad x_0 \text{ starting point}$$

to find the next iterate  $x_k$  and thus

$$x_k = x_0 + \sum_{i=1}^k \alpha_i p_i$$

• (Recall that steepest descent uses only the search direction  $p_k = r_{k-1} = -\nabla f(x_{k-1})$  to find the iterate  $x_k$ )

We want the following

a The search directions  $p_1, \ldots, p_k$  should be linearly independent ("we don't destroy what we have achieved")

b We have ("we do the best we can at each step")

$$f(x_k) = \min_{x \in x_0 + \operatorname{span}(p_1, \dots, p_k)} f(x)$$

c The step  $x_k$  can be calculated easily from  $x_{k-1}$ 

We then worked hard to derive the CG algorithm based on these three conditions

What was a critical step in CG?

We want the following

a The search directions  $p_1, \ldots, p_k$  should be linearly independent ("we don't destroy what we have achieved")

b We have ("we do the best we can at each step")

$$f(x_k) = \min_{x \in x_0 + \operatorname{span}(p_1, \dots, p_k)} f(x)$$

c The step  $x_k$  can be calculated easily from  $x_{k-1}$ 

We then worked hard to derive the CG algorithm based on these three conditions

What was a critical step in CG?  $\rightsquigarrow$  Gram-Schmidt orthogonalization to find the search direction

It can be shown that for  $k \ge 1$  and  $e_j \ne 0, j < k$  it holds

$$\|e_k\|_A \leq 2\left(rac{\sqrt{\kappa_2(A)}-1}{\sqrt{\kappa_2(A)}+1}
ight)^k \|e_0\|_A$$

for spd matrices A.  $\rightsquigarrow$  Trefethen & Bau

For steepest descent, if A is spd, we obtained

$$||x^* - x_k||_A \le \left(\frac{\kappa_2(A) - 1}{\kappa_2(A) + 1}\right)^k ||x^* - x_0||_A,$$

where  $\langle x, y \rangle_A = x^T A y$  and  $\| \cdot \|_A = \sqrt{\langle \cdot, \cdot \rangle_A}$ .

We keep finding we are limited by the condition number of A. What can be done about it (in Numerical Methods II)?

It can be shown that for  $k \ge 1$  and  $e_j \ne 0, j < k$  it holds

$$\|e_k\|_A \leq 2\left(rac{\sqrt{\kappa_2(A)}-1}{\sqrt{\kappa_2(A)}+1}
ight)^k \|e_0\|_A$$

for spd matrices A.  $\rightsquigarrow$  Trefethen & Bau

For steepest descent, if A is spd, we obtained

$$\|x^* - x_k\|_A \le \left(\frac{\kappa_2(A) - 1}{\kappa_2(A) + 1}\right)^k \|x^* - x_0\|_A,$$

where  $\langle x, y \rangle_A = x^T A y$  and  $\| \cdot \|_A = \sqrt{\langle \cdot, \cdot \rangle_A}$ .

We keep finding we are limited by the condition number of A. What can be done about it (in Numerical Methods II)? Multigrid, multi-level

Solving systems of nonlinear equations

# Solving nonlinear equations ("root finding")

We want to solve the nonlinear equation

$$f(x) = 0, \quad x \in \mathbb{R}.$$

We could also have  $n < \infty$  equations in *n* unknowns with  $f : \mathbb{R}^n \to \mathbb{R}^n$ 

 $f(\mathbf{x}) = \mathbf{0}$ 

In general, we will need an iterative approach that constructs  $x_1, x_2, x_3, \ldots$  such that

$$\lim_{k\to\infty} x_k = x^*\,,$$

with  $f(x^*) = 0$ .

Reformulation as fixed point method so that  $x^*$  is fixed point

$$x^* = \Phi(x^*)$$

Let  $F : \mathbb{R}^n \to \mathbb{R}^n$ ,  $n \ge 1$  and solve

$$F(\mathbf{x}) = 0.$$

Truncated Taylor expansion of F about starting point  $x^0$ :

$$F(\mathbf{x}) \approx F(\mathbf{x}^0) + F'(\mathbf{x}^0)(\mathbf{x} - \mathbf{x}^0).$$

Hence:

$$oldsymbol{x}^1 = oldsymbol{x}^0 - F'(oldsymbol{x}^0)^{-1}F(oldsymbol{x}^0)$$

Newton iteration: Start with  $\mathbf{x}^0 \in \mathbb{R}^n$ , and for k = 0, 1, ... compute

$$F'(\mathbf{x}^k)\Delta\mathbf{x}^k = -F(\mathbf{x}^k), \quad \mathbf{x}^{k+1} = \mathbf{x}^k + \Delta\mathbf{x}^k$$

Requires that  $F'(\mathbf{x}^k) \in \mathbb{R}^{n \times n}$  is invertible.
Describe two key requirements for Newton to converge quadratically.

Describe two key requirements for Newton to converge quadratically.

Need F'(x) invertible and starting point  $x_0$  close to solution  $x^*$ 

You have implemented Newton in Matlab and tried it on two starting points x<sub>0</sub> and y<sub>0</sub> for your problem. Newton converges for both but to a different solution. Does this mean there something wrong with your implementation?

Describe two key requirements for Newton to converge quadratically.

Need F'(x) invertible and starting point  $x_0$  close to solution  $x^*$ 

You have implemented Newton in Matlab and tried it on two starting points x<sub>0</sub> and y<sub>0</sub> for your problem. Newton converges for both but to a different solution. Does this mean there something wrong with your implementation?

No, can converge to local optima

You want to solve F(x) = 0 but you have access only to a scrambled F through (G<sub>k</sub> ∘ F) = G<sub>k</sub>(F(x)), where k is the Newton iteration, and thus you solve a different problem G<sub>k</sub>(F(x)) = 0 in each iteration. Derive another condition on G<sub>k</sub> than G<sub>k</sub> being the identity so that Newton converges to x\* with F(x\*) = 0 in a neighborhood of x\*. Provide a proof.

 $G_{g} \circ F = A_{g} F$ regentor to  $\gamma_{g_{1+1}} = \gamma_{g_1} - \left[ (G_{\eta_1} \circ F)' \right]^{-1} (\gamma_{g_1}) (G_{\eta_1} \circ F) (\gamma_{g_1})$  $= \gamma_n - \left[ \left( A_n F \right)' \right]^{-1} \left( \gamma_n \right) A_n F \left( \gamma_n \right)$ AsF' = 4n - F'( 2n) (Az Az F( 2n) = 72- F'(72) F(72)

Describe two key requirements for Newton to converge quadratically.

Need F'(x) invertible and starting point  $x_0$  close to solution  $x^*$ 

You have implemented Newton in Matlab and tried it on two starting points x<sub>0</sub> and y<sub>0</sub> for your problem. Newton converges for both but to a different solution. Does this mean there something wrong with your implementation?

No, can converge to local optima

You want to solve F(x) = 0 but you have access only to a scrambled F through (G<sub>k</sub> ∘ F) = G<sub>k</sub>(F(x)), where k is the Newton iteration, and thus you solve a different problem G<sub>k</sub>(F(x)) = 0 in each iteration. Derive another condition on G<sub>k</sub> than G<sub>k</sub> being the identity so that Newton converges to x\* with F(x\*) = 0 in a neighborhood of x\*. Provide a proof.

Newton is affine invariant. So as long as  $G_k$  is linear and the corresponding matrix is regular, it does not influence the Newton iterations. Proof is the same as for the affine invariance that we did in class.

Interpolation

#### Polynomial interpolation

Consider n + 1 pairs  $(x_i, y_i), i = 0, ..., n$  of a function f with

 $y_i = f(x_i)$ 

Let now  $\mathbb{P}_n$  be the set of all polynomials up to degree *n* over  $\mathbb{R}$  so that we have for all  $P \in \mathbb{P}_n$ 

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0, \qquad a_n, \ldots, a_0 \in \mathbb{R}$$

We would like to find a  $P \in \mathbb{P}_n$  such that

$$P(x_i) = y_i, \qquad i = 0, \ldots, n$$

Theorem: Given n + 1 points  $(x_i, y_i)$  with pairwise distinct  $x_0, \ldots, x_n$ , there exists a unique polynomial  $P \in \mathbb{P}_n$  such that

$$P(x_i) = y_i, \qquad i = 0, \ldots, n$$

## Lagrange basis

The Lagrange polynomials  $L_0, \ldots, L_n \in \mathbb{P}_n$  are uniquely defined for distinct  $x_0, \ldots, x_n$ 

$$L_i(x_j) = \delta_{ij}, \qquad L_i \in \mathbb{P}_n.$$



Lagrange polynomials up to order n = 4 for equidistant  $x_0, \ldots, x_4$ . [Figure: Deuflhard]

The corresponding explicit formula is

$$L_i(x) = \prod_{\substack{j=0\\j\neq i}}^n \frac{x-x_j}{x_i-x_j}, \qquad i=0,\ldots,n$$

What are the coefficients  $a_n, \ldots, a_0$  so that  $P(x_i) = y_i$  for  $i = 0, \ldots, n$ ?

The corresponding explicit formula is

$$L_i(x) = \prod_{\substack{j=0\\j\neq i}}^n \frac{x-x_j}{x_i-x_j}, \qquad i=0,\ldots,n$$

What are the coefficients  $a_n, \ldots, a_0$  so that  $P(x_i) = y_i$  for  $i = 0, \ldots, n$ ?

$$P(x) = \sum_{i=0}^{n} y_i L_i(x)$$

because

$$P(x_j) = \sum_{i=0}^{n} y_i L_i(x_j) = \sum_{i=0}^{n} y_i \delta_{ij} = y_j$$

If we have the basis  $L_0, \ldots, L_n$ , we obtain the polynomial P for free

The corresponding explicit formula is

$$L_i(x) = \prod_{\substack{j=0\\j\neq i}}^n \frac{x-x_j}{x_i-x_j}, \qquad i=0,\ldots,n$$

What are the coefficients  $a_n, \ldots, a_0$  so that  $P(x_i) = y_i$  for  $i = 0, \ldots, n$ ?

$$P(x) = \sum_{i=0}^{n} y_i L_i(x)$$

because

$$P(x_j) = \sum_{i=0}^{n} y_i L_i(x_j) = \sum_{i=0}^{n} y_i \delta_{ij} = y_j$$

If we have the basis  $L_0, \ldots, L_n$ , we obtain the polynomial P for free but the cost of evaluating the polynomial is too high for practical computations

# Polynomial interpolation in Newton basis

The Newton basis  $\omega_0, \ldots, \omega_n$  is given by

$$\omega_i(x) := \prod_{j=0}^{i-1} (x - x_j) \in \mathbb{P}_i.$$

# Polynomial interpolation in Newton basis

The Newton basis  $\omega_0, \ldots, \omega_n$  is given by

$$\omega_i(x) := \prod_{j=0}^{i-1} (x - x_j) \in \mathbb{P}_i.$$

Would like to find coefficients  $c_0, c_1, \ldots, c_n$  of interpolating polynomial in Newton basis

$$P_f(x|x_0,\ldots,x_n)=c_0\omega_0(x)+c_1\omega_1(x)+\cdots+c_n\omega_n(x)$$

# Polynomial interpolation in Newton basis

The Newton basis  $\omega_0, \ldots, \omega_n$  is given by

$$\omega_i(x) := \prod_{j=0}^{i-1} (x - x_j) \in \mathbb{P}_i.$$

Would like to find coefficients  $c_0, c_1, \ldots, c_n$  of interpolating polynomial in Newton basis

$$P_f(x|x_0,\ldots,x_n)=c_0\omega_0(x)+c_1\omega_1(x)+\cdots+c_n\omega_n(x)$$

The leading coefficient  $a_n$  of the interpolation polynomial

$$P_f(x|x_0,\ldots,x_n)=a_nx^n+\cdots+a_0$$

is called the *n*-th divided difference,  $[x_0, \ldots, x_n]f := a_n$ .

The divided differences are the coefficients  $c_0, \ldots, c_n$ : The interpolation polynomial  $P_f(\cdot|x_0, \ldots, x_n)$  for  $x_0 \le x_1 \le \cdots \le x_n$  is given by

$$P(x) = \sum_{i=0}^{n} [x_0, \ldots, x_i] f \omega_i(x).$$

The following recurrence relation holds for  $x_i \neq x_j$ :

$$[x_0,\ldots,x_n]f = \frac{([x_0,\ldots,\hat{x_i},\ldots,x_n]f - [x_0,\ldots,\hat{x_j},\ldots,x_n]f)}{x_j - x_i}$$

which is helpful to compute the divided differences

Problem 5: Compute the polynomial p with p(0) = 2, p(1) = 3, p(3) = 0 in the Newton basis

#### Newton-Cotes formulas for quadrature

Given fixed nodes  $t_0, \ldots, t_n$ , use polynomial approximation

$$\hat{f}=P_f(t|t_0,\ldots,t_n)=\sum_{i=0}^n f(t_i)L_{in}(t)$$

with Lagrange polynomials  $L_{0n}, \ldots, L_{nn}$ 

Thus:

$$\hat{I}(f) = (b-a)\sum_{i=0}^{n} \lambda_{in}f(t_i),$$

where  $\lambda_{in} = \frac{1}{b-a} \int_a^b L_{in}(t) dt \rightsquigarrow$  weights are unique Quadrature formulas defined in this way are exact for polynomials  $P \in \mathbb{P}_n$  of degree less than or equal to n

$$\widehat{I}(P) = I(P_n(P)) = I(P),$$
 for all  $P \in \mathbb{P}_n$ 

## Trapezoidal sums

To avoid poorly conditioned problems, let us split the integration interval [a, b] into n sub-intervals  $[t_{i-1}, t_i], i = 1, ..., n$ . Then consider the rule

$$\hat{I}(f) = \sum_{i=1}^{n} \hat{I}_{t_{i-1}}^{t_i}(f),$$

where  $\hat{I}_{t_{i-1}}^{t_i}$  is a quadrature formula on the interval  $[t_{i-1}, t_i]$ .



45 / 47

We have seen already the trapezoidal sum with h = (b - a)/n

$$T(h) = \sum_{i=1}^{n} T_i = h\left(\frac{1}{2}(f(a) + f(b)) + \sum_{i=1}^{n-1} f(a + ih)\right)$$

that has error

$$T(h) - \int_{a}^{b} f = \frac{(b-a)h^2}{12} f''(\tau), \qquad \tau \in [a, b]$$

 $\rightsquigarrow$  we can increase *n* (and thus decrease *h*) to reduce the error without increasing the degree of the underlying polynomial

## Conclusions

- This was a very selective review of the topics that we covered!
- Be prepared to answer True/False questions to show your basic understand of topics that we discussed.
- Be prepared to answer questions that require 1-2 sentence explanations or short proofs.
- You should be able to do quick calculations such as, e.g., approximating an integral with the trapezoidal rule and computing the LU decomposition of small matrices and computing eigenvalues of a 2 × 2 matrix etc.
- Recapping basic linear algebra topics will be beneficial (e.g., computing determinant of a 2 × 2 matrix)