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Organization

» Time and location: Mondays and Wednesdays 4:55-6:10PM, WWH 1302

» Office hours: Mondays, 6.10 — 7.10pm, stop by or make an appointment (please
email). My office number is WWH #421

» Course webpage: https://docs.google.com/document/d/1VxdM4s—wiV-_
C4uBDrP4ioi0dscfLwim8olmokuj20Q/edit?usp=sharing

You need to be logged in with your NYU-Google account to access it
» Brightspace https://brightspace.nyu.edu/d21/home/400947
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Organization issues

Prerequisites:

» Basic linear algebra; calculus; experience in Matlab (or Python or another
programming language)

There is a part Il of this class. ..

» ...in the Spring semester. You should take both parts to get a reasonably
complete overview of Numerical Methods.

» |f you consider taking only one semester of Numerical Methods, | recommend
taking Scientific Computing this semester instead of this class.
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Topics covered in Numerical Methods |
Numerical Methods and their Analysis

» Stability; sources of errors; error propagation, representation of numbers in
computers

» Numerical linear algebra: direct solution of sparse/dense linear systems; solution
of least square systems; eigenvalue problems; iterative solution of linear systems

Nonlinear systems; Newton’'s method; Nonlinear least squares

Numerical optimization

vV vy

Interpolation and Approximation
» Numerical integration
Computing Issues
» What makes some computer codes faster than others?
» Where are numerical methods used, and what is their role in science research?

» How large/complicated problems can we solve today? Where are the challenges
and limits of what we can do?
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Topics of Numerical Methods I

Main topics covered in Numerical Methods |l in the Spring semester
» Approximation of ordinary differential equations (ODEs)
» Approximation of partial differential equations (PDEs)

» Solvers for the resulting (high-dimensional) discrete problems
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Programming

Programming the methods we discuss is an integral part of this course. To really
understand methods & algorithms, one needs to implement them and experiment with

them.
» Make sure you have access to MATLAB (CIMS, student license), you will need it

for the first homework assignment.
» Alternatives to MATLAB: Octave, Python or Julia.
» We will talk about a few best coding practices, and how to present results.
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Recommended textbooks/literature:

Text books:
» P. Deuflhard, A. Hohmann: Numerical Analysis in Modern Scientific Computing.
An Introduction, 2nd edition, Springer, 2003.

» L. N. Trefethen, D. Bau: Numerical Linear Algebra, SIAM, 1997.
» A. Quarteroni, R. Sacco, F. Saleri: Numerical Mathematics, 2nd edition, Springer,
2007.
» M. Overton: Numerical Computing with I[EEE Floating Point Arithmetic, SIAM,
2004.
Matlab/Programming:

» W. Gander, M. J. Gander, F. Kwok: Scientific Computing - An Introduction Using
Maple and MATLAB. Texts in Computation Science and Engineering. Springer,
2014,

» C. Moler: Numerical Computing with Matlab, SIAM, 2007.
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Numerical mathematics

Computer simulations have had a big influence on research and development;
sometimes the ability to simulate phenomena is referred to as the third pillar of science.

Numerical mathematics is a part of

mathematics that develops, analyzes It has applications accross many
and applies methods from scientific applied sciences, including:
computing to > physics

> analysis » economics

» linear algebra > biology

» optimization » finance

» differential equations >

> ...
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Development of Numerical Methods at Courant

A few examples. . .

» Eigenvalue problems (Overton)

Fast multipole method (Greengard, O'Neil, Zorin)

Finite elements and contact problems (Panozzo, Zorin)

Methods for studying dynamical systems, multiscale methods (Vanden-Eijnden)
Methods for free boundary problems in fluid dynamics (Shelley)

Scalable implicit solvers for viscous flows (Stadler)

Sampling methods and Uncertainty Quantification (Goodman, Stadler, Peherstorfer)

Scientific machine learning (Vanden-Eijnden, Stadler, Peherstorfer)

vVvyyvyvVvvyVvyYyy
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Applications of Numerical Methods at Courant

A few examples. . .

Simulation and analysis of natural and artificial heart valves (Peskin)
Simulation of plate tectonics and mantle convection (Stadler)

The physics of cell’s interiors and their motion (Shelley)

Optimal complexity wave simulations (Greengard)

Simulation of blood cells-resolving blood flow (Zorin)

Plasmas (Stadler, Kaptanoglu)

vV vy vVvyvVyyvVyy
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Seminars
Computational Mathematics and Scientific Computing seminar
» Fridays at 10:00, WWH 1302
» Talks about current research
» https://cims.nyu.edu/dynamic/calendars/seminars/
computational-mathematics-and-scientific-computing-seminar/

@ NYU COURANT INSTITUTE OF Search n
1 MATHEMATICAL SCIENCES AW

Institute ~ Academics ~ Research ~ People ~ Calendars ~ Resources ~ About Us ~ Giving

Computational Mathematics and Scientific Computing
Seminar

The Computational Mathematics and Scientific Computing seminar will be in person at the usual time on Fridays at 10am unless otherwise noted. In rare cases we have zoom talks
and then the zoom link to join the seminar will be sent to the seminar mailing list. Contact the organizers Georg Stadler and Benjamin Peherstorfer if you haven't received the Zoom

link.
To subscribe to the CMSC seminar mailing list, please see here.

Seminar Organizer(s): Georg Stadler and Benjamin Peherstorfer
Fall 2023 ~

Upcoming Events

. Fridav fRentember 15 202
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Modeling and Simulation meeting
» Thursdays at 12:30, WWH 1302
» Student-driven meeting on topics related to computational mathematics
» https://math.nyu.edu/dynamic/research/pages/

research-and-training-group-mathematical-modeling-and-simulation/
activities/group-meeting/
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Mathematics colloquium
» Mondays at 3:45, WWH 1302
» https:
//math.nyu.edu/dynamic/calendars/seminars/mathematics-colloquium/

Math and data

» Thursdays at 2.00, Auditorium Hall 150, Center for Data Science, NYU, 60 5th
ave.

» Interface of Applied Mathematics, Statistics and Machine Learning
» https://mad.cds.nyu.edu/seminar/
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Conditioning of problems
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Condition of a problem

» Consider a generic problem: given F and data/input x, find output y such that
F(x,y)=20

» Let's assume there is a unique solution so that we can write
y =f(x),

for a function f in the following

» Well-posed: Unique solution + If we perturb the input x a little bit, the solution y
gets perturbed by a small amount.

» Otherwise, the problem is ill-posed; no numerical method can help with that.
(What should we do in such a situation?
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Condition of a problem (visualization)
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Condition of a problem (intersecting lines)
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Condition of a problem (cont'd)

» Terms such as‘little bit” and a “small amount” already point to that we need to
measure something

» Therefore, we assume the map f is given as
f:UcCR"—-R"™

and we are interested in the norm || - ||

» The input error is then
|x — X|| < 9 (absolute) |x — X|| < d||x]| (relative)

» Correspondingly we measure the output error f(x) — f(X) in || - || (we could also
have looked at a componentwise error)
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Condition of a problem (cont'd)

» Absolute condition number at x is

F(x) — £(3
fobe = lim sup 1£(x) A(X)H
0=0 1 —zl<s X = X|

» Relative condition number at x is

o= lim sup )= FRI/NF]

00 ||x—z||<6 [x — %[/
» If f is differentiable in x, then

I
Rabs = Hf( )H rel Hf-(X)H Hf( )Ha

where [|f’(x)]| is the norm of the Jacobian f'(x) in the operator norm

Ax
(4] = sup X0 gip 11ax
x#£0 [ x]] Ix||=1
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» Another way to interpret the condition number at x is via the bounds
[F(X) = F(x)|| < Kaps|| X — ||

and . p A
IF() = Fll 1% =~

LACo]

for infinitesimal § (or X — x)

Y

Ix]
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Condition of a problem (cont'd)

> If Krel ~ 1,
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Condition of a problem (cont'd)

» If ke ~ 1, then the problem is well conditioned: If the relative error in the
data/input is small, then the relative error in the answer/output is similarly small

> |If Kre| > 1,
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Condition of a problem (cont'd)

>

>

If ko) ~ 1, then the problem is well conditioned: If the relative error in the
data/input is small, then the relative error in the answer/output is similarly small

If ke > 1, then the problem is poorly conditioned: Small relative input error can
lead to large relative output error

If Krel (and Kaps) do not exist, then the problem is ill conditioned.

What is poorly conditioned depends on desired accuracy: if the input accuracy is
low but we expect a high output accuracy, then problems are quickly poorly
conditioned. If we are happy with a less accurate output, we might consider the
problem still well conditioned.

Sometimes, the possibly large error in the output does not matter and so we can
solve poorly conditioned problems (think of early design stages, rapid prototyping,
etc); but we should be very much aware of the condition of the problem.
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Condition of a problem: Example
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Today

Last time

» Condition of problems

Today

» More on condition of problems
» Stability of algorithms
» Matlab recap

Announcements

» Homework 1 was posted last week; is due in two weeks Mon, Sep 23 before class
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Recap: Condition of a problem

» Consider a generic problem: given F and data/input x, find output y such that
F(x,y)=0
» Let's assume there is a unique solution so that we can write

y = f(x),

for a function f in the following

» Well-posed: Unique solution + If we perturb the input x a little bit, the solution y
gets perturbed by a small amount.

» Otherwise, the problem is ill-posed; no numerical method can help with that.
(What should we do in such a situation?
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Recap: Condition of a problem (cont'd)

» Absolute condition number at x is

F(x) — £(3
fobe = lim sup 1£(x) A(X)H
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Recap: Condition of a problem (cont'd)

> If Krel ~ 1,
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Recap:

>

>

Condition of a problem (cont'd)

If ko) ~ 1, then the problem is well conditioned: If the relative error in the
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low but we expect a high output accuracy, then problems are quickly poorly
conditioned. If we are happy with a less accurate output, we might consider the
problem still well conditioned.

Sometimes, the possibly large error in the output does not matter and so we can
solve poorly conditioned problems (think of early design stages, rapid prototyping,
etc); but we should be very much aware of the condition of the problem.

27 /102



Condition of a problem: Example
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Outline

Stability of algorithms
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Stability of algorithms

Is (x), computed with an algorithm f, a good approximation of f(x)?

We are happy if the error due to the algorithm
f(x) = f(x)
lies within reasonable bounds of the error due to the input

f(%) — F(x)
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Stability: Stability

We say that an algorithm f for a problem f is stable if for each x € E the error

|£(x) — F(%)]
Lgevli

is small for X with small

A stable algorithm gives nearly the right answer (f(x)) to nearly the right
question (f(X)).

In forward error analysis one tries to establish stability by showing error bounds on the
result in each operation in the algorithm in order to bound the error in the end result
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Stability: Backward stability

Backward stability: Pass the errors of the algorithm back and interpret as input errors.

An algorithm f for a problem f is backward stable if for each x € X we have
f(x) = f(X) for an X with

small

This is a tightening of the definition of stability of the previous slide:
A backward stable algorithm gives exactly the right answer to nearly the right
question.

In backward error analysis one calculates, for a given output, how much one would
need to perturb the input in order for the answer to be exact.
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Errors and error analyses

Relative errors:

Absolute error:

» Used for theoretical arguments

» In numerical practice: exact solution is not available, so these errors must be
approximated.

A priori analysis is performed before a specific solution is computed. Typically, the
analysis is performed for a large class of possible inputs.

A posteriori analysis bounds the error for a specific numerical solution X (computed
with a specific numerical method), and uses, e.g., residuals for the a posteriori analysis.
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Computational errors

Numerical algorithms try to control or minimize, rather then eliminate, the various
computational errors:

>

>

Approximation error due to replacing the computational problem with an
easier-to-solve approximation. Also called discretization error for ODEs/PDEs.

Truncation error due to replacing limits and infinite sequences and sums by a
finite number of steps. Closely related to approximation error.

Roundoff error due to finite representation of real numbers and arithmetic on the
computer, x # X.

Propagated error due to errors in the data from user input or previous
calculations in iterative methods.

Statistical error in stochastic calculations such as Monte Carlo calculations.
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Intuition: Stability, Consistency, Convergence

Instead of solving F(x,y) = 0 directly, many numerical methods generate a solution

sequentially
F(xi,xi—1) =0, i=1,2,3,...,

with xp = x and sequence (x;) converging to y

Additionally, we use a numerical method F, instead of F
Fo(fi,%-1) =0, i=1,23,...,

with method F, depending on a parameter n: Increasing n typically means investing
more computational time for a hopefully more accurate result
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Consistent: A numerical method is consistent if the local error made at each step
vanishes for n — oo

ﬁn(X,',X,'_l) — :E(X,',X,'_l) (n — OO)

This is one of the most basic requirements that we have on a numerical approach. If it
is not consistent, it means we can invest more computational time (more effort) and
certainly won't get lower errors.

Stability: Because we use I:_,, instead of F. in each iteration we make a local error (see
above). We have X; at iteration i rather than x;. Stability means here that the local
error can be amplified only by a constant that is independent of n.

Convergence: If the numerical error can be made arbitrarily small by increasing the
computational effort n — oo

consistency + stability — convergence

A concrete and formal description of these concepts for finite difference approximations can be found in Chapter 2 of LeVeque's textbook on finite
difference methods.
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Speed of convergence

Let x, — x in a normed space X, || - || for n = oo.

= s
n—o0 ||X — X9

< C

with C >0and g >1

» Linear convergence: g=1and C <1

Ix = Xn 1l < Clix = x|

» Quadratic convergence: g = 2

Ix = Xns1ll < Cllx = xall?
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Beyond convergence

» An algorithm will produce the correct answer if it is convergent, but...

» Not all convergent methods are equal. We can differentiate them further based on:
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Beyond convergence

» An algorithm will produce the correct answer if it is convergent, but...
» Not all convergent methods are equal. We can differentiate them further based on:

» Accuracy How much computational work do you need to expand to get an
answer to a desired relative error?
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» Not all convergent methods are equal. We can differentiate them further based on:

» Accuracy How much computational work do you need to expand to get an
answer to a desired relative error?

» Robustness Does the algorithm work (equally) well for all (reasonable) input
data d?
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Beyond convergence

\4

An algorithm will produce the correct answer if it is convergent, but...
Not all convergent methods are equal. We can differentiate them further based on:

Accuracy How much computational work do you need to expand to get an
answer to a desired relative error?

Robustness Does the algorithm work (equally) well for all (reasonable) input
data d?

Efficiency How fast does the implementation produce the answer? This depends
on the algorithm, on the computer, the programming language, the programmer,
etc. (more next class)
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Beyond convergence

\4

An algorithm will produce the correct answer if it is convergent, but...
Not all convergent methods are equal. We can differentiate them further based on:

Accuracy How much computational work do you need to expand to get an
answer to a desired relative error?

Robustness Does the algorithm work (equally) well for all (reasonable) input
data d?

Efficiency How fast does the implementation produce the answer? This depends
on the algorithm, on the computer, the programming language, the programmer,
etc. (more next class)

Difficulty How easy is it to implement and apply in practice? Do | need to spend
5 years of my time to implement it or can | code it up in 2 lines of code?
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Matlab peculiarities [Following slides: A. Donev]

MATLAB is an interpreted language, meaning that commands are
interpreted and executed as encountered. MATLAB caches some stuff
though...

Many of MATLAB's intrinsic routines are however compiled and
optimized and often based on well-known libraries (BLAS, LAPACK,
FFTW, etc.).

Variables in scripts/worspace are global and persist throughout an
interactive session (use whos for info and clear to clear workspace).

Every variable in MATLAB is, unless specifically arranged otherwise, a
matrix, double precision float if numerical.

Vectors (column or row) are also matrices for which one of the
dimensions is 1.

Complex arithmetic and complex matrices are used where necessary.
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Matrices [Slide: A. Donev]

>> format compact; format long

>> x=—1; % A scalar that is really a 1xI matrix

>> whos( 'x ")
Name Size Bytes Class Attributes
X 1x1 8 double

>> y=sqrt(x) % Requires complex arithmetic

y = 0 + 1.000000000000000 i

>> whos( 'y ")
Name Size Bytes Class Attributes
y 1x1 16 double complex

>> size (x)

ans = 1 1
>> x (1)

ans = —1

>> x(1,1)

ans — —1

>> x(3)=1;

>> X

X = —1 0 1
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Vectorization /Optimization [Slide: A. Donev]

@ MATLAB uses dynamic memory management (including garbage
collection), and matrices are re-allocated as needed when new
elements are added.

@ It is however much better to pre-allocate space ahead of time using,
for example, zeros.

@ The colon notation is very important in accessing array sections, and
x is different from x(:).

@ Avoid for loops unless necessary: Use array notation and intrinsic
functions instead.

@ To see how much CPU (computing) time a section of code took, use
tic and toc (but beware of timing small sections of code).

@ MATLAB has built-in profiling tools (help profile).
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Pre-allocation [Slide: A. Donev]|

format compact; format long
clear; % Clear all variables from memory

N=100000: % The number of iterations

% Try commenting this line out:
f=zeros(1,N); % Pre—allocate f

tic;

f(l)=1;

for i=2:N
f(i)=f(i—-1)+i;

end

elapsed=toc;

fprintf( 'The_ result_is f(%d)=%g,_computed_in _%g s\n",
N, f(N), elapsed);
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Vectorization [Slide: A. Donev]

function vect(vectorize)
N=1000000: % The number of elements
x=linspace(0,1,N); % Grid of N equi—spaced points

tic;

if (vectorize) % Vectorized
x=sqrt(x);

else % Non—vectorized
for i=1:N

x(i)=sqrt(x(i));

end

end

elapsed=toc;

fprintf( 'CPU_ time_for N=%d_ is _Y%g. ,s\n', N, elapsed);

end
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Matlab examples [Slide: A. Donev]

>> fibb % Without pre—allocating
The result is f(100000)=5.00005e+09, computed in 6.53603 s

>> fibb % Pre—allocating
The result is f(100000)=5.00005e+09, computed in 0.000998 s

>> vect (0) % Non—vectorized
CPU time for N=1000000 is 0.074986 s

>> vect(l) % Vectorized — don’'t trust the actual number
CPU time for N=1000000 is 0.002058 s
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Vectorization /Optimization [Slide: A. Donev]

@ Recall that everything in MATLAB is a double-precision matrix, called
array.

@ Row vectors are just matrices with first dimension 1. Column vectors
have row dimension 1. Scalars are 1 x 1 matrices.

@ The syntax x’ can be used to construct the conjugate transpose of
a matrix.

@ [he colon notation can be used to select a subset of the elements of
an array, called an array section.

@ The default arithmetic operators, +, -, *, / and ~ are matrix
addition /subtraction /multiplication, linear solver and matrix
power.

@ If you prepend a dot before an operator you get an element-wise

operator which works for arrays of the same shape.
47 /102



Matrices [Slide: A. Donev]

>> x=[1 2 3; 4 5 6] % Construct a matrix
X = 1 2 3
4 5 6

>> size(x) % Shape of the matrix x
ans = 2 3

>> y=x(:) % All elements of y

y = 1 4 2 5 3 6
>> size(y)

ans — ) 1

>> x(1,1:3)

ans — 1 2 3

>> x(1:2:6)

ans — 1 2 3
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Matrices [Slide: A. Donev]

>> sum( x)
ans =
5

>> sum(x(:))

ans =
21

>> z=1i; % Imaginary unit

>> y=X+z

y:
1.0000
4.0000

>> y

ans —
1.0000
2.0000
3.0000

-+

1.0000 i
1.0000 i

1.0000i
1.0000 i
1.00001i

2.0000
5.0000

4.0000
5.0000
6.0000

—

1.0000i
1.0000i

1.0000ii
1.0000i
1.0000ii

3.0000 + 1.0000
6.0000 + 1.0000
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Matrices [Slide: A. Donev]

>> Xy
??7?7 Error

>> X.xYy

ans =
1.0000
16.0000

>> Xky

ans =
14.0000
32.0000

>> x ' xy

ans —
17.0000
22.0000
27.0000

using =—> mtimes
Inner matrix dimensions must

o e

.0000 i
.0000 i

— 6.0000ii
—15.0000i

+ -+

O N O

.0000 i
.0000 i
.0000 i

32.
77.

22.
29.
36.

.0000
.0000

0000
0000

0000
0000
0000

agree.

_|_
+

2
5

0000 i
.0000 i

— 6.00001
—15.00001

+ o+ +

.0000 i
.0000 i
.0000 i

9.0000
36.0000

27.0000
36.0000
45.0000

+

+ o

3.0000
6.0000 i

5.0000i
7.0000 i
9.0000i
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Coding guidelines [Slide: A. Donev]

Learn to reference the MATLAB help: Including reading the
examples and “fine print” near the end, not just the simple usage.

Indendation, comments, and variable naming make a big
difference! Code should be readable by others.

Spending a few extra moments on the code will pay off when using it.

Spend some time learning how to plot in MATLAB, and in
particular, how to plot with different symbols, lines and colors using
plot, loglog, semilogx, semilogy.

Learn how to annotate plots: x/im, ylim, axis, xlabel, title, legend.
The intrinsics num2str or sprintf can be used to create strings with
embedded parameters.

Finer controls over fonts, line widths, etc., are provided by the
intrinsic function set...including using the LaTex interpreter to typeset
mathematical notation in figures.
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Today

Last time
» Condition of problems
» Stability of algorithms

Today
» Float-point numbers in IEEE format
» Rounding, propagation of errors, and cancellation

» Truncation errors

Announcements

» Homework 1 was posted last week; is due next week Mon, Sep 23 before class
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Recap: Condition of a problem

» Terms such as‘little bit” and a “small amount” already point to that we need to
measure something

» Therefore, we assume the map f is given as
f:UcCR"—-R"™

and we are interested in the norm || - ||

» The input error is then
|x — X|| < 9 (absolute) |x — X|| < d||x]| (relative)

» Correspondingly we measure the output error f(x) — f(X) in || - || (we could also
have looked at a componentwise error)
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Recap: Condition of a problem (cont'd)

» Absolute condition number at x is

F(x) — £(3
fobe = lim sup 1£(x) A(X)H
0=0 1 —zl<s X = X|

» Relative condition number at x is

o= lim sup )= FRI/NF]

00 ||x—z||<6 [x — %[/
» If f is differentiable in x, then

I
Rabs = Hf( )H rel Hf-(X)H Hf( )H:

where [|f’(x)]| is the norm of the Jacobian f'(x) in the operator norm

Ax
(4] = sup X0 gip 11ax
x#£0 [ x]] Ix||=1
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Recap: Condition of a problem (cont'd)

> If Krel ~ 1,
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Recap: Condition of a problem (cont'd)

» If ke ~ 1, then the problem is well conditioned: If the relative error in the
data/input is small, then the relative error in the answer/output is similarly small

> |If Kre| > 1,
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Recap:

>

>

Condition of a problem (cont'd)

If ko) ~ 1, then the problem is well conditioned: If the relative error in the
data/input is small, then the relative error in the answer/output is similarly small

If ke > 1, then the problem is poorly conditioned: Small relative input error can
lead to large relative output error

If Krel (and Kaps) do not exist, then the problem is ill conditioned.

What is poorly conditioned depends on desired accuracy: if the input accuracy is
low but we expect a high output accuracy, then problems are quickly poorly
conditioned. If we are happy with a less accurate output, we might consider the
problem still well conditioned.

Sometimes, the possibly large error in the output does not matter and so we can
solve poorly conditioned problems (think of early design stages, rapid prototyping,
etc); but we should be very much aware of the condition of the problem.

56 /91



Recap: Condition number of a matrix
Consider a matrix A € R"*". Its condition number is
k(A) = [|A[[|A7
Widely used is the || - |2 norm and then

Umax(A)
Umin(A)

with the maximal and minimal singular value gmax(A) and omin(A) of A

k2(A) = Al A2 =

Consider a system of linear equations Ax = b. Then, the problems A +— A~!b and
b+ A~1b have relative condition numbers

Krel < /Q(A)
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Recap: Backward stability

Backward stability: Pass the errors of the algorithm back and interpret as input errors.

An algorithm £ for a problem f is backward stable if for each x € X we have
f(x) = f(X) for an X with

~

IX = x|

small

A backward stable algorithm gives exactly the right answer to nearly the right
question.

In backward error analysis one calculates, for a given output, how much one would
need to perturb the input in order for the answer to be exact.
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Recap: Backward stability (cont'd)
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Representing real numbers
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Representing real numbers

» Computers represent everything using bit strings, i.e., integers in base 2. A finite
number of integers can thus be exactly represented. But not real numbers! This
leads to roundoff errors.

» Assume we have N digits to represent real numbers on a computer that can

represent integers using a given number system, say decimal for human purposes.

» Fixed-point representation of numbers

x=(-1)°-[ay—2an—3 - ak.ak—1 - a0]

has a problem of representing either small or larger numbers because the decimal
point . is fixed at position k

What could we do?
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Floating-point numbers

» Instead, let's use floating-point representation

x=(=1)°-[0.a1a2---a¢] - B =(-1)°-m-pc!
similar to the common scientific number representation

0.1156 - 10! = 1156 - 1073 t =4

» A floating-point number in base 3 is represented using one sign bit s =0or 1, a
t-digit integer mantissa

0<m=Ja1ap--a] <B —1

and an integer exponent L < e < U

» Computers today use binary numbers and so § = 2
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IEEE 754 standard

» Formats for representing and <IEEE
encoding real numbers using bit
strings (single and double precision). IEEE Standard for Floating-Point
Arithmetic
» Rounding algorithms for performing
accurate arithmetic operations (e.g., IEEE Computer Society
addition, subtraction, division, Treramonssent Standards Gomitee
multiplication) and conversions (e.g.,
single to double precision).
» Exception handling for special
situations (e.g., division by zero and
overflow). e s e 2me
20 August 2008 IEEE S1d 754-1985)

63 /91



Single precision |IEEE floating-point numbers have the standardized storage format:
sign 4+ power + fraction

with
Ns + N, + Ne =14 8 + 23 = 32 bits

and are interpreted as
x = (=1)¥-2P712T . (1.f),

» Sign s = 1 for negative numbers

» Power 1 < p < 254 determines the exponent

» Fractional part of the mantissa f

» single in Matlab, float in C/C++, REAL in Fortran
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IEEE representation example
Take the number x = 2752 = 0.2752 - 101.

\%("'WB 22s2 /7 vewivdsr O
| 3% / )} (eI O
VI VR
OOl 009 000
I 9 26

oot 28
w=2"(1.010Nn),

- (- g -(l.010n)
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IEEE representation example

Take the number x = 2752 = 0.2752 - 10*. Converting 2752 to the binary number
system

x =21 429 427 1+ 2° = (101011000000), = 2*! - (1.01011),
— (_1)02138—127 . (101011)2 — (_1)02(10001010)2—127 . (101011)2

On the computer:

x=[s | p | f]
—[0 | 100,0101,0 | 010,1100,0000,0000,0000,0000]
— (452c0000)16

(0100 0101 0010 1100 0000 0000 0000 0000) 2

format | hex; =(452c0000)_16
>> a=single (2.752E3)

a —
452c0000
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Double precision IEEE numbers

Double precision IEEE numbers (default in Matlab, double in C/C++) follow the
same principle but use 64 bits to give higher precision and range

Ns + Ny + Np =1+ 11 4 52 = 64 bits

x = (—1)*- 27192 . (1),

Even higher (extended) precision formats are not really standardized or widely
implemented /used.

There is also software-emulated variable precision arithmetic in, e.g., Maple
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Extremal exponent values

The extremal exponent values have special meaning (here single precision)

value power p fraction f

+ 0 0 0

+00 255 0
Not a number (NaN) 255 >0
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Important facts about floating-point numbers

>

Not all real numbers x can be represented exactly as a floating-point number.
Instead, they must be rounded to the nearest floating point number X = fl(x)

Floating-point numbers have a relative rounding error that is smaller than the
machine precision or roundoff-unit u

X — x| - o—(N+1) 2724 ~6.0-1078, for single precision
u = p—
x|~ 2753~ 1.1-107%°,  for double precision .

Often the machine precision/roundoff-unit is denoted as ¢

The rule of thumb is that single precision gives 7-8 digits of precision and
double 16 digits.

There is a smallest and largest possible number due to limit for the exponent.
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Two axioms

lgnoring over- and underflow, we assume the following two “axioms” to hold for
computers we work with:

1. For all x € R, there exists € with |e¢| < u (roundoff unit) such that
fi(x) = x(1+€),

where fl(-) rounds to the the closest floating point approximation.

2. Consider two floating point numbers x, y. The floating-point operation ® (=add,
sub, mult, div) of * (=add, sub, mult, div) satisfies

x®y =fl(xxy)

Axiom 1 and 2 imply that for two floating-point numbers x, y, there exists € with
le| < u such that

x®y = (xxy)(1+e).
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Floating-point exceptions

Computing with floating point values may lead to exceptions, which may halt the
program:
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Floating-point exceptions

Computing with floating point values may lead to exceptions, which may halt the
program:

» Divide-by-zero: if the result is +o0, e.g., 1/0
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Floating-point exceptions
Computing with floating point values may lead to exceptions, which may halt the
program:
» Divide-by-zero: if the result is +o0, e.g., 1/0

» Invalid: If the result is a NaN, e.g., taking v/—1 (note that Matlab supports
complex numbers...)

1: >>> x = math.sqrt(-1)

2: Traceback (most recent call last):

3: File "<stdin>", line 1, in <module>
4: ValueError: math domain error
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Floating-point exceptions
Computing with floating point values may lead to exceptions, which may halt the
program:
» Divide-by-zero: if the result is +o0, e.g., 1/0

» Invalid: If the result is a NaN, e.g., taking v/—1 (note that Matlab supports
complex numbers...)

1: >>> x = math.sqrt(-1)

2: Traceback (most recent call last):

3: File "<stdin>", line 1, in <module>
4: ValueError: math domain error

» Overflow: If the result is too large to be represented, e.g., adding two numbers,
each on the order of realmax
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Floating-point exceptions
Computing with floating point values may lead to exceptions, which may halt the

program:
» Divide-by-zero: if the result is +o0, e.g., 1/0
» Invalid: If the result is a NaN, e.g., taking v/—1 (note that Matlab supports
complex numbers...)
1: >>> x = math.sqrt(-1)
2. Traceback (most recent call last):
3: File "<stdin>", line 1, in <module>
4: ValueError: math domain error
» Overflow: If the result is too large to be represented, e.g., adding two numbers,
each on the order of realmax
» Underflow: If the result is too small to be represented, e.g., dividing a number

close to realmin by a large number.
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Avoiding overflow
Numerical software needs to be careful about avoiding exceptions:

Mathematically equivalent expressions are not necessarily computationally
equivalent!

> For example, computing \/x2 4 y2 may lead to overflow in computing x? + y?
even though the result does not overflow

» Matlab’s hypot function guards against this:

X2 +y2 — |X|\/ ensurlng that |X| > |y|

works correctly

» These kind of careful constructions may have higher computational cost (more

CPU operations) or make roundoff errors worse.
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Floating-point in practice

@ Most scientific software uses double precision to avoid range and
accuracy issues with single precision (better be safe then sorry).
Single precision may offer speed/memory /vectorization advantages
however (e.g. GPU computing).

e Do not compare floating point numbers (especially for loop
termination), or more generally, do not rely on logic from pure
mathematics.

@ Optimization, especially in compiled languages, can rearrange terms
or perform operations using unpredictable alternate forms (e.g.,
wider internal registers).

Using parenthesis helps , e.g. (x + y) — z instead of x + y — z, but
does not eliminate the problem.

@ Library functions such as sin and In will typically be computed almost
to full machine accuracy, but do not rely on that for special /complex
functions. 72/91



Propagation of errors

» Assume that we are calculating something with numbers that are not exact, e.g.,
a rounded floating-point number X versus the exact real number x.

» For IEEE representations, recall that

KX _ e {224 ~6.0-1078, for single precision
u = —

x| 2753 ~1.1-107% for double precision .

» In general, the absolute error 6x = X — x may have contributions from each of the
different types of error (roundoff, truncation, propagated, statistical).

» Assume we have an estimate or bound for the relative error

dx

X

Sex K1

based on some analysis, e.g., for roundoff error the IEEE standard determines
éx = u (roundoff-unit)
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Propagation of errors
How does the relative error change (propagate) during numerical calculations?
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Propagation of errors: Numerical experiment [From A. Donev]

Harmonic sum

N q
HN) = =
=1
function nhsum = harmonic (N)
nhsum = 0;
for 1 = 1:N
nhsum = nhsum + 1.0/1;
end
end

What are the numerical issues of this implementation?
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Propagation of errors: Numerical experiment [From A. Donev]

Harmonic sum

"1
HIN) =) =
=1

function nhsum = harmonic (N)
nhsum = 0;
for 1 = 1:N

nhsum = nhsum + 1.0/1;
end
end

What are the numerical issues of this implementation?
~+ Adds very small number 1/i to potentially large number nhsum
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Error in harmonic sum Harmonic sum

T 18 T

10° ,

—OC— double 1 —G— double
—H8— single

---8--- single
"exact" g oo o

16

12 -

10 -

Relative error

10

What can we do about it?
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Implementation with backward summation

function nhsum = harmonicBwd (N)
nhsum = 0;
for 1 = N:-1:1
nhsum = nhsum + 1.0/1;
end
end

Better, because adds small numbers to small numbers and larger numbers to large
numbers.

77/91



Relative error

Error in harmonic sum (bwd)

100 T T 18 T

—C— double —OC— double
—+&— single

---0--- single
"exact"

16

14

10 -

10° 102 10% 108 108
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Numerical Methods |
MATH-GA 2010.001/CSCI-GA 2420.001

Benjamin Peherstorfer
Courant Institute, NYU

Based on slides by G. Stadler and A. Donev
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Today

Last time
» Float-point numbers in IEEE format
» Rounding

» Propagation of errors

Today
» Cancellation
» Truncation errors

» Solving linear systems

Announcements

» Homework 1 was posted last week; is due next week Mon, Sep 23 before class

- GYDJQV @‘(‘(;H (/)our; Fﬁ./ l—éfpv"' / WWH §>OE
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Recap: Floating-point numbers

» Let's use floating-point representation
X = (_1)5 : [0 diap - - 3t] . Be = (—]_)S -m - Be_t

similar to the common scientific number representation

0.1156 - 10! = 1156 - 1073 t =4

» A floating-point number in base 3 is represented using one sign bit s =0or 1, a
t-digit integer mantissa

0<m=Ja1ap--a] <B —1

and an integer exponent L < e < U

» Computers today use binary numbers and so § = 2
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Recap: Single precision
Single precision |IEEE floating-point numbers have the standardized storage format:

sign + power + fraction

with
Ns + N, + Nf =1+ 8 + 23 = 32 bits

and are interpreted as
x = (—1)>-2P717 . (L.f),

» Sign s = 1 for negative numbers

» Power 1 < p < 254 determines the exponent

» Fractional part of the mantissa f

» single in Matlab, float in C/C+4++, REAL in Fortran
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Recap:

>

Important facts about floating-point numbers

Not all real numbers x can be represented exactly as a floating-point number.
Instead, they must be rounded to the nearest floating point number X = fl(x)

Floating-point numbers have a relative rounding error that is smaller than the
machine precision or roundoff-unit u

X — x| - o—(N+1) 2724 ~6.0-1078, for single precision
u = p—
x|~ 2753~ 1.1-107%°,  for double precision .

Often the machine precision/roundoff-unit is denoted as ¢

The rule of thumb is that single precision gives 7-8 digits of precision and
double 16 digits.

There is a smallest and largest possible number due to limit for the exponent.
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Recap: Two axioms

lgnoring over- and underflow, we assume the following two “axioms” to hold for
computers we work with:

1. For all x € R, there exists € with |e¢| < u (roundoff unit) such that
fi(x) = x(1+€),

where fl(-) rounds to the the closest floating point approximation.

2. Consider two floating point numbers x, y. The floating-point operation ® (=add,
sub, mult, div) of * (=add, sub, mult, div) satisfies

x®y =fl(xxy)

Axiom 1 and 2 imply that for two floating-point numbers x, y, there exists € with
le| < u such that

x®y = (xxy)(1+e).
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Numerical cancellation

If x and y are close to each other, then x — y can have reduced accuracy due to
catastrophic cancellation.

Consider computing the smaller root of the quadratic equation
2 _
x“—=—2x+c=0

for |c| < 1 and focus on propagation/accumulation of roundoff errors.
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To avoid cancellation, we should not directly implement 1 — /1 — ¢

Rather, we can take the Taylor approximate x = 5, which provides a good

approximation for small c.

Even better, we could use the mathematically equivalent but numerically
preferred form:

C
1—+v1—-—c=
1++/1—c

which does not suffer from cancellation problems as ¢ becomes smaller.

(Notice that 1 — /- 1s avoided and therefore the cancellation problem shown by our

analysis is avoided. We showed that /1 — c is safe.)
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To avoid cancellation, we should not directly implement 1 — /1 — ¢

Rather, we can take the Taylor approximate x = 5, which provides a good

approximation for small c.

Even better, we could use the mathematically equivalent but numerically
preferred form:

C
1—+vV1—-—c=
1++v1—c

which does not suffer from cancellation problems as ¢ becomes smaller.

(Notice that 1 — /- 1s avoided and therefore the cancellation problem shown by our

analysis is avoided. We showed that /1 — c is safe.)

1: >>> ¢ = 1e-10 # solution roughly 5.000000000125 x 10" -11

2: >>> 1 - math.sqrt(1 - c¢)

3: 5.000000413701855e-11

4. >>> c¢/(1 + math.sqrt (1l - c))
5: 5.000000000125e-11
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Big O notation
Useful to compare growth of functions.

We write f € O(g)(x — o0) if there exists constant C > 0 such that for an xp the

following holds
Ux=x0: [F(X)] < Clg(x)

We also write f € O(g)(x — 0) if there exists a constant C > 0 such that for an
xg > 0 the following holds
Vx| <xo:  |f(x)] < Clg(x)]

In many cases we do not write explicitly whether we mean x — oo or x — 0 because it
is clear from the context.
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Question: In practice, would you prefer an algorithm with costs growing as
c1(x) € O(x) or ca(x) € O(x?)? Why?
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Question: In practice, would you prefer an algorithm with costs growing as
c1(x) € O(x) or ca(x) € O(x?)? Why?

Answer: |t depends on the hidden constants C and xg. If ¢; and ¢ have roughly the
same constants, then probably ¢;.

However, if the constant for ¢ is xg = 10'% and the constant for ¢, is xy = 1, then in
most practical situations we prefer ¢co because we most likely will never reach the
asymptotics of x > xg for ¢; in practice!

Warning: The Big O notation tells us something about the asymptotics. The
constants xg and C that are hidden in O(-) do matter in practice!
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Costs (i.e., x — 00) of c1(x) = 10%% + 1019 and c»(x) = 2 x 1010 + x2. Then,
c1 € O(x) and ¢ € O(x?) for x — co. l.e., asymptotically the costs of ¢, grow faster
than c;.
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Costs (i.e., x — 00) of c1(x) = 10%% + 1019 and c»(x) = 2 x 1010 + x2. Then,
c1 € O(x) and ¢ € O(x?) for x — co. l.e., asymptotically the costs of ¢, grow faster
than c;.

10" v v v , 10%0

c, with constant 10 1°

c, with constant 10 1°

-------- c, with constant 1 I saernan G, with constant 1

costs
costs

10° 10° 1010 10'®
X X

Warning: The Big O notation tells us something about the asymptotics. The

constants xg and C that are hidden in O(-) do matter in practice! a8 /96



Set now error: e;(h) = h and ex(h) = 1071%h + h?. Then, e; € O(h) and e, € O(h)
for h — 0.

10° g v v v v 10° 15
X e, with constant 1 ) e, with $C, = 1$
-------- e, with constant 10 *'° S seeanees @y With $C = 10798
10°°
10 +
10-10
2 1010 ¢ 21015
() (0]
10—20
10-15 L
10—25 L
10—20 L L L L b 10—30
10° 1072 107 10°® 108 10710 10° 107 10710 1071% 10720
h h

Warning: The Big O notation tells us something about the asymptotics. The
constants hyg and C that are hidden in O(-) do matter in practice!
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Revisiting stability
Recall that we said: An algorithm f for a problem f is backward stable if for each
x € X we have f(x) = f(X) for an X with

small.
We now can be more precise: An algorithm f for a problem f is backward stable if for

each x € X we have f(x) = f(X) for an X with

where u is the roundoff unit
» Recall that, loosely speaking, the symbol O(u) means “on the order of the
roundoff unit.”
» By allowing u — 0 (which is implied here by the O), we consider an idealization
of a computer (in practice, u is fixed). So what we mean is that the error should

decrease in proportion to u or faster.
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Suppose a backward stable algorithm is applied to solve a problem f : X — Y with
relative condition number k. Then, the relative errors satisfy

I (x) = F(x)]]
e € O(k(x)u).

Proof board
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| ocal truncation error

» Approximation error comes about when we replace a mathematical problem with
some easier to solve approximation.

» This error is separate from and in addition to any numerical algorithm or
computation used to actually solve the approximation itself, such as roundoff or
propagated error.

» Truncation error is a common type of approximation error that comes from
replacing infinitesimally small quantities with finite step size and truncating
infinite sequences/series with finite ones.

» This is the most important type of error in methods for numerical interpolation,
integration, solving differential equations, and others.

92 /96



Local truncation error (cont'd)

» Analysis of local truncation error is almost always based on using Taylor series to
approximate a function about a given point x

f(x+h) = i %f(”)(x) = f(x) + hf'(x) + %2f”(x) ...,
n=0

where we call h the step size
» We cannot do a series (infinite number of terms) numerically, so we truncate
f(x+h) =~ Fp(x,h) = —F"(x)

n!
n=0

» Question: What is the truncation error in this approximation? ~» This kind of
error estimate is one of the most commonly used in numerical analysis.

93 /96



The remainder theorem of calculus provides a formula for the error: If the
derivatives of f up to order p + 1 exist and are continuous in the interval
(x,x + h), then there is a £ € [x, x + h] so that

hPT
f(x+ h)— Fo(x, h f(P+1)
(x4 B) = Byl ) = o A
If we set {
C — £(p+1)
(p+ 1) yelexth ‘ (y)|
then

F(x+ h) = Fo(x, h)| < ChPHY

Intuition: If A is small and f(P*t1) smooth, then x ~ arg MaXy, ¢y xth] [FPT(y)]
and the remainder term is nearly equal to the first neglected term

hp+1
(p+1)!

f(x+ h) — Fp(x, h) ~ FPH1)(x)
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For example, let e(h) = |f(x + h) — Fy(x, h)| and let the remainder theorem from the
previous slide apply, then

e(hye O("™),  h—0
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Conclusions and summary
» No numerical method can compensate for a poorly conditioned problem. But not
every numerical method will be a good one for a well conditioned problem.

» A numerical method needs to control the various computational errors
(approximation, truncation, roundoff, propagated, statistical) while balancing
computational cost.

» A numerical method must be consistent and stable in order to converge to the
correct answer.

» The IEEE standard standardizes the single and double precision floating-point
formats, their arithmetic, and exceptions. It is widely implemented.

» Numerical overflow, underflow and cancellation need to be carefully considered
and avoided: Mathematically equivalent forms are not numerically equivalent.
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Linear systems of equations
It is said that 70-80% of computational mathematics research involves solving systems

of m linear equations in n unknowns
n
E a,-ij:b,-, i:].,...,m.
j=1

Linear systems arise directly from discrete models (e.g., in machine learning). Or
through representing some abstract linear operator (such as a differential operator) in a
finite basis as when numerically solving partial differential equations.

The common abstract way of writing systems of linear equations is
Ax =b,
with matrix A € R™*" right-hand side b € R, and solution x € R”

The goal is to calculate solution x given data A, b in a numerically stable and

computationally efficient way.
3/48



The matrix inverse

» A square matrix A € R"*" is invertible or nonsingular if there exists a matrix
inverse A~! = B € R"™ " such that

AB—BA-=1,

where I is the identity matrix.
» Matrix norm induced by a given vector norm

4] = sup 121
xZ0 HXH
with sub-multiplicativity: ||AB|| < ||A||||B]|
» Special case of interest: The 2-norm or spectral norm: ||A||> = o1 (largest
singular value)
» The Euclidean or Frobenius norm is not an induced norm

IAlF = [ lagl?
V i

but still is sub-multiplicative: ||[AB||g < ||Al|e||B||le

= [[Ax| < [|Allflx]]
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Condition of solving system of linear equations
Recall that we derived the condition number x(A) = || A||[|A™!|| of a matrix A
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Condition of solving system of linear equations (cont'd)
Now consider the general perturbations of the data

(A+J0A)(x +0x)=b+ b

One obtains the condition (proof in Quarteroni et al., Sec. 3.1)

lox|l _ — w(A) <||5b|| ||5A||)

< +
Ixll = 1 — w(aylogt \ 1Bl [IA]

10
A

Important practical estimate: Roundoff error in the data, with rounding unit u (recall
~ 1071 for double precision), produces a relative error

oxleo _ 2
Xl ~ 1T- (A

ur(A)

—> makes no sense to try to numerically solve systems with x(A) > 10!° in double
precision
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Numerical solution of linear systems

There are many numerical methods for solving a system of linear equations

The most appropriate method depends on the properties of A

» General dense matrices, where the entries in A are mostly non-zero and nothing
special is known ~~ we focus on Gaussian elimination today

» General sparse matrices, where only a small fraction of a;; # 0 (sparse typically
means that O(n) entries are non-zero in an n X n matrix)

» Symmetric and positive-definite matrices

» Special structured sparse matrices, often arising from specific physical properties
of the underlying system

It is also important to consider how many times a linear system with the same or
related matrix or right-hand side needs to be solved.
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Numerical Methods |
MATH-GA 2010.001/CSCI-GA 2420.001

Benjamin Peherstorfer
Courant Institute, NYU

Based on slides by G. Stadler and A. Donev
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Today

Last time
» Cancellation
» Truncation errors

» Solving linear systems

Today

» Solving linear systems

Announcements

» Homework 1 was posted last week; is due next week Mon, Sep 23 before class
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Recap: Linear systems of equations
It is said that 70-80% of computational mathematics research involves solving systems
of m linear equations in n unknowns

n
E ajjXj = [);, | = ].,. .., M.
j=1

Linear systems arise directly from discrete models (e.g., in machine learning). Or
through representing some abstract linear operator (such as a differential operator) in a
finite basis as when numerically solving partial differential equations.

The common abstract way of writing systems of linear equations is
Ax =b,
with matrix A € R™*" right-hand side b € R, and solution x € R”

The goal is to calculate solution x given data A, b in a numerically stable and

computationally efficient way.
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Recap: The matrix inverse

» A square matrix A € R"*" is invertible or nonsingular if there exists a matrix
inverse A~! = B € R"™ " such that

AB—BA-=1,

where I is the identity matrix.
» Matrix norm induced by a given vector norm

4] = sup 121
xZ0 HXH
with sub-multiplicativity: ||AB|| < ||A||||B]|
» Special case of interest: The 2-norm or spectral norm: ||A||> = o1 (largest
singular value)
» The Euclidean or Frobenius norm is not an induced norm

IAlF = [ lagl?
V i

but still is sub-multiplicative: ||[AB||g < ||Al|e||B||le

= [[Ax| < [|Allflx]]
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Recap: Condition of solving system of linear equations (cont'd)
Now consider the general perturbations of the data

(A+J0A)(x +0x)=b+ b

One obtains the condition (proof in Quarteroni et al., Sec. 3.1)

lox|l _ — w(A) <||5b|| ||5A||)

< +
Ixll = 1 — w(aylogt \ 1Bl [IA]

10
A

Important practical estimate: Roundoff error in the data, with rounding unit u (recall
~ 1071 for double precision), produces a relative error

oxleo _ 2
Xl ~ 1T- (A

ur(A)

—> makes no sense to try to numerically solve systems with x(A) > 10!° in double
precision
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Recap: Numerical solution of linear systems

There are many numerical methods for solving a system of linear equations

The most appropriate method depends on the properties of A

» General dense matrices, where the entries in A are mostly non-zero and nothing
special is known ~~ we focus on Gaussian elimination today

» General sparse matrices, where only a small fraction of a;; # 0 (sparse typically
means that O(n) entries are non-zero in an n X n matrix)

» Symmetric and positive-definite matrices

» Special structured sparse matrices, often arising from specific physical properties
of the underlying system

It is also important to consider how many times a linear system with the same or
related matrix or right-hand side needs to be solved.
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Gauss elimination and LU factorization
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Gauss elimination in Matlab

function A = mylu(A) 7% In-place LU factorization
%» need square matrix
[n, m] = size(A);
assert(n == m);
for k=1:(n-1) 7% for variable x(k)
% Assumed A(k, k) non-zero and then
%» calculate multipliers in column k
A((k + 1):n, k) = A((k + 1):n, k)/A(k, k);
for j = (k + 1):n
% eliminate variable x(k)
A((k + 1):n, j) = A((k + 1):n, j) - A((k + 1):
n, k)xA(k, j);
end
end
end
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Gaussian elimination is a general method for dense matrices and is commonly used

Implementing Gaussian elimination efficiently is difficult and we will not discuss it
~+ course on HPC

The LAPACK public-domain library is the main repository for excellent
implementations of dense linear solvers

Matlab (and numpy) use highly optimized variants of GEM by default, mostly
based on LAPACK

Matlab (and numpy) have specialized solvers for special cases of matrices, so
always check help pages!
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Problem?
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Problem?

>> A

A =

N

[1 1 3;

2 2

N

2;

3 6 4]

18 /55



LU with pivoting

Zero diagonal entries (pivots) pose a problem ~~ pivoting by swapping rows

~ board

LU =PA4

4
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>> A = [1 1
>> P = [1 0

P =
1 0
0 0
0 1

>> mylu(Px*A)

ans =

2; 3 6 4];
1

2
0O 1; 0 1 0] 7% swap row 2 and 3

[
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» For any square (regular or singular) matrix A, partial (row) pivoting ensures exists

of
PA= LU

where P is a permutation matrix

» Q: What else could pivoting be useful for?
~ let's see what Matlab does

21/55



1.0000 0
0.6667 1.0000
0.3333 0.5000
U =
3.0000 6.0000
0 -2.0000
0 0
P =
0 0 1
0 1 0
1 0 0
>> norm(L*xU - P*A)

ans = 0

T

built-in 1lu

1.0000

4.0000
-0.6667
2.0000




[ =
1.0000 o)
0.6667 1.0000
0.3333 0.5000

U =
3.0000 6.0000

o) -2.0000
o) o)
P =
0) o) 1
o) 1 o)
1 o) o)
>> norm(L*xU - P*A)
ans = 0

T

built-in 1lu

1.0000

4.0000
-0.6667
2.0000

Reverses order of rows rather than just swapping 2 and 3.

Leads to entries of L with magnitude <1
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~> board
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~> board

>> A = [1e-20 1;
A =
1.0000e-20
1.0000e+00

1 1]

1.0000e+00
1.0000e+00

>> LUmat = mylu(A);
L = [1 0; LUmat(2, 1) 11;

U = LUmat; U(2,

L*xU

ans =

1.0000e-20
1.0000e+00

1) = 0;

1.0000e+00
0
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>> [L, U, P] = 1u(A)

L =
1.0000e+00 o)
1.0000e-20 1.0000e+00
U =
1 1
0) 1
P =
0) 1
1 o)
>> P'*xL*U
ans =
1.0000e-20 1.0000e+00
1.0000e+00 1.0000e+00
>> A
A =

1.0000e-20 1.0000e+00
1.0000e+00 1.0000e+00
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Instability of LU decomposition without pivoting
If A has an LU factorization, then the compytNed L and U obtained in floating-point
arithmetic with Gaussian elimination satisfy LU = A + J A with the bound
[0A]|
L]

€ O(u),

where u is the roundoff unit.

» Notice that we would have liked to bound ||dA||/||A|l but we got |[0A||/(||L]||||U]|)
» Thus, for matrices with ||L||||U]| = ||A]|, the algorithm will show stable behavior
» However, if ||L||||U]| % ||A||, then we can get an unstable result

~ Gaussian elimination is not stable in general

Example ~~ board

(10720 1 1 0 10—20 1
A__ 1 1]’L_[1o20 1]’”‘[ 0 1—1020]

Compare |[L]|oo[|U| and || Al
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LU with row pivoting to maximum element

function [A, P] = myplu(A) 7 In-place LU factorization
[n, m] = size(A); P = eye(n);
for k=1:(n-1) J for variable x(k)
[, sell] = max(abs(A(k:n, k))); 7 select pivot
c = A(k, k:end); d = P(k, :);
A(k, k:end) = A(sell + (k-1), k:end); P(k, :) = P(
sell + (k-1), :);
A(sell + (k-1), k:end) = c; P(sell + k-1, :) = d;
%» calculate multipliers in column k
A((k + 1):n, k) = A((k + 1):n, k)/A(k, k);
for j = (k + 1):n 7 eliminate variable x(k)
A(C(k + 1):n, j) = A((k + 1):n, j) - A((k + 1):
n, k)*xA(k, j);
end
end
end
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>> A = [1e-20 1; 1 1]
[LUmat, P] = myplu(A);

L = [1 0; LUmat (2,
U = LUmat; U(2, 1)
P'xLx*xU

A =

1.0000e-20 1.
1.0000e+00 1.

ans =

1.0000e-20 1.
.0000e+00

1.0000e+00 1

1) 11;
= O;

0000e+00
0000e+00

0000e+00
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Stability of Gaussian elimination with pivoting
For A= LU, introduce the growth factor

max; ; |ujj]|

IO —
max; j |aj|

where uj; is the /,j-th element of U

Consider the factorization PA = LU with partial row pivoting w.r.t. taking the

maximum element for a matrix A of dimension n x n. Gaussian elimination gives
P, L, U that satisfy

[[0A]|
Al
where u is the roundoff unit. If all off-diagonal entries of L are < 1, implying that

there are no ties in the selection of pivots in exact arithmetic, then P = P for
sufficiently small v.

LU = PA+ /A, € O(pu),

This means that Gaussian elimination with partial pivoting is backward stable if p

holds uniformly for matrices with n x n. 28 /55



» For any square (regular or singular) matrix A, partial (row) pivoting ensures exists

of
PA = LU

where P is a permutation matrix

» Furthermore, pivoting (w.r.t. max|a;j|) leads to a backward stable algorithm.
However, the growth factor p can be huge and grow with the dimension of Al

Fortunately, large factors p “never seem to appear in real applications.”
(Trefethen & Bau, Chapter 22)

» There also is full pivoting (rows + columns)
PAQ = LU

to further increases stability but it usually is not worth it in practice (higher costs
to search for pivoting element over rows and columns but little improvement in
terms of stability)
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Solving linear systems

» Once an LU factorization is available, solving a linear system is cheap:
Ax =LUx=L(Ux)=Ly=5>b

» Solve for y using forward substitution

» Solve for x by using backward substitution Ux = y

What is forward/backward substitution? ~- board

iy 0 -~ .. 0] [x by
b1 by O 0 : :
_/nl /nn_ _Xn_ _bn_

30/55
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» |f row pivoting is used, the same process works by also permuting the right-hand

side b
PAx = LUx = Ly = Pb

or formally (never implement inverse for solving linear systems of equations)

x=(LU)'Pb=U'L"Pb

» Because P is orthonormal, we have P! — PT and thus
A=PlLU=(P'L)U=LU,

with L a row permutation of a unit lower triangular matrix
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In Matlab, the backslash operator solves linear systems (see help mldivide)

A =1[1 2 3; 45 6;

b = [2; 1; -1

x = A\b; x'
[L, U] = 1lu(A
y = L\b; x =
ans =
-2.5556e+00
L =
1.4286e-01
5.7143e-01
1.0000e+00
U =
7.0000e+00
o)
0
ans =

-2.5556e+00

1;

)
U\y;

2.

7 8 0];

X |

1111e+00

.0000e+00
.0000e-01

0

.0000e+00
.5714e-01

0

.1111e+00

w

.1111e-01

0

.0000e+00

0

0

.0000e+00
.5000e+00

.1111e-01

32/55



Is the permuted triangular matrix L (which we get from [L, U] = 1u(A)) detected as

such? Yes!

Use QR solver

YES

Is A permuted
tnangular?

Use tnangular
solver

Use permuted
tnangular solver
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Today

Last time
» Solving linear systems
» LU decomposition
» Pivoting

Today
» Cost analysis of LU decomposition
» Solving linear systems with sparse matrices

» Least-squares problems

Announcements

» Homework 2 has been posted; is due next week Mon, Oct 7 before class
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Recap: Condition of solving system of linear equations (cont'd)
Now consider the general perturbations of the data

(A+J0A)(x +0x)=b+ b

One obtains the condition (proof in Quarteroni et al., Sec. 3.1)

lox|l _ — w(A) <||5b|| ||5A||)

< +
Ixll = 1 — w(aylogt \ 1Bl [IA]

10
A

Important practical estimate: Roundoff error in the data, with rounding unit u (recall
~ 1071 for double precision), produces a relative error

oxleo _ 2
Xl ~ 1T- (A

ur(A)

—> makes no sense to try to numerically solve systems with x(A) > 10!° in double
precision
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Recap: LU decomposition

Gauss elimination and LU factorization
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Recap: Pivoting
LU with pivoting

Zero diagonal entries (pivots) pose a problem ~~ pivoting by swapping rows
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Recap: Stability of Gaussian elimination with pivoting
For A= LU, introduce the growth factor

max; ; |ujj]|

IO —
max; j |aj|

where uj; is the /,j-th element of U

Consider the factorization PA = LU with partial row pivoting w.r.t. taking the

maximum element for a matrix A of dimension n x n. Gaussian elimination gives
P, L, U that satisfy

[[0A]|
Al
where u is the roundoff unit. If all off-diagonal entries of L are < 1, implying that

there are no ties in the selection of pivots in exact arithmetic, then P = P for
sufficiently small v.

LU = PA+ /A, € O(pu),

This means that Gaussian elimination with partial pivoting is backward stable if p

holds uniformly for matrices with n x n. 38 /61



Recap: LU with row pivoting to maximum element

function [A, P] = myplu(A) 7 In-place LU factorization
[n, m] = size(A); P = eye(n);
for k=1:(n-1) J for variable x(k)
[, sell] = max(abs(A(k:n, k))); 7 select pivot
c = A(k, k:end); d = P(k, :);
A(k, k:end) = A(sell + (k-1), k:end); P(k, :) = P(
sell + (k-1), :);
A(sell + (k-1), k:end) = c; P(sell + k-1, :) = d;
%» calculate multipliers in column k
A((k + 1):n, k) = A((k + 1):n, k)/A(k, k);
for j = (k + 1):n 7 eliminate variable x(k)
A(C(k + 1):n, j) = A((k + 1):n, j) - A((k + 1):
n, k)*xA(k, j);
end
end
end
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Costs: Forward/backward substitution

~ board
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Costs: Forward/backward substitution

~~ board
Forward substitution requires

—1
M multiplications/additions,

n divisons.

Overall: ~ n? floating point operations (flops) ~ costs scale as O(n?)
Similarly, backward substitution has costs that scale as O(n?)

We count flops to estimate the computational time/effort. What else matters?
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Costs: Forward/backward substitution

~~ board
Forward substitution requires

—1
M multiplications/additions,

n divisons.

Overall: ~ n? floating point operations (flops) ~ costs scale as O(n?)
Similarly, backward substitution has costs that scale as O(n?)

We count flops to estimate the computational time/effort. What else matters? Besides
floating point operations, computer memory access has a significant influence on the
efficiency of numerical methods.

40 /61



Costs

For forward [backward] substitution at step k there are ~ k [(n — k)] multiplications
and subtractions plus a few divisions. The total over all n steps is

z"’: k € O(n?)
k=1

~~ the number of floating-point operations (FLOPs) scales as O(n?)

For Gaussian elimination, at step k, there are =~ (n — k)? operations. Thus, the total

scales as
n

Z(n — k)? € O(n®)

k=1
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Directly applying Gaussian elimination scales as
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Directly applying Gaussian elimination scales as

O(n®)
Computing LU decomposition scales as

O(n®)
Forward /backward substitution scales as

O(n?)

LU + forward/backward scales as
O(n®)

~» why useful? can reuse LU for other b

42 /61



Choleski factorization

A matrix is symmetric positive definite (spd), if A= AT and for all x € R", x # 0, the
inner product (Ax, x) > 0.

For spd matrices, we can compute the factorization:
A=LDL",

where L is a lower triangular matrix with 1's on the diagonal, and D is a positive
diagonal matrix.

The Choleski factorization is obtained by multiplying the square root of D (which
exists!) with L: B
A=LL".
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Algorithms for Choleski factorization are about twice as fast as Gaussian elimination
but also scale as O(n3).

>> A = randn (1000, 1000)*diag(linspace(l, 10, 1000))
randn (1000, 1000); A = A'xA;

>> tic; chol(A); toc

Elapsed time is 0.004863 seconds.

>> tic; 1lu(A); toc

Elapsed time is 0.010114 seconds.
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Special matrices in Matlab

Matlab tests for special matrices automatically and chooses a good

decomposition /solver

Use QR solver

YES

S A permuted
tnangular?

Use tnangular
solver

Use permuted
tnangular solver

45 /61



Special matrices in Matlab

Matlab tests for special matrices automatically and chooses a good
decomposition /solver

Use permuted

tnangular solver

Is A permuted

tnangular?

Use
Hessenberg

soiver

Is the diagonal

NO

Use LDL solver

of A all positive

or all negative?
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Special matrices in Matlab

Matlab tests for special matrices automatically and chooses a good
decomposition /solver

NO

s the diagonal NO.| useLDL so
Jse LUL Solver

of A all positive

or all negative?

Use LU solver

Use .
Cholesky Does Cholesky
OIS Y ';LI"”"";[J"‘

solver I
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Conclusions /summary

» The condition of solving a linear system Ax = b is determined by the condition
number of the matrix A

k(A) = [|A[[|A7Y] > 1

» Gaussian elimination can be used to solve general square linear systems and
produces a factorization, if it exists

A=LU
» Partial pivoting is sufficient for existence and stability of the LU decomposition
PA= LU, A=LU

» The Cholesky factorization A = LLT exists if A is spd and then it is the better
choice (cheaper) than LU

» Rely on the highly optimized routines in Matlab (LAPACK) and other software
packages than implementing these algorithms yourself ~~ take the course on HPC

next spring to learn more about the efficient implementation of these algorithms
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Sparse matrices
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Sparse matrix

» A matrix where a substantial fraction of the entries are zero is called a sparse
matrix. Typically, only O(N) non-zero entries in an N x N matrix are allowed for
sparse algorithms to show benefit over dense linear algebra routines.

» If we have only O(N) non-zero entries, then store only those; in contrast to dense
matrices. Exploiting sparsity is important (life saving) for large matrices

» The structure of a sparse matrix refers to the set of indices i, such that |a;j| > 0
and is visualized in Matlab with spy

» The structure of sparse matrices comes from the nature of the problem, e.g., in an
inter-city road transportation problem it corresponds to the pairs of cities
connected by a road.

» In fact, just counting the number of non-zero elements is not enough: the sparsity
structure is the most important property that determines whether an efficient
method exists 48 / 61



Banded matrices

Banded matrices are a very special but common type of sparse matrices, e.g.,

tridiagonal matrices

Chl

by

0

For example, think of the Laplace problem u”(x) = f(x) on the unit interval and a

finite-difference discretization

€1

a2

bn

0

Ch—1
dn

u(x + h) —2u(x) 4+ u(x — h)

U”(X) ~

There exist special techniques for banded matrices that are much faster than the

general case, e.g., only 8n FLOPs

h2
on an equidistant grid. This leads to a system of equations with a tridiagonal matrix
~~ Numerical Methods Il (Spring semester)
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Decomposing sparse matrices

There also are general methods for dealing with sparse matrices, such as the sparse LU
factorization.

How well they work depends on the structure of the matrix. WWhat could go wrong?
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Decomposing sparse matrices

There also are general methods for dealing with sparse matrices, such as the sparse LU
factorization.

How well they work depends on the structure of the matrix. WWhat could go wrong?

When factorizing sparse matrices, the factors, e.g., L and U, can be much less sparse
than A ~ fill-in

For many sparse matrices, there is a large fill-in

» Pivoting can help to reduce fill-in

» However, often “good” pivoting for sparsity leads to less stable behavior and vice
versa

50/ 61



Sparse matrices in Matlab

% S = sparse(i,j,v) generates a sparse matrix S

% from the triplets i, j, v with S(i(k),j(k))
>> A = sparse([1 2 2 4 4], [3 1 4 2 3], 1:5)

A =
(2,1) 2
(4,2) 4
(1,3) 1
(4,3) 5
(2,4) 3
>> whos A
Name Size Bytes Class
Attributes
A 4x4 120 double
>> nnz (A)
ans =

5

sparse

5161



% S = sparse(i,j,v,m,n,nz) allocates space for nz
nonzero elements.

%» Use this syntax to allocate extra space for nonzero
values to be filled in after construction.

>> A = sparse([], [1, [1, 4, 4, 5);

>> A(2, 1) = 2; A4, 2) = 4; A1, 3) = 1; A4, 3) = 5;
A(C2, 4) = 3;

>> full (A)

ans =

S O N O
> O O O
o O O -
O O W o
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%» generate a random sparse matrix with density 107 and
size 100x100

>> B = sprand (100, 100, 0.1);

%» the sparse block tridiagonal matrix of order n~2
resulting from discretizing Poisson's equation with
the 5-point operator on an n-by-n mesh.

>> X = gallery('poisson', 10);

>> spy (B);

>> spy (X);
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60 [
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50 *‘
@

(a) matrix B

10

20
30
40
50 |
60
70 |
80
90

100 - L L L L
0 20 40 60 80 100

nz = 460

(b) matrix X
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>>
>>
>>

>>
>>
>>

[L, U,
spy (L) ;
spy (U) ;

(L, U,
spy (L) ;
spy (U) ;

P]

P]

1lu(B) ;

lu(X);
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0
10
20 e @
30
40
50 =L
60 o W
70
80
90
100 100
0 20 40 60 80 100

(a) factor L of B

10 -

20

30

40 ¢

50 |

60

70 |

80

90

20 40 60 80 100
nz = 3643

(b) factor U of B

A lot of fill-in! Factors L and U are not sparse, even though matrix B is sparse
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10 fq 10 +

20t 20 t
30 30
40 40
50 50 |
60 60
70 70

80 80 |

90 90 |

100 1 1 1 1 100 1 1 1 1
0 20 40 60 80 100 0 20 40 60 80 100
nz = 1009 nz = 1009

(a) factor L of X (b) factor U of X

Though better than for matrix B with random sparsity structure, there still are many

more non-zero entries in the factors of X than in X itself.
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Changing the sparsity structure via re-ordering the matrix can help to reduce fill-in.
For example, in Matlab the sparse reverse Cuthill-McKee ordering is implemented.

The re-ordered matrix tends to have its nonzero elements closer to the diagonal. This
is a good preordering for LU or Cholesky factorization of matrices.

>> p = symrcm(B);

>> spy (B(p, p));

>> [L, U, P] = 1u(B(p, p));
>> spy (L) ;

>> spy (U);

>> p = symrcm(X)

>> spy (X(p, p));

>> [L, U, P] = 1u(X(p, p));
>> spy (L) ;

>> spy (U);
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20 |

30

40 |

50

60

70

80

90 |

100

(a) re-ordered B matrix

10 1

20 r

30

40

50 |

60 |

70 fe

80 r

90 K

100

0 20 40 60 80 100

nz = 3238

(b) factor L of re-ordered B

» Notice how the non-zero elements tend to be closer to the diagonal of the

re-ordered B compared to the original B
» The fill-in is reduced from ~ 3500 to ~ 3200 non-zero entries; reduction of < 10%
» |t is hard to find a good ordering for matrix with a random sparsity structure
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10 + 10 |+

20 t 20 t
30 f 30 |
40 t 40 t
50 f 50 |
60 f 60 |
70t 70 t
80 f 80 |

90 90 |

100 L L L L 100 L L L L
0 20 40 60 80 100 0 20 40 60 80 100
nz = 460 nz = 805

(a) re-ordered X matrix (b) factor L of re-ordered X

» Non-zero entries of re-ordered X are closer to the diagonal than for the original X

» Fill-in is reduced by a roughly 20% from ~ 1000 to ~ 800 non-zero entries
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Conclusions /summary

While there are general techniques for dealing with sparse matrices that help greatly, it
all depends on the structure of the matrix

Pivoting has a dual, sometimes conflicting goal:

1. Reduce fill-in, i.e., improve memory use: Still active subject of research!

2. Reduce roundoff errors, i.e., improve stability. Typically some threshold pivoting is
used only when needed

For many sparse matrices iterative methods (later) are required when large fill-in.
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Feedback cards

Upload slides before class

Neater handwriting and going slower when writing on board
Define terms clearly instead of assuming everyone knows
More intuitive explanations and motivations

Show examples in Matlab rather than just on slides

TA sessions

vVvyvyvVvYvyyvyy

Code examples are interesting

6261



L east-squares problems
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| east-squares problems

Given data points/measurements
(ti,b;)), i=1,...,m
and a model function ¢ that relates t and b:
b=ao(t; x1,...,%n),

where x1,...,x, are model function parameters. If the model is supposed to describe
the data, the deviations/errors

Aj=b;i — o(ti,x1, ..., Xn)

should be small. Thus, to fit the model to the measurements, one must choose
X1,...,Xn appropriately.
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| east-squares problems

~~ visualization on board
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| east-squares problems

east squares: Find x1,...,Xx, such that

1 m
5 Z A? — min
i=1

Weighted least squares: Find xg,...,x, such that
1 & (A,-)2 _
LSS (2) S min
2 — Jb;

where db; > 0 contain information about how much we trust the ith data point.
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Least-squares problems (cont'd)

Alternatives to using squares:

L' error: Find xq,...,x, such that

m

Z |A;| = min

=1

Result can be very different, other statistical interpretation, more stable with respect
to outliers.

L> error: Find xq,...,x, such that

max |A;| — min
1<i<m

Keeps the worst-case error small (risk averse)

6 /34



Numerical Methods |
MATH-GA 2010.001/CSCI-GA 2420.001

Benjamin Peherstorfer
Courant Institute, NYU

Based on slides by G. Stadler and A. Donev

1/38



Today

Last time
» Cost analysis of LU decomposition
» Solving linear systems with sparse matrices

» Least-squares problems

Today

» Least-squares problems

Announcements

» Homework 2 has been posted; is due next week Mon, Oct 7 before class
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Recap: Least-squares problems

Given data points/measurements
(ti,b;)), i=1,...,m
and a model function ¢ that relates t and b:
b=ao(t; x1,...,%n),

where x1,...,x, are model function parameters. If the model is supposed to describe
the data, the deviations/errors

Aj=b;i — o(ti,x1, ..., Xn)

should be small. Thus, to fit the model to the measurements, one must choose
X1,...,Xn appropriately.
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Recap: Least-squares problems

east squares: Find x1,...,Xx, such that

1 m
5 Z A? — min
i=1

Weighted least squares: Find xg,...,x, such that
1 & (A,-)2 _
LSS (2) S min
2 — Jb;

where db; > 0 contain information about how much we trust the ith data point.
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Linear least-squares
We assume (for now) that the model depends linearly on x1,..., x,, e.g.:

o(t; x1,...xn) = a1(t)xy + ... + an(t)xy

~ board

Bt xx) = x Tt + R eqlt) [ ot goinds (i b) iers
A‘= b - (x.‘hz + X, ej(f,)\

A2 o bz - (x, 22 + Z?(Ta)
A:g b3 - (K1+‘5 t & 3?({33')
" i A L vabiows

X\ Xg = 3 @‘?“‘3""‘*3
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Linear least-squares
Choosing the least square error, this results in

min ||Ax — b||?,
X

where x = (Xl, ce 7X,,)T, b= (bl, ceey bm)T, and djj = aj(t,-).

In the following, we study the overdetermined case, i.e., m > n ~~ board

L
l
2

A=\ eq®) | x=|
*—g @?(TQJ I

A
€M$ C i €l

e?'fc{')\ < b i b' ‘\
y
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Linear least-squares

Different perspective:
Consider non-square matrices A € R™*" with m > n and rank(A) = n. Then the

system
Ax =b

does not necessarily have a solution (more equations than unknowns). We thus instead
solve a minimization problem

min ||Ax — b||> = min &(x)

How can we solve this optimization problem?
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Because we consider the Euclidean norm ||.||2, we obtain
®(x) = (Ax —b)" (Ax —b) =x" AT Ax —
which is quadratic in x if A has full rank ~~ convex in x

Therefore, the critical point is the global optimum
Vo(x)=AT(2(Ax — b)) =0
which satisfies the normal equations
ATAx = A'b.

If Ais full rank, rank(A) = n, then AT A is positive definite and the normal equations
can be solved with the Cholesky factorization
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Because we consider the Euclidean norm ||.||2, we obtain
®(x) = (Ax —b)" (Ax —b) =x" AT Ax —
which is quadratic in x if A has full rank ~~ convex in x

Therefore, the critical point is the global optimum
Vo(x)=AT(2(Ax — b)) =0
which satisfies the normal equations
ATAx = A'b.

If Ais full rank, rank(A) = n, then AT A is positive definite and the normal equations
can be solved with the Cholesky factorization (warning: we shouldn’t do this, can you
already see why?)

13 /38



A geometry perspective on the normal equations

miyv (\Ax—-b"f, AG(QMXH
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Linear least-squares problems
Solving the normal equations
ATAx = ATb
requires:
» computing AT A (which is O(mn?))

» condition number of AT A? ~~ board

15/38
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Linear least-squares problems
Solving the normal equations
ATAx = ATb
requires:
» computing AT A (which is O(mn?))

» condition number of AT A? ~~ board is square of condition number of A;
(problematic for the Choleski factorization)
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Today

Last time

» Least-squares problems

Today

» |east-squares problems

Announcements

» Homework 2 has been posted; is due next week Mon, Oct 7 before class
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Recap: Linear least-squares

Consider non-square matrices A € R™*" with m > n and rank(A) = n. Then the

system
Ax = b

does not necessarily have a solution (more equations than unknowns). We thus instead
solve a minimization problem

min ||Ax — b||? = min ®(x)

18/34



Recap: Linear least-squares

Consider non-square matrices A € R™*" with m > n and rank(A) = n. Then the
system

Ax =b

does not necessarily have a solution (more equations than unknowns). We thus instead
solve a minimization problem

min ||Ax — b||? = min ®(x)

Solving the normal equations
ATAx = A'b
requires:
» computing AT A (which is O(mn?))

» condition number of AT A? ~ is square of condition number of A; (problematic

for the Choleski factorization)
18 /34



Recap: Least-squares problems

A
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Recap: Linear least-squares problems
Conditioning

Solving the normal equation is equivalent to computing Pb, the orthogonal projection
of b onto the subspace V spanned by columns of A.

Let P: R™ — V be an orthogonal projection onto V C R”. For b € R™, denote by 6
the angle between b and V defined by
|6 — Pb]|>

16l

The relative condition number of projecting b onto V' with P with respect to the
2-norm (b is input) is

sin(6) =

s
cos(0(b))

Krel(b) = 1P|2.

~ board

20 /34



P Km =% (99\“45:94% Q’)rﬂ cee, fo \/ g”?"'—'
For b € R . Jeuok Ohdf( -
befwees o ooV foif s Bﬂe\cﬁ-.cﬁ &g

. _ o~ Pbl,
Sm(03~ “b”z

Thew Kbe velotrve Couttibhors Mowbes G/(P,/a)
wy.f. Z~uguw s

- L,

- - /\\VV
— 2%

g
Dn( " ? XD Y dnﬁe)u,ﬁ.'asfe
(Il ,
gw—p = Tf_(;)” ( Fﬁc)l(

()raséc%'as - P s é{'wm =D d,,qf/ohﬁolo(e

[ 6 ,
2, (0) = (7 | P
) PG) =P
AT b~ Fb L Pl

(bl %= - Phi

M

1 ol12 ( Pbll ©



ieel’ Bl (Pl

__/ E—3

(olt* [ i
= (,_ &/ uf(v) = e (v)

. = Ca—lzv) CH,




Linear least-squares problems

Now for the least-squares problem ||Ax — bl|>. The relative condition number £ in the
Euclidean norm is bounded by

» With respect to perturbations in b:

k2(A)
g ccfs(@)

» With respect to perturbations in A:
Kk < ka(A) + ko (A)? tan(h)

Proof ~~ next week
What are these bounds telling us?

21/34



Linear least-squares problems
Now for the least-squares problem ||Ax — bl|>. The relative condition number £ in the

Euclidean norm is bounded by
» With respect to perturbations in b:

r2(A)
g ccfs(@)

» With respect to perturbations in A:

Kk < ka(A) + ko (A)? tan(h)

Proof ~» next week

What are these bounds telling us?
Small residual problems, small angle 6 cos(f) ~ 1, tan(#) ~ 0: behavior similar to

linear system.
Large residual problems, large angle 6 cos(f) < 1, tan(f) = 1: behavior very different

from linear system because x>(A)? shows up
21/34



How should we solve least-squares problems numerically?

We know from the previous slide that if the residual is large, then the condition « is
much larger than ky(A) (closer to kp(A)?)

» This is a poorly condition problem; however, do we care?
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How should we solve least-squares problems numerically?

We know from the previous slide that if the residual is large, then the condition « is
much larger than ky(A) (closer to kp(A)?)

» This is a poorly condition problem; however, do we care?
» If the residual is large, then our Ax won't explain well the right-hand side b

» This means that “our curve doesn't fit well the data” and we probably should try
to find another space in which to search for a solution (another A with a range
that better approximates the projected right-hand side b)

22 /34



More relevant is the situation with a small residual and then x = k3(A)

» Here we have a well condition problem; so what could go wrong?
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More relevant is the situation with a small residual and then x = k3(A)
» Here we have a well condition problem; so what could go wrong?

» If we choose a numerical method that solves the normal equations
ATAx=A"b

then our problem becomes the problem of solving the linear system with matrix
A" A which has condition number

ko(AT A) = ky(A)?
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More relevant is the situation with a small residual and then x = k3(A)
» Here we have a well condition problem; so what could go wrong?

» If we choose a numerical method that solves the normal equations
ATAx=A"b

then our problem becomes the problem of solving the linear system with matrix
A" A which has condition number

ko(AT A) = ky(A)?

~» we are back in the situation of a poorly condition problem (“solving a linear
system with AT A") even though our original problem (least-squares problem) is
well condition

» Can we do better and solve the least-squares problem (the problem we are
actually interested in) without having to solve a problem with condition that
grows with x3(A)? on the way?

23 /34



The QR decomposition
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Recall that projecting b onto the column span (range) of A was the key step ~~ let's
try to find a numerical method that computes an orthonormal basis q4, ..., q, of the
rank-n column span of A

A= |a; ... a,| e R™", m > n
| |
J
| | ‘ ‘ rn1 e ... fp)
a1 an| = |91 q, 22
L 1L |1
e 5 L fn |
R
with an invertible matrix R so that
span(ai,...,ax) =span(qq,---,qy), k=1,...,n
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ri

r2
r22

R

|l leads to system of equations |

a1 —=riq,

a> =ri2qq + rn2qo

as =rsqy + rn3q, + rzqs

an, =Nnnqq + nnqs + -+ mnq,

What process does this motivate?
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This motivates a process for computing the basis qq, ..., q,

> At step j, we have qy,...,q;_; that span span(as,...,a; 1)
> We want to find q; orthonormal to qq,...,q;_; so that q4,...,q; spans
span(ai, ..., a;)
» Thus, set
T T T
vi=a; —(q1a;)q; — (g2 a;)q, — - — (qj—laj)qj—l
and normalize
Vj
q; =
T vl
Notice that at step j, the quantities qlTaj, quaj, e qJ-T_laj are the values
rj1,--.,rj—1 and rj is responsible for the normalization and set to

Jj—1
i =llaj =Y riaill2
=1

This process is the classical Gram-Schmidt procedure to compute the QR factorization
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This motivates a process for computing the basis qq, ..., q,

> At step j, we have qy,...,q;_; that span span(as,...,a; 1)
> We want to find q; orthonormal to qq,...,q;_; so that q4,...,q; spans
span(ai, ..., a;)
» Thus, set
T T T
vi=a; —(q1a;)q; — (g2 a;)q, — - — (qj—laj)qj—l
and normalize
Vj
q; =
T vl
Notice that at step j, the quantities qlTaj, quaj, e qJ-T_laj are the values
rj1,--.,rj—1 and rj is responsible for the normalization and set to

Jj—1
i =llaj =Y riaill2
=1

This process is the classical Gram-Schmidt procedure to compute the QR factorization
However, this process is numerically unstable!
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Instead of directly computing

vi=a;—(q{a))a, — (g3 3;)q, — -~ — (q/_1a))q;_;
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Instead of directly computing
T T T
vi=a;—(q1a;)q; — (g2 a;)q, — -+ — (CIj_1aj)qJ'_1

based on a;, the modified Gram-Schmidt procedure computes v; iteratively

Vj :aj,
VJ(-2) :vJ(.l) — qlqlTvJ(.l) : "subtract from vj(.l) what is already in q;"
vJ(.3) :vj(.2) — q2q2TvJ(-2) : "subtract from vJ(-2) what is already in @,"

. - -
v, :VJ(_J) _ VJ(_J ) _ qj_lqu_le(_J )

Computing a QR factorization with the modified Gram-Schmidt procedure is stabler
than with the classical Gram-Schmidt procedure. However, even the modified
Gram-Schmidt procedure can lead to vectors qq, ..., q, that are far from orthogonal if
the condition number of A is large (see, Golub et al., Matrix Computations, Section

5.2.9)
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Let's recall what the Gram-Schmidt procedure is doing: It is applying a succession of
triangular matrices R on the right of A so that the resulting matrix

ARR>...R,=Q

R—l

has orthonormal columns and R is upper-triangular.
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Let's recall what the Gram-Schmidt procedure is doing: It is applying a succession of
triangular matrices R on the right of A so that the resulting matrix

ARR>...R,=Q

R—l

has orthonormal columns and R is upper-triangular.

Instead, we could try to find orthonormal matrices (X' X = XX = I) so that

Q... Q:QA=R
Q

is upper-triangular. The product Q... Q2Q1 = Q' is orthonormal too and thus
A= QR a QR factorization of A.

The Householder method judiciously finds the matrices @1, Q>, ..., @, via so-called
Householder reflectors ~~ board. The Householder method is backward stable.

29 /34



The QR factorization

All these three algorithms (classical Gram-Schmidt, modified Gram-Schmidt,
Householder triangularization) have roughly the FLOPs of 2mn? for an m x n matrix

Why would we ever want to use (modified) Gram-Schmidt instead of Householder
triangularization?
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The QR factorization

All these three algorithms (classical Gram-Schmidt, modified Gram-Schmidt,
Householder triangularization) have roughly the FLOPs of 2mn? for an m x n matrix

Why would we ever want to use (modified) Gram-Schmidt instead of Householder
triangularization? Gram-Schmidt can be easier to parallelize, for example (Recall that

best algorithm depends also on what hardware we want to implement it on.)

Every matrix A € R™*™ with m > n has a QR factorization. It is unique if we require
the diagonal elements of R to be positive.
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If m> nand @ € R™*" then we speak of a reduced QR factorization. Otherwise, we
have Q € R™*™ and we speak of a full QR factorization.

>> A = randn (10, 10); [Q, R] = qr(A);
>> size (Q)

ans =

10 10
>> size (R)
ans =

10 10
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>> A = randn (10, 4); [Q, R] = qr(A)
>> size (Q)

ans =

10 10
>> size (R)
ans =

10 4
>>

>> [Q, R] = qr(A, 0); % reduced QR
>> size (Q)
ans =
10 4
>> size (R)
ans =
4 4

32/34



Back to our least-squares problem

One would like to avoid the multiplication AT A and use a suitable factorization of A
that avoids solving the normal equation directly:

A= or=[01@:] || - aiRs

where @ € R™<™ is an orthonormal matrix (QQT = /), and R € R™*" consists of an
upper triangular matrix and a block of zeros.
How can the QR factorization be used to solve the least-squares problem?

33/34



Back to our least-squares problem

One would like to avoid the multiplication AT A and use a suitable factorization of A
that avoids solving the normal equation directly:

A= or=[01@:] || - aiRs

where @ € R™<™ is an orthonormal matrix (QQT = /), and R € R™*" consists of an
upper triangular matrix and a block of zeros.
How can the QR factorization be used to solve the least-squares problem?

mxin |Ax — b||* = mxin 1QT (Ax — b)|? = mxin | [bl ;2R1x] 1%,

= min|[|by — Ryx||* + [|b2|
where Qb = [bll.
b,

Thus, the least squares solution is x = R™1b; and the residual is || bo||.
33/34



Stability of solving least-squares problem with Householder

triangularization

Solving a least-squares problem with A € R"™*" ' m > n and rank(A) = n via QR
factorization computed with Householder triangularization is backward stable.

Use triangular

soiver
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Eigen decomposition
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Eigen decomposition
» For a square matrix A € C"™", there exists at least one \ such that

Ax =) x = (A—Xl)x=0

» Putting the eigenvectors x; as columns in a matrix X, and the eigenvalues A; on
the diagonal of a diagonal matrix A, we get

AX = XA

» A matrix is non-defective or diagonalizable if there exist n linearly independent
eigenvectors, which means that X is invertible

X 1AX =N
A=XAX"1

» The transformation from A to A = X 1AX is called a similarity transformation

and it preserves the eigenvalues.
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» A matrix is unitarily diagonalizable if there exist n linearly independent orthogonal
eigenvectors, i.e., if the matrix X can be chosen to be unitary (orthonormal),
X = U, where U™! = U"
A = UNU"

Note that unitary matrices generalize orthogonal matrices to the complex domain,

so we use adjoints (conjugate transpose) instead of transpose throughout

» Theorem: A matrix is unitarily diagonlizable iff it is normal, i.e., it commutes with
its adjoint:
A7A = AA"

» Theorem: Hermitian (symmetric) matrices, A = A, are unitarily diagonalizable
and have real eigenvalues.
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» The usual eigenvectors are more precisely called right eigenvectors. There are also
left eigenvectors corresponding to a given eigenvalue A

y"a=)xy" = Ay =)y,
YHPA=AY"

with conjugate \ of \

» For a matrix that is diagonalizable, observe that
YH _ X—l

and so the left eigenvectors provide no new information

» For unitarily diagonalizable matrices, Y = (X 1) = (X")H = X = U, so that
the left and right eigenvectors coincide.
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Numerically finding eigenvalues

For a matrix A € C"*" (potentially real), we want to find A € C and x # 0 such that
Ax = Ax.

Most relevant problems:
» A symmetric (and large)
» A spd (and large)

» A stochastic matrix, i.e., all entries 0 < a;; < 1 are probabilities, and thus

Zja,-j = 1.
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How hard are they to find numerically?
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How hard are they to find numerically?

» This is a nonlinear problem.
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How hard are they to find numerically?

» This is a nonlinear problem.

» How difficult is this? Eigenvalues are the roots of the characteristic polynomial.
Also, any polynomial is the characteristic polynomial of a matrix ~~ For matrices
larger than 4 x 4, eigenvalues cannot be computed in closed form (Abel's

theorem).
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How hard are they to find numerically?

» This is a nonlinear problem.

» How difficult is this? Eigenvalues are the roots of the characteristic polynomial.
Also, any polynomial is the characteristic polynomial of a matrix ~~ For matrices
larger than 4 x 4, eigenvalues cannot be computed in closed form (Abel's

theorem).

» Must use an iterative algorithm ~~ this is fundamentally different from what we
have seen previously when solving systems of linear equations! These algorithms
(LU, QR) give the exact solution in exact arithmetic in finite number of steps. We

cannot expect something similar for computing eigenvalues!

7/60



Condition of finding eigenvalues of a matrix

The absolute condition number of determining a simple eigenvalue \g of a matrix
A € C"*"™ with respect to the || - ||2 is

I iy
oLy texy)

x|yl
and the relative condition number is

Kabs —

Al
Ro cos(Z(x,y))]

where x is an eigenvector of A for the eigenvalue Ao (Ax = Aox) and y an adjoint
eigenvector (Ay = \gy).

Krel

Sketch of proof ~» board ~~ next time

(see also Deuflhard, Theorem 5.2)
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Interpretation

Perturbations of order  in entries of matrix A induce changes of the order
OA = §/ cos(Z£(x0,Y¥0))

In particular, for normal matrices* (AA" = A" A), we have xo = y, and thus
/(x0,Y¥o) = 0 and thus cos(Z£(xg, yy)) = 1, which means ks = 1, which can be
considered well conditioned

Finding non-simple eigenvalues can have very high absolute condition number (but can
still be done numerically). For a detailed treatment have a look at textbook by Golub

et al. on Matrix Computations.

*Equivalent: Have orthonormal eigenbasis of C; diagonalizable by unitary matrix.
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Bounding error in eigenvalue computation
Let A € C™" be a Hermitian matrix and let (3\,)“() be a computed approximation of
an eigenvalue/eigenvector pair (A, x) of A. Defining the residual

F=Ax — %, x#£0,

it then follows that

A r
min |A — \j| < HAH2 :
Ai€a(A) %]

where o(A) = {\|\ is an eigenvalue of A} is the spectrum of A.

Proof ~~ board

What is special about this bound?
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Bounding error in eigenvalue computation
Let A € C™" be a Hermitian matrix and let (3\,)“() be a computed approximation of
an eigenvalue/eigenvector pair (A, x) of A. Defining the residual

F=Ax — %, x#£0,

it then follows that

A r
min |A — \j| < HAH2 :
Ai€a(A) %]

where o(A) = {\|\ is an eigenvalue of A} is the spectrum of A.

Proof ~~ board

What is special about this bound?
» This is an a posteriori bound that bounds the error after we have computed the
result
» We will see many more residual-based a posteriori bounds (broadly speaking: the
residual is something we can compute, and if the problem is “well-behaved” then
the norm of the residual is a reasonable bound of the norm of the error.) 10/60



Condition of computing eigenvectors

» The condition of computing eigenvector x; for an eigenvalue \; depends on the
separation between the eigenvalues

1
minizj [Ai = Ajl

K =
(Quarteroni et al., Section 5)

» Computing x; can be ill-conditioned if some eigenvalue A; is “very close” to the
eigenvalue A;

» This indicates that multiple eigenvalues require care. Even for Hermitian matrices
eigenvectors can be hard to compute
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The Power Method
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Let A € C"™" be diagonalizable matrix and A1 be a simple eigenvalue with
(Al > [A2] = - = |An]

Let xg be an initial guess that is not orthogonal to the eigenspace of A1, then xy
obtained via the iterations

AX/<

Xi+1 = Zi+1/ || Zks1)2

~—~~
—t
~—

Zk+1

—~~
N
~—

will converge to the normalized eigenvector of A corresponding to A\; for kK — .
This process is called the power method.

Proof ~~ board
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Power method (cont'd)
Start with initial guess xg and then iterate

» Compute matrix-vector product and normalize it

- Axyp g
|Ax_1]|

Xk

» Obtain eigenvalue estimate (note that ||xx|| = 1)
)\gk) — xI Ax,

» Test for convergence? How?
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Power method (cont'd)
Start with initial guess xg and then iterate
» Compute matrix-vector product and normalize it

Axj_1
|Ax_1]|

X =

» Obtain eigenvalue estimate (note that ||xx|| = 1)
)\gk) — xI Ax,
» Test for convergence? How? Compute residual

ri = AXk — A(lk)xk

and terminate if the error estimate is small enough (bound if A Hermitian,
heuristic otherwise)

mm])\ —)\(k)] < 7] < €
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Today

Last time
» Computing eigenvalues
» Perturbation bounds

Today

» More on computing the eigenvalues

Announcements

» Homework 3 posted, is due Mon, Oct 21 before class
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Numerically finding eigenvalues

For a matrix A € C"*" (potentially real), we want to find A € C and x # 0 such that
Ax = Ax.

Most relevant problems:
» A symmetric (and large)
» A spd (and large)

» A stochastic matrix, i.e., all entries 0 < a;; < 1 are probabilities, and thus

Zja,-j = 1.

16 / 68



How hard are they to find numerically?
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How hard are they to find numerically?

» This is a nonlinear problem.

» How difficult is this? Eigenvalues are the roots of the characteristic polynomial.
Also, any polynomial is the characteristic polynomial of a matrix ~~ For matrices
larger than 4 x 4, eigenvalues cannot be computed in closed form (Abel's

theorem).

17 /68



How hard are they to find numerically?

» This is a nonlinear problem.
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Also, any polynomial is the characteristic polynomial of a matrix ~~ For matrices
larger than 4 x 4, eigenvalues cannot be computed in closed form (Abel's

theorem).

» Must use an iterative algorithm
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How hard are they to find numerically?

» This is a nonlinear problem.

» How difficult is this? Eigenvalues are the roots of the characteristic polynomial.
Also, any polynomial is the characteristic polynomial of a matrix ~~ For matrices
larger than 4 x 4, eigenvalues cannot be computed in closed form (Abel's

theorem).

» Must use an iterative algorithm ~~ this is fundamentally different from what we
have seen previously when solving systems of linear equations! These algorithms
(LU, QR) give the exact solution in exact arithmetic in finite number of steps. We

cannot expect something similar for computing eigenvalues!
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Condition of finding eigenvalues of a matrix

The absolute condition number of determining a simple eigenvalue \g of a matrix
A € C"*"™ with respect to the || - ||2 is

I iy
oLy texy)

x|yl
and the relative condition number is

Kabs —

Al
Ro cos(Z(x,y))]

where x is an eigenvector of A for the eigenvalue Ao (Ax = Aox) and y an adjoint
eigenvector (Ay = \gy).

Krel

Sketch of proof ~~ board ~~ finish proof sketch

(see also Deuflhard, Theorem 5.2)
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The Power Method
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Recap: Power method
Let A € C"™*" be diagonalizable matrix and A1 be a simple eigenvalue with
(Al > [Aa] = -+ = |An]

Let xg be an initial guess that is not orthogonal to the eigenspace of A1, then x
obtained via the iterations

Zji11 — AXk (3)

Xkt+1 = Zk+1/||Zk+1]|2 (4)

will converge to the normalized eigenvector of A corresponding to A\ for k — oc.
This process is called the power method.

Proof ~ last week
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Recap Power method (cont'd)
Start with initial guess xg and then iterate
» Compute matrix-vector product and normalize it

Axj_1
|Ax_1]|

X =

» Obtain eigenvalue estimate (note that ||xx|| = 1)
)\gk) — xI Ax,
» Test for convergence? How? Compute residual

ri = AXk — A(lk)xk

and terminate if the error estimate is small enough (bound if A Hermitian,
heuristic otherwise)

mm])\ —)\(k)] < 7] < €
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The power method converges linearly

Ixk = (2va)ll € O((IA2l/1Aa])")

If A is normal, then the eigenvalue estimate converges a bit faster but still linearly
k
AT =l € O((1Ral/1Ma])*)

The power method is fast when the dominant eigenvalue is well separated from
the rest

This conclusion is rather general for all iterative methods, convergence is often
good if eigenvalues are well separated and bad otherwise

The power method is typically too slow to be used in practice

22/68
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The inverse power method
For any u not an eigenvalue of A:
» The eigenvectors of (A — uul)™! are the same as the eigenvectors of A
> The eigenvalues of (A — pl)™1 are {(\j — p)~1} ~ why useful?
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The inverse power method
For any u not an eigenvalue of A:
» The eigenvectors of (A — 1)~ are the same as the eigenvectors of A
> The eigenvalues of (A — pl)™1 are {(\j — p)~1} ~ why useful?
Thus, if we have a good estimate u of an eigenvalue A, of matrix A, then

Aj— )7t
Ay —pf 7t

<1, J#J

and thus the power method applied to (A — j/)~! converges rapidly to v :

~—~~
&
~—

(A—pl)y 1 =xk
Xk+1 :.Yk+1/Hyk—|—1H

—~~
(@)
~—

» What do we need to keep in mind?
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The inverse power method
For any 1 not an eigenvalue of A:

» The eigenvectors of (A — 1)~ are the same as the eigenvectors of A
> The eigenvalues of (A — pl)™1 are {(\j — p)~1} ~ why useful?
Thus, if we have a good estimate u of an eigenvalue A, of matrix A, then
A=l
Ay —pl

<1, J#J

and thus the power method applied to (A — j/)~! converges rapidly to v :

(A—pl)ypi1 =X« (5)
Xk+1 =Yrr1/ Y katll (6)

» What do we need to keep in mind? Costs: Requires matrix solve in every iteration;
same matrix, different right-hand sides (~» LU and Cholesky decompositions)

» This algorithm is used in practice to find eigenvectors if the eigenvalues are
already known

23/68



Rayleigh quotient iterations

» The convergence speed of the inverse power method increases with a better
eigenvalue estimate ~~ what could we do?
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Rayleigh quotient iterations

» The convergence speed of the inverse power method increases with a better
eigenvalue estimate ~~ what could we do?

» Combine estimating eigenvalue and eigenvector ~~» Rayleigh quotient iteration

Accelerated version of the inverse power method using changing shifts:
» Choose starting vector x° with ||x°|| = 1. Compute A(®) = (x9)T Ax?.
» Fori=0,1,... do

(A= XDl = x| el = etk

» Compute Akt = (k)T Ayk+1 and go back.

If it converges (depends on starting point), then it converges cubically ~~ details in
Trefethen & Bau

(This is the only method we will see that converges so quickly!)

24 /68



The QR algorithm
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The QR algorithm

The power method is not well suited for finding all eigenvalues of a matrix A

ldea of the QR method: Build a matrix A’ that shares the eigenvalues of A via
similarity transformations

A=PlAP, A, A’ have the same eigenvalues

and for which we know the eigenvalues. ~~ What matrix would we like A’ to be?
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The QR algorithm

The power method is not well suited for finding all eigenvalues of a matrix A
ldea of the QR method: Build a matrix A’ that shares the eigenvalues of A via
similarity transformations

A=PlAP, A, A’ have the same eigenvalues

and for which we know the eigenvalues. ~~ What matrix would we like A’ to be?

The QR algorithm for finding eigenvalues is as follows (Ag := A), and for k =0,1,.. .
» Compute QR decomposition of Ay, i.e., Ax = QRk.
> Ak_|_1 = R Qx, k := k+ 1 and go back.

All iterates A1, Ay, ... have the same eigenvalues because
QuAk11Q) = QR Qk Q) = QxR = Ak

and Ay converges to a diagonal matrix if A is Hermitian and eigenvalues well separated
26 /68



Intuition why QR method converges

Think of it as the power method applied to many linearly independent vectors

zl(o), e ,z,go) at once

Define

| |
70 = zfo) Z,SO)

| |
ZW) = AkzO = |0 )

Recall that in the power method we had to re-normalize after each step ~» now we
have multiple vectors and therefore also need to orthogonalize ~~ QR

and define

27/68



With orthogonalization after each iteration, we obtain the algorithm
1. Z(k) = AQ(k—-1)
2. QU R(K) — z(k)
3. Alk) — (Q(k))TAQ(k)

~> equivalent to the QR method

Summary: Let the QR algorithm be applied to a symmetric real matrix A with well
separated eigenvalues

ALl > Ao > - > A

and eigenvectors matrix V that has nonsingular leading principal submatrices (all
upper-left 1 x 1, 2 x 2, ... submatrices). Then, for k — oo, the iterates AlK) converge

linearly in
P\j+1\k)
O ( max
(J’ [Aj1

to diag(A1, ..., ) and Q) to V (up to +)
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The convergence of the QR algorithm is closely related to that of the power
method: It is only fast if all eigenvalues are well separated

For more general (e.g., non-symmetric) matrices in complex arithmetic, the
algorithm converges to the Schur decomposition A = UTU" with triangular
matrix T and unitary matrix U ~~ read eigenvalues from diagonal of T

The work per iteration of the basic QR algorithm that we discussed is in O(n3)
because of the QR factorization in each step; the power method has cost O(n?)
(mat-vec) per iteration

There are several key improvements to the basic QR algorithm that bring down
the cost per iteration to O(n?) (Hessenberg matrices)

There also can be shifts (compare power method) to accelerate the convergence

As always with linear algebra routines, the “best” are implemented in LAPACK

and can be called via Matlab, numpy, etc
29 /68



Eigenvalues in Matlab

e In MATLAB, sophisticated variants of the QR algorithm (LAPACK
library) are implemented in the function eig:

N = eig(A)

[X, Al = eig(A)

@ For large or sparse matrices, iterative methods based on the Arnoldi
iteration (ARPACK library), can be used to obtain a few of the
largest /smallest /closest-to-u eigenvalues:

N\ = eigs(A, Neigs)

[ X, \] = eigs(A, Neigs)
@ The Schur decomposition is provided by [U, T] = schur(A).

30,68



Conclusions/summary

Eigenvalues are well-conditioned for unitarily diagonalizable
matrices (includes Hermitian matrices), but ill-conditioned for nearly
non-diagonalizable matrices.

Eigenvectors are well-conditioned only when eigenvalues are
well-separated.

Eigenvalue algorithms are always iterative.

The power method and its variants can be used to find the largest
or smallest eigenvalue, and they converge fast if there is a large
separation between the target eigenvalue and nearby ones.

Estimating all eigenvalues and/or eigenvectors can be done by
combining the power method with QR factorizations.

MATLAB has high-quality implementations of sophisticated variants
of these algorithms. 31 /68
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Today

Last time

» Computing eigenvalues

Today

» Singular value decomposition

Announcements

» Homework 3 posted, is due Mon, Oct 21 before class
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Recap: Power method for computing eigenvectors and eigenvalues

Let A € C"" be diagonalizable matrix and \; be a simple eigenvalue with
(ALl > [A2[ = = |An]

Let xg be an initial guess that is not orthogonal to the eigenspace of A1, then xy
obtained via the iterations

Zii1 — AXk (7)

Xier1 = Zr1/ | 2k l2 (8)

will converge to the normalized eigenvector of A corresponding to A\ for k — oc.

This process is called the power method.
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Recap: The QR algorithm

The power method is not well suited for finding all eigenvalues of a matrix A

ldea of the QR method: Build a matrix A’ that shares the eigenvalues of A via
similarity transformations

A=PlAP, A, A’ have the same eigenvalues

and for which we know the eigenvalues. ~~ What matrix would we like A’ to be?
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Recap: The QR algorithm

The power method is not well suited for finding all eigenvalues of a matrix A
ldea of the QR method: Build a matrix A’ that shares the eigenvalues of A via
similarity transformations

A=PlAP, A, A’ have the same eigenvalues

and for which we know the eigenvalues. ~~ What matrix would we like A’ to be?

The QR algorithm for finding eigenvalues is as follows (Ag := A), and for k =0,1,.. .
» Compute QR decomposition of Ay, i.e., Ax = QRk.
> Ak_|_1 = R Qx, k := k+ 1 and go back.

All iterates A1, Ay, ... have the same eigenvalues because
QuAk11Q) = QR Qk Q) = QxR = Ak

and Ay converges to a diagonal matrix if A is Hermitian and eigenvalues well separated
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Singular Value Decomposition (SVD)
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Let A€ C™*". A singular value decomposition of A is a factorization

A=UxzVH,
where
U e C™ ™ is unitary (9)
V € C"™" is unitary (10)
Y € R™ " is diagonal. (11)

Additionally, the diagonal entries o; of X are non-negative and in non-decreasing order
so that 01 > 09 > -+ > 0p > 0 where p € min(m, n).

» The diagonal matrix 2 is real and has the same shape as A even when A is not
square

» The matrices U and V are always square
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- &

Vv U

[Edited from figure by Georg-Johann, Wikipedia]

The image of the unit sphere un-
der a map A is a hyperellipse (in

R™). Thus, with A = uxzvH
have

» The unitary map VH
preserves the sphere
(rotating a sphere is a
sphere)

» The diagonal matrix X
stretches the sphere into a
hyperellipse aligned with the
canonical basis

» The unitary map U rotates
or reflects the hyperellipse
without changing shape
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Existence and uniqueness of SVD

Theorem: Every matrix A € C™*" has a singular value decomposition. Furthermore,
the singular values {aj} are uniquely determined, and, if A is square and the o; are
distinct, the left and right singular vectors {u;} and {v;} are uniquely determined up to

complex signs (i.e., complex scalar factors of absolute value 1.) Proof in Trefethen &
Bau.

Reduced SVD

mxn mxn
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SVD vs. eigenvalue decomposition

SVD expresses a matrix in proper bases for domain and range space to represent it as a

diagonal matrix
A=UzVv"

We have seen something similar with eigenvectors: A non-defective square matrix A
can be expressed as a diagonal matrix of eigenvalues A if the range and domain are
presented in a basis of eigenvectors

A= XANX"1

39/ 62



There are fundamental differences between the SVD and eigenvalue decomposition

» SVD uses two different bases (left and right singular vectors); eigenvalue
decomposition uses just one (eigenvectors)

» SVD uses orthonormal bases, whereas eigenvalue basis generally is not orthogonal

» Not all matrices (even square ones) have an eigendecomposition, but all matrices
(even rectangular ones) have a singular value decomposition

Typically, eigenvalues tell us something about the behavior of iterative processes that
involve the matrix A such as A¥ and e

Singular values tend to tell us something about A itself

40 /62



The SVD and matrix properties

In the following:
» The matrix A is of dimension m X n
» p = min(m,n)

» r < pis the number of non-zero singular values of A

We now list how the SVD is related to fundamental properties of the matrix A
» The rank of A is r, the number of non-zero singular values.

» The range (column span) of A is span(uy, ..., u,), the kernel is span(v,+1,..., vp)

> [|All2 =01 and [|AlF = /of + - + 07

det(4)| =[] o
» The non-zero singular values of A are the square roots of the non-zero eigenvalues
of AHA and AAH ~s proof

» For square A,
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Full SVD

A=U ¥ v~
N~~~ AN N
mxn mxmmXn nXn

Reduced SVD

A=U x vH
~— =

mxXn mXxXn nXn nXxXn

Rank-revealing SVD of a rank r matrix with dimension m x n

A=U X VvH
N = = =
mxn mXr rXr rXn
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Representing matrices via sums of rank-one matrices
Represent A as a sum of M rank-one matrices

A — M AU)
j=1

There are many possibilities of choosing AU)
» Let AU) contain the j-th of the m rows of A
> Let AU) contain the j-th of the n columns of A
» Let AU) contain one of the mn entries of A
> ..

What is a property of a “sum representation” that we like to see in numerical analysis?
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Representing matrices via sums of rank-one matrices
Represent A as a sum of M rank-one matrices
A — M AU)
j=1
There are many possibilities of choosing AU)
» Let AU) contain the j-th of the m rows of A
> Let AU) contain the j-th of the n columns of A

» Let AU) contain one of the mn entries of A
> .

What is a property of a “sum representation” that we like to see in numerical analysis?
~» We can truncate it after a few terms and get a good approximation

A ~ ZJM_/1 AU)

with M' < M

43 /62



SVD for low-rank approximation
Consider the SVD A = UXVH  then

r
_ . H
A= E ojujV
Jj=1

Let us truncate the sum after 1 < g < r terms and define

q
Ag =D _ojuv)’
j=1
Then, Aq is a best rank g approximation of A in the || - |2 norm
IA=Agl2 = _inf [|A—B]?>
BeCan
rank(B)<q

~~ proof
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