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Organization

I Time and location: Mondays and Wednesdays 4:55–6:10PM, WWH 1302

I O�ce hours: Mondays, 6.10 – 7.10pm, stop by or make an appointment (please
email). My o�ce number is WWH #421

I Course webpage: https://docs.google.com/document/d/1VxdM4s-wiV-_
C4uBDrP4ioiOdscfLwim8o1mokuj2oQ/edit?usp=sharing

You need to be logged in with your NYU-Google account to access it

I Brightspace https://brightspace.nyu.edu/d2l/home/400947
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Required work and grading:
I 7 homework assignments (60% of your grade).

I These will be mixed paper&pencil and computational/programming. You hand in
solutions in LaTeX and Matlab code

I Grader is Qi (Winston) Liang, lq504@nyu.edu
I Grader’s o�ce hour: tbd
I You are welcome to discuss with your colleagues, but you’ve to write up your

solution independently and write every line of code yourself.

I The first homework assignment has been posted.
I Follow the guidelines/rules provided with the homework to present and submit your

solution.
I If you find errors/typos in the slides or homework assignments, please let me know.
I Late homework policy: We understand that there are sometimes unexpected

circumstances. You can hand in one homework late by 24h this semester if you send
me and the grader an email at least 24h before the deadline that your work will be
late.

I A final (40% of grade)

I Expect to write some code too
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Organization issues

Prerequisites:

I Basic linear algebra; calculus; experience in Matlab (or Python or another
programming language)

There is a part II of this class. . .

I . . . in the Spring semester. You should take both parts to get a reasonably
complete overview of Numerical Methods.

I If you consider taking only one semester of Numerical Methods, I recommend
taking Scientific Computing this semester instead of this class.
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Topics covered in Numerical Methods I
Numerical Methods and their Analysis

I Stability; sources of errors; error propagation, representation of numbers in
computers

I Numerical linear algebra: direct solution of sparse/dense linear systems; solution
of least square systems; eigenvalue problems; iterative solution of linear systems

I Nonlinear systems; Newton’s method; Nonlinear least squares

I Numerical optimization

I Interpolation and Approximation

I Numerical integration

Computing Issues

I What makes some computer codes faster than others?

I Where are numerical methods used, and what is their role in science research?

I How large/complicated problems can we solve today? Where are the challenges
and limits of what we can do?
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Topics of Numerical Methods II

Main topics covered in Numerical Methods II in the Spring semester

I Approximation of ordinary di↵erential equations (ODEs)

I Approximation of partial di↵erential equations (PDEs)

I Solvers for the resulting (high-dimensional) discrete problems
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Programming

Programming the methods we discuss is an integral part of this course. To really
understand methods & algorithms, one needs to implement them and experiment with
them.

I Make sure you have access to MATLAB (CIMS, student license), you will need it
for the first homework assignment.

I Alternatives to MATLAB: Octave, Python or Julia.

I We will talk about a few best coding practices, and how to present results.
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Recommended textbooks/literature:

Text books:

I P. Deuflhard, A. Hohmann: Numerical Analysis in Modern Scientific Computing.

An Introduction, 2nd edition, Springer, 2003.

I L. N. Trefethen, D. Bau: Numerical Linear Algebra, SIAM, 1997.

I A. Quarteroni, R. Sacco, F. Saleri: Numerical Mathematics, 2nd edition, Springer,
2007.

I M. Overton: Numerical Computing with IEEE Floating Point Arithmetic, SIAM,
2004.

Matlab/Programming:

I W. Gander, M. J. Gander, F. Kwok: Scientific Computing - An Introduction Using

Maple and MATLAB. Texts in Computation Science and Engineering. Springer,
2014.

I C. Moler: Numerical Computing with Matlab, SIAM, 2007.
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Numerical mathematics

Computer simulations have had a big influence on research and development;
sometimes the ability to simulate phenomena is referred to as the third pillar of science.

Numerical mathematics is a part of
mathematics that develops, analyzes
and applies methods from scientific
computing to

I analysis

I linear algebra

I optimization

I di↵erential equations

I . . .

It has applications accross many
applied sciences, including:

I physics

I economics

I biology

I finance

I . . .
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Development of Numerical Methods at Courant
A few examples. . .

I Eigenvalue problems (Overton)

I Fast multipole method (Greengard, O’Neil, Zorin)

I Finite elements and contact problems (Panozzo, Zorin)

I Methods for studying dynamical systems, multiscale methods (Vanden-Eijnden)

I Methods for free boundary problems in fluid dynamics (Shelley)

I Scalable implicit solvers for viscous flows (Stadler)

I Sampling methods and Uncertainty Quantification (Goodman, Stadler, Peherstorfer)

I Scientific machine learning (Vanden-Eijnden, Stadler, Peherstorfer)

I . . .
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Applications of Numerical Methods at Courant
A few examples. . .

I Simulation and analysis of natural and artificial heart valves (Peskin)

I Simulation of plate tectonics and mantle convection (Stadler)

I The physics of cell’s interiors and their motion (Shelley)

I Optimal complexity wave simulations (Greengard)

I Simulation of blood cells-resolving blood flow (Zorin)

I Plasmas (Stadler, Kaptanoglu)

I . . .
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Seminars
Computational Mathematics and Scientific Computing seminar

I Fridays at 10:00, WWH 1302
I Talks about current research
I https://cims.nyu.edu/dynamic/calendars/seminars/

computational-mathematics-and-scientific-computing-seminar/
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Modeling and Simulation meeting

I Thursdays at 12:30, WWH 1302
I Student-driven meeting on topics related to computational mathematics
I https://math.nyu.edu/dynamic/research/pages/

research-and-training-group-mathematical-modeling-and-simulation/

activities/group-meeting/

Mathematics colloquium

I Mondays at 3:45, WWH 1302
I https:

//math.nyu.edu/dynamic/calendars/seminars/mathematics-colloquium/

Math and data

I Thursdays at 2.00, Auditorium Hall 150, Center for Data Science, NYU, 60 5th
ave.

I Interface of Applied Mathematics, Statistics and Machine Learning
I https://mad.cds.nyu.edu/seminar/
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Condition of a problem

I Consider a generic problem: given F and data/input x , find output y such that

F (x , y) = 0

I Let’s assume there is a unique solution so that we can write

y = f (x) ,

for a function f in the following

I Well-posed: Unique solution + If we perturb the input x a little bit, the solution y

gets perturbed by a small amount.

I Otherwise, the problem is ill-posed; no numerical method can help with that.
(What should we do in such a situation?

 change the problem)
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Condition of a problem (visualization)
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Condition of a problem (intersecting lines)
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Condition of a problem (cont’d)

I Terms such as“little bit” and a “small amount” already point to that we need to
measure something

I Therefore, we assume the map f is given as

f : U ⇢ Rn
! Rm

and we are interested in the norm k · k

I The input error is then

kx � x̂k  � (absolute) kx � x̂k  �kxk (relative)

I Correspondingly we measure the output error f (x)� f (x̂) in k · k (we could also
have looked at a componentwise error)
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Condition of a problem (cont’d)
I Absolute condition number at x is

abs = lim
�!0

sup
kx�x̂k�

kf (x)� f (x̂)k

kx � x̂k

I Relative condition number at x is

rel = lim
�!0

sup
kx�x̂k�

kf (x)� f (x̂)k/kf (x)k

kx � x̂k/kxk

I If f is di↵erentiable in x , then

abs = kf
0(x)k rel =

kxk

kf (x)k
kf

0(x)k ,

where kf
0(x)k is the norm of the Jacobian f

0(x) in the operator norm

kAk = sup
x 6=0

kAxk

kxk
= sup

kxk=1
kAxk
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I Another way to interpret the condition number at x is via the bounds

kf (x̂)� f (x)k  abskx̂ � xk

and
kf (x̂)� f (x)k

kf (x)k
 rel

kx̂ � xk

kxk
,

for infinitesimal � (or x̂ ! x)
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Condition of a problem (cont’d)

I If rel ⇠ 1,

then the problem is well conditioned: If the relative error in the
data/input is small, then the relative error in the answer/output is similarly small

I If rel � 1, then the problem is poorly conditioned: Small relative input error can
lead to large relative output error

I If rel (and abs) do not exist, then the problem is ill conditioned.

I What is poorly conditioned depends on desired accuracy: if the input accuracy is
low but we expect a high output accuracy, then problems are quickly poorly
conditioned. If we are happy with a less accurate output, we might consider the
problem still well conditioned.

I Sometimes, the possibly large error in the output does not matter and so we can
solve poorly conditioned problems (think of early design stages, rapid prototyping,
etc); but we should be very much aware of the condition of the problem.
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Condition of a problem: Example
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Today

Last time

I Condition of problems

Today

I More on condition of problems

I Stability of algorithms

I Matlab recap

Announcements

I Homework 1 was posted last week; is due in two weeks Mon, Sep 23 before class
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Recap: Condition of a problem

I Consider a generic problem: given F and data/input x , find output y such that

F (x , y) = 0

I Let’s assume there is a unique solution so that we can write

y = f (x) ,

for a function f in the following

I Well-posed: Unique solution + If we perturb the input x a little bit, the solution y

gets perturbed by a small amount.

I Otherwise, the problem is ill-posed; no numerical method can help with that.
(What should we do in such a situation?

 change the problem)
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Recap: Condition of a problem (cont’d)
I Absolute condition number at x is

abs = lim
�!0

sup
kx�x̂k�

kf (x)� f (x̂)k

kx � x̂k

I Relative condition number at x is

rel = lim
�!0

sup
kx�x̂k�

kf (x)� f (x̂)k/kf (x)k

kx � x̂k/kxk

I If f is di↵erentiable in x , then

abs = kf
0(x)k rel =

kxk

kf (x)k
kf

0(x)k ,

where kf
0(x)k is the norm of the Jacobian f

0(x) in the operator norm

kAk = sup
x 6=0

kAxk

kxk
= sup

kxk=1
kAxk
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Recap: Condition of a problem (cont’d)

I If rel ⇠ 1,

then the problem is well conditioned: If the relative error in the
data/input is small, then the relative error in the answer/output is similarly small

I If rel � 1, then the problem is poorly conditioned: Small relative input error can
lead to large relative output error

I If rel (and abs) do not exist, then the problem is ill conditioned.

I What is poorly conditioned depends on desired accuracy: if the input accuracy is
low but we expect a high output accuracy, then problems are quickly poorly
conditioned. If we are happy with a less accurate output, we might consider the
problem still well conditioned.

I Sometimes, the possibly large error in the output does not matter and so we can
solve poorly conditioned problems (think of early design stages, rapid prototyping,
etc); but we should be very much aware of the condition of the problem.
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Condition of a problem: Example
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Stability of algorithms

Is f̃ (x), computed with an algorithm f̃ , a good approximation of f (x)?

We are happy if the error due to the algorithm

f̃ (x)� f (x)

lies within reasonable bounds of the error due to the input

f (x̃)� f (x)
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Stability: Stability

We say that an algorithm f̃ for a problem f is stable if for each x 2 E the error

kf̃ (x)� f (x̃)k

kf (x̃)k

is small for x̃ with small
kx̃ � xk

kxk

A stable algorithm gives nearly the right answer (f̃ (x)) to nearly the right

question (f (x̃)).

In forward error analysis one tries to establish stability by showing error bounds on the
result in each operation in the algorithm in order to bound the error in the end result

32 / 102



Stability: Backward stability

Backward stability: Pass the errors of the algorithm back and interpret as input errors.

An algorithm f̃ for a problem f is backward stable if for each x 2 X we have
f̃ (x) = f (x̃) for an x̃ with

kx̃ � xk

kxk

small

This is a tightening of the definition of stability of the previous slide:
A backward stable algorithm gives exactly the right answer to nearly the right

question.

In backward error analysis one calculates, for a given output, how much one would
need to perturb the input in order for the answer to be exact.
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Errors and error analyses

Relative errors:
kx � xnk

kxk

Absolute error:
kx � xnk

I Used for theoretical arguments

I In numerical practice: exact solution is not available, so these errors must be
approximated.

A priori analysis is performed before a specific solution is computed. Typically, the
analysis is performed for a large class of possible inputs.
A posteriori analysis bounds the error for a specific numerical solution x̂ (computed
with a specific numerical method), and uses, e.g., residuals for the a posteriori analysis.
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Computational errors

Numerical algorithms try to control or minimize, rather then eliminate, the various
computational errors:

I Approximation error due to replacing the computational problem with an
easier-to-solve approximation. Also called discretization error for ODEs/PDEs.

I Truncation error due to replacing limits and infinite sequences and sums by a
finite number of steps. Closely related to approximation error.

I Roundo↵ error due to finite representation of real numbers and arithmetic on the
computer, x 6= x̂ .

I Propagated error due to errors in the data from user input or previous
calculations in iterative methods.

I Statistical error in stochastic calculations such as Monte Carlo calculations.
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Intuition: Stability, Consistency, Convergence

Instead of solving F (x , y) = 0 directly, many numerical methods generate a solution
sequentially

F̄ (xi , xi�1) = 0 , i = 1, 2, 3, . . . ,

with x0 = x and sequence (xi ) converging to y

Additionally, we use a numerical method F̂n instead of F̄

F̂n(x̂i , x̂i�1) = 0 , i = 1, 2, 3, . . . ,

with method F̂n depending on a parameter n: Increasing n typically means investing
more computational time for a hopefully more accurate result
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Consistent: A numerical method is consistent if the local error made at each step
vanishes for n ! 1

F̂n(xi , xi�1) ! F̄ (xi , xi�1) (n ! 1)

This is one of the most basic requirements that we have on a numerical approach. If it
is not consistent, it means we can invest more computational time (more e↵ort) and
certainly won’t get lower errors.

Stability: Because we use F̂n instead of F̄ , in each iteration we make a local error (see
above). We have x̂i at iteration i rather than xi . Stability means here that the local
error can be amplified only by a constant that is independent of n.

Convergence: If the numerical error can be made arbitrarily small by increasing the
computational e↵ort n ! 1

consistency + stability ! convergence

A concrete and formal description of these concepts for finite di↵erence approximations can be found in Chapter 2 of LeVeque’s textbook on finite
di↵erence methods.
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Speed of convergence

Let xn ! x in a normed space X , k · k for n ! 1.

lim
n!1

kx � xn+1k

kx � xnk
q

< C

with C > 0 and q � 1

I Linear convergence: q = 1 and C < 1

kx � xn+1k  Ckx � xnk

I Quadratic convergence: q = 2

kx � xn+1k  Ckx � xnk
2
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Beyond convergence

I An algorithm will produce the correct answer if it is convergent, but...

I Not all convergent methods are equal. We can di↵erentiate them further based on:

I Accuracy How much computational work do you need to expand to get an
answer to a desired relative error?

I Robustness Does the algorithm work (equally) well for all (reasonable) input
data d?

I E�ciency How fast does the implementation produce the answer? This depends
on the algorithm, on the computer, the programming language, the programmer,
etc. (more next class)

I Di�culty How easy is it to implement and apply in practice? Do I need to spend
5 years of my time to implement it or can I code it up in 2 lines of code?
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Matlab peculiarities [Following slides: A. Donev]
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Matrices [Slide: A. Donev]
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Vectorization/Optimization [Slide: A. Donev]
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Pre-allocation [Slide: A. Donev]

44 / 102



Vectorization [Slide: A. Donev]
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Matlab examples [Slide: A. Donev]
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Vectorization/Optimization [Slide: A. Donev]
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Matrices [Slide: A. Donev]
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Matrices [Slide: A. Donev]
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Matrices [Slide: A. Donev]
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Coding guidelines [Slide: A. Donev]
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Today

Last time

I Condition of problems

I Stability of algorithms

Today

I Float-point numbers in IEEE format

I Rounding, propagation of errors, and cancellation

I Truncation errors

Announcements

I Homework 1 was posted last week; is due next week Mon, Sep 23 before class
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Recap: Condition of a problem

I Terms such as“little bit” and a “small amount” already point to that we need to
measure something

I Therefore, we assume the map f is given as

f : U ⇢ Rn
! Rm

and we are interested in the norm k · k

I The input error is then

kx � x̂k  � (absolute) kx � x̂k  �kxk (relative)

I Correspondingly we measure the output error f (x)� f (x̂) in k · k (we could also
have looked at a componentwise error)
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Recap: Condition of a problem (cont’d)
I Absolute condition number at x is

abs = lim
�!0

sup
kx�x̂k�

kf (x)� f (x̂)k

kx � x̂k

I Relative condition number at x is

rel = lim
�!0

sup
kx�x̂k�

kf (x)� f (x̂)k/kf (x)k

kx � x̂k/kxk

I If f is di↵erentiable in x , then

abs = kf
0(x)k rel =

kxk

kf (x)k
kf

0(x)k ,

where kf
0(x)k is the norm of the Jacobian f

0(x) in the operator norm

kAk = sup
x 6=0

kAxk

kxk
= sup

kxk=1
kAxk
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Recap: Condition of a problem (cont’d)

I If rel ⇠ 1,

then the problem is well conditioned: If the relative error in the
data/input is small, then the relative error in the answer/output is similarly small

I If rel � 1, then the problem is poorly conditioned: Small relative input error can
lead to large relative output error

I If rel (and abs) do not exist, then the problem is ill conditioned.

I What is poorly conditioned depends on desired accuracy: if the input accuracy is
low but we expect a high output accuracy, then problems are quickly poorly
conditioned. If we are happy with a less accurate output, we might consider the
problem still well conditioned.

I Sometimes, the possibly large error in the output does not matter and so we can
solve poorly conditioned problems (think of early design stages, rapid prototyping,
etc); but we should be very much aware of the condition of the problem.
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Recap: Condition number of a matrix

Consider a matrix A 2 Rn⇥n. Its condition number is

(A) = kAkkA
�1

k

Widely used is the k · k2 norm and then

2(A) = kAk2kA
�1

k2 =
�max(A)

�min(A)

with the maximal and minimal singular value �max(A) and �min(A) of A

Consider a system of linear equations Ax = b. Then, the problems A 7! A
�1

b and
b 7! A

�1
b have relative condition numbers

rel  (A)
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Recap: Backward stability

Backward stability: Pass the errors of the algorithm back and interpret as input errors.

An algorithm f̃ for a problem f is backward stable if for each x 2 X we have
f̃ (x) = f (x̃) for an x̃ with

kx̃ � xk

kxk

small

A backward stable algorithm gives exactly the right answer to nearly the right

question.

In backward error analysis one calculates, for a given output, how much one would
need to perturb the input in order for the answer to be exact.
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Recap: Backward stability (cont’d)
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Representing real numbers
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Representing real numbers

I Computers represent everything using bit strings, i.e., integers in base 2. A finite
number of integers can thus be exactly represented. But not real numbers! This
leads to roundo↵ errors.

I Assume we have N digits to represent real numbers on a computer that can
represent integers using a given number system, say decimal for human purposes.

I Fixed-point representation of numbers

x = (�1)s · [aN�2aN�3 · · · ak .ak�1 · · · a0]

has a problem of representing either small or larger numbers because the decimal
point . is fixed at position k

What could we do?

61 / 91



Floating-point numbers
I Instead, let’s use floating-point representation

x = (�1)s · [0 . a1a2 · · · at ] · �
e = (�1)s ·m · �e�t

similar to the common scientific number representation

0.1156 · 101 = 1156 · 10�3
t = 4

I A floating-point number in base � is represented using one sign bit s = 0 or 1, a
t-digit integer mantissa

0  m = [a1a2 · · · at ]  �t
� 1

and an integer exponent L  e  U

I Computers today use binary numbers and so � = 2
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IEEE 754 standard

I Formats for representing and
encoding real numbers using bit
strings (single and double precision).

I Rounding algorithms for performing
accurate arithmetic operations (e.g.,
addition, subtraction, division,
multiplication) and conversions (e.g.,
single to double precision).

I Exception handling for special
situations (e.g., division by zero and
overflow).
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Single precision IEEE floating-point numbers have the standardized storage format:

sign + power + fraction

with
Ns + Np + Nf = 1 + 8 + 23 = 32 bits

and are interpreted as
x = (�1)s · 2p�127

· (1.f )2

I Sign s = 1 for negative numbers

I Power 1  p  254 determines the exponent

I Fractional part of the mantissa f

I single in Matlab, float in C/C++, REAL in Fortran
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IEEE representation example
Take the number x = 2752 = 0.2752 · 104.

Converting 2752 to the binary number
system

65 / 91

Binary 2752 2 Tendinder 0
1376 2 remainder 0

i

101011000000
11 9 76

2 29 27 26
2 1.01011
17 2138 7

1 01011



138
0 1000101012

C 1 2400010102
127

1 1

s p f 501100010101010110.2N

6



IEEE representation example
Take the number x = 2752 = 0.2752 · 104. Converting 2752 to the binary number
system
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(0100 0101 0010 1100 0000 0000 0000 0000)_2
=(452c0000)_16



Double precision IEEE numbers

Double precision IEEE numbers (default in Matlab, double in C/C++) follow the
same principle but use 64 bits to give higher precision and range

Ns + Np + Nf = 1 + 11 + 52 = 64 bits

x = (�1)s · 2p�1023
· (1.f )2

Even higher (extended) precision formats are not really standardized or widely
implemented/used.

There is also software-emulated variable precision arithmetic in, e.g., Maple
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Extremal exponent values

The extremal exponent values have special meaning (here single precision)

value power p fraction f

± 0 0 0
±1 255 0

Not a number (NaN) 255 > 0
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Important facts about floating-point numbers
I Not all real numbers x can be represented exactly as a floating-point number.

Instead, they must be rounded to the nearest floating point number x̂ = fl(x)

I Floating-point numbers have a relative rounding error that is smaller than the
machine precision or roundo↵-unit u

|x̂ � x |

|x |
 u = 2�(Nf +1) =

(
2�24

⇠ 6.0 · 10�8 , for single precision

2�53
⇠ 1.1 · 10�16 , for double precision .

I Often the machine precision/roundo↵-unit is denoted as ✏

I The rule of thumb is that single precision gives 7-8 digits of precision and

double 16 digits.

I There is a smallest and largest possible number due to limit for the exponent.
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Two axioms
Ignoring over- and underflow, we assume the following two “axioms” to hold for
computers we work with:

1. For all x 2 R, there exists ✏ with |✏|  u (roundo↵ unit) such that

fl(x) = x(1 + ✏) ,

where fl(·) rounds to the the closest floating point approximation.

2. Consider two floating point numbers x , y . The floating-point operation ~ (=add,
sub, mult, div) of ⇤ (=add, sub, mult, div) satisfies

x ~ y = fl(x ⇤ y)

Axiom 1 and 2 imply that for two floating-point numbers x , y , there exists ✏ with
|✏|  u such that

x ~ y = (x ⇤ y)(1 + ✏) .
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Floating-point exceptions
Computing with floating point values may lead to exceptions, which may halt the
program:

I Divide-by-zero: if the result is ±1, e.g., 1/0

I Invalid: If the result is a NaN, e.g., taking
p
�1 (note that Matlab supports

complex numbers...)

1: >>> x = math.sqrt(-1)

2: Traceback (most recent call last):

3: File "<stdin >", line 1, in <module >

4: ValueError: math domain error

I Overflow: If the result is too large to be represented, e.g., adding two numbers,
each on the order of realmax

I Underflow: If the result is too small to be represented, e.g., dividing a number
close to realmin by a large number.
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Avoiding overflow
Numerical software needs to be careful about avoiding exceptions:

Mathematically equivalent expressions are not necessarily computationally

equivalent!

I For example, computing
p
x2 + y2 may lead to overflow in computing x

2 + y
2

even though the result does not overflow

I Matlab’s hypot function guards against this:

p
x2 + y2 = |x |

r
1 +

⇣
y

x

⌘2
ensuring that |x | > |y |

works correctly

I These kind of careful constructions may have higher computational cost (more
CPU operations) or make roundo↵ errors worse.
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Floating-point in practice
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Propagation of errors
I Assume that we are calculating something with numbers that are not exact, e.g.,

a rounded floating-point number x̂ versus the exact real number x .

I For IEEE representations, recall that

|x̂ � x |

|x |
 u = 2�(Nf +1) =

(
2�24

⇠ 6.0 · 10�8 , for single precision

2�53
⇠ 1.1 · 10�16 , for double precision .

I In general, the absolute error �x = x̂ � x may have contributions from each of the
di↵erent types of error (roundo↵, truncation, propagated, statistical).

I Assume we have an estimate or bound for the relative error
����
�x

x

���� . ✏x ⌧ 1

based on some analysis, e.g., for roundo↵ error the IEEE standard determines
✏x = u (roundo↵-unit)
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Propagation of errors
How does the relative error change (propagate) during numerical calculations?
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Addition subtraction
this is more dangerous

lead to catastropic errors
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Propagation of errors: Numerical experiment [From A. Donev]

Harmonic sum

H(N) =
NX

i=1

1

i

1: function nhsum = harmonic(N)

2: nhsum = 0;

3: for i = 1:N

4: nhsum = nhsum + 1.0/i;

5: end

6: end

What are the numerical issues of this implementation?

 Adds very small number 1/i to potentially large number nhsum
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Implementation with backward summation

1: function nhsum = harmonicBwd(N)

2: nhsum = 0;

3: for i = N:-1:1

4: nhsum = nhsum + 1.0/i;

5: end

6: end

Better, because adds small numbers to small numbers and larger numbers to large
numbers.

77 / 91



102 104 106

N

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100
R

el
at

iv
e 

er
ro

r
Error in harmonic sum (bwd)

double
single

100 102 104 106 108

N

0

2

4

6

8

10

12

14

16

18

H
(N
)

Harmonic sum (bwd)

double
single
"exact"

78 / 91



Numerical Methods I
MATH-GA 2010.001/CSCI-GA 2420.001

Benjamin Peherstorfer
Courant Institute, NYU

Based on slides by G. Stadler and A. Donev

1 / 96

 



Today

Last time

I Float-point numbers in IEEE format

I Rounding

I Propagation of errors

Today

I Cancellation

I Truncation errors

I Solving linear systems

Announcements

I Homework 1 was posted last week; is due next week Mon, Sep 23 before class
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Recap: Floating-point numbers
I Let’s use floating-point representation

x = (�1)s · [0 . a1a2 · · · at ] · �
e = (�1)s ·m · �e�t

similar to the common scientific number representation

0.1156 · 101 = 1156 · 10�3
t = 4

I A floating-point number in base � is represented using one sign bit s = 0 or 1, a
t-digit integer mantissa

0  m = [a1a2 · · · at ]  �t
� 1

and an integer exponent L  e  U

I Computers today use binary numbers and so � = 2
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Recap: Single precision

Single precision IEEE floating-point numbers have the standardized storage format:

sign + power + fraction

with
Ns + Np + Nf = 1 + 8 + 23 = 32 bits

and are interpreted as
x = (�1)s · 2p�127

· (1.f )2

I Sign s = 1 for negative numbers

I Power 1  p  254 determines the exponent

I Fractional part of the mantissa f

I single in Matlab, float in C/C++, REAL in Fortran
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Recap: Important facts about floating-point numbers
I Not all real numbers x can be represented exactly as a floating-point number.

Instead, they must be rounded to the nearest floating point number x̂ = fl(x)

I Floating-point numbers have a relative rounding error that is smaller than the
machine precision or roundo↵-unit u

|x̂ � x |

|x |
 u = 2�(Nf +1) =

(
2�24

⇠ 6.0 · 10�8 , for single precision

2�53
⇠ 1.1 · 10�16 , for double precision .

I Often the machine precision/roundo↵-unit is denoted as ✏

I The rule of thumb is that single precision gives 7-8 digits of precision and

double 16 digits.

I There is a smallest and largest possible number due to limit for the exponent.
82 / 96



Recap: Two axioms
Ignoring over- and underflow, we assume the following two “axioms” to hold for
computers we work with:

1. For all x 2 R, there exists ✏ with |✏|  u (roundo↵ unit) such that

fl(x) = x(1 + ✏) ,

where fl(·) rounds to the the closest floating point approximation.

2. Consider two floating point numbers x , y . The floating-point operation ~ (=add,
sub, mult, div) of ⇤ (=add, sub, mult, div) satisfies

x ~ y = fl(x ⇤ y)

Axiom 1 and 2 imply that for two floating-point numbers x , y , there exists ✏ with
|✏|  u such that

x ~ y = (x ⇤ y)(1 + ✏) .
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Numerical cancellation

If x and y are close to each other, then x � y can have reduced accuracy due to
catastrophic cancellation.

Consider computing the smaller root of the quadratic equation

x
2
� 2x + c = 0

for |c | ⌧ 1 and focus on propagation/accumulation of roundo↵ errors.

84 / 96



2x c 0 talk

solution 1 Me
Before we start Taylor

fla IN f a ta
f 2 fco f 2 0 8 96 01

truncate TI I t.AZ 1 2
Thus for Icl small get

I I 1 C1 E
Case 1 Icl fu round off unit

f 1 c 1
no point in moving forward

Cose 2 101 Ic 2 1

Calculate t c in floating point

f 1 f c f f i f c

FCA f c Ita Ie U

to like le.eu

orderlol
seen feces adf.fi etErfafd



I I also order lot because t c close

to 1

Assume sqrtC computes root to within
relative accuracy of round off unit u

FX AC E
It 8

So for shows that the has obs and

relative error of our 101

We have 1 te

already know

f 1 f y 1 y Oct 4

is of order 11 41.101 101

Relative error

1 1

It is higher than lot for 1 y o



To avoid cancellation, we should not directly implement 1�
p
1� c

Rather, we can take the Taylor approximate x ⇡
c
2 , which provides a good

approximation for small c .

Even better, we could use the mathematically equivalent but numerically

preferred form:

1�
p
1� c =

c

1 +
p
1� c

which does not su↵er from cancellation problems as c becomes smaller.
(Notice that 1�

p
... is avoided and therefore the cancellation problem shown by our

analysis is avoided. We showed that
p
1� c is safe.)

1: >>> c = 1e-10 # solution roughly 5.000000000125 x 10^ -11

2: >>> 1 - math.sqrt(1 - c)

3: 5.000000413701855e-11

4: >>> c/(1 + math.sqrt(1 - c))

5: 5.000000000125e-11
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Big O notation

Useful to compare growth of functions.

We write f 2 O(g)(x ! 1) if there exists constant C > 0 such that for an x0 the
following holds

8x � x0 : |f (x)|  C |g(x)|

We also write f 2 O(g)(x ! 0) if there exists a constant C > 0 such that for an
x0 > 0 the following holds

8|x |  x0 : |f (x)|  C |g(x)|

In many cases we do not write explicitly whether we mean x ! 1 or x ! 0 because it
is clear from the context.
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Question: In practice, would you prefer an algorithm with costs growing as
c1(x) 2 O(x) or c2(x) 2 O(x2)? Why?

Answer: It depends on the hidden constants C and x0. If c1 and c2 have roughly the
same constants, then probably c1.

However, if the constant for c1 is x0 = 1010 and the constant for c2 is x0 = 1, then in
most practical situations we prefer c2 because we most likely will never reach the
asymptotics of x > x0 for c1 in practice!

Warning: The Big O notation tells us something about the asymptotics. The
constants x0 and C that are hidden in O(·) do matter in practice!
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Costs (i.e., x ! 1) of c1(x) = 1010 + 1010x and c2(x) = 2⇥ 1010 + x
2. Then,

c1 2 O(x) and c2 2 O(x2) for x ! 1. I.e., asymptotically the costs of c2 grow faster
than c1.

Warning: The Big O notation tells us something about the asymptotics. The
constants x0 and C that are hidden in O(·) do matter in practice!
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Set now error: e1(h) = h and e2(h) = 10�10
h + h

2. Then, e1 2 O(h) and e2 2 O(h)
for h ! 0.
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e1  with $C 1 = 1$

e2 with $C = 10 -10$

Warning: The Big O notation tells us something about the asymptotics. The
constants h0 and C that are hidden in O(·) do matter in practice!
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Revisiting stability
Recall that we said: An algorithm f̃ for a problem f is backward stable if for each
x 2 X we have f̃ (x) = f (x̃) for an x̃ with

kx̃ � xk

kxk

small.
We now can be more precise: An algorithm f̃ for a problem f is backward stable if for
each x 2 X we have f̃ (x) = f (x̃) for an x̃ with

kx̃ � xk

kxk
2 O(u) ,

where u is the roundo↵ unit
I Recall that, loosely speaking, the symbol O(u) means “on the order of the

roundo↵ unit.”
I By allowing u ! 0 (which is implied here by the O), we consider an idealization

of a computer (in practice, u is fixed). So what we mean is that the error should
decrease in proportion to u or faster.
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Suppose a backward stable algorithm is applied to solve a problem f : X ! Y with
relative condition number . Then, the relative errors satisfy

kf̃ (x)� f (x)k

kf (x)k
2 O((x)u) .

Proof board
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Local truncation error

I Approximation error comes about when we replace a mathematical problem with
some easier to solve approximation.

I This error is separate from and in addition to any numerical algorithm or
computation used to actually solve the approximation itself, such as roundo↵ or
propagated error.

I Truncation error is a common type of approximation error that comes from
replacing infinitesimally small quantities with finite step size and truncating
infinite sequences/series with finite ones.

I This is the most important type of error in methods for numerical interpolation,
integration, solving di↵erential equations, and others.
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Local truncation error (cont’d)

I Analysis of local truncation error is almost always based on using Taylor series to
approximate a function about a given point x

f (x + h) =
1X

n=0

h
n

n!
f
(n)(x) = f (x) + hf

0(x) +
h
2

2
f
00(x) + . . . ,

where we call h the step size

I We cannot do a series (infinite number of terms) numerically, so we truncate

f (x + h) ⇡ Fp(x , h) =
pX

n=0

h
n

n!
f
(n)(x)

I Question: What is the truncation error in this approximation?  This kind of

error estimate is one of the most commonly used in numerical analysis.
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I The remainder theorem of calculus provides a formula for the error: If the
derivatives of f up to order p + 1 exist and are continuous in the interval
(x , x + h), then there is a ⇠ 2 [x , x + h] so that

f (x + h)� Fp(x , h) =
h
p+1

(p + 1)!
f
(p+1)(⇠)

I If we set

C =
1

(p + 1)!
max

y2[x ,x+h]

���f (p+1)(y)
���

then
|f (x + h)� Fp(x , h)|  Ch

p+1

I Intuition: If h is small and f
(p+1) smooth, then x ⇡ argmaxy2[x ,x+h]

��f (p+1)(y)
��

and the remainder term is nearly equal to the first neglected term

f (x + h)� Fp(x , h) ⇡
h
p+1

(p + 1)!
f
(p+1)(x)
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For example, let e(h) = |f (x + h)� Fp(x , h)| and let the remainder theorem from the
previous slide apply, then

e(h) 2 O(hp+1) , h ! 0
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Conclusions and summary

I No numerical method can compensate for a poorly conditioned problem. But not
every numerical method will be a good one for a well conditioned problem.

I A numerical method needs to control the various computational errors
(approximation, truncation, roundo↵, propagated, statistical) while balancing
computational cost.

I A numerical method must be consistent and stable in order to converge to the
correct answer.

I The IEEE standard standardizes the single and double precision floating-point
formats, their arithmetic, and exceptions. It is widely implemented.

I Numerical overflow, underflow and cancellation need to be carefully considered
and avoided: Mathematically equivalent forms are not numerically equivalent.
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Linear systems of equations

It is said that 70-80% of computational mathematics research involves solving systems
of m linear equations in n unknowns

nX

j=1

aijxj = bi , i = 1, . . . ,m .

Linear systems arise directly from discrete models (e.g., in machine learning). Or
through representing some abstract linear operator (such as a di↵erential operator) in a
finite basis as when numerically solving partial di↵erential equations.

The common abstract way of writing systems of linear equations is

Ax = b ,

with matrix A 2 Rm⇥n, right-hand side b 2 Rm, and solution x 2 Rn

The goal is to calculate solution x given data A,b in a numerically stable and
computationally e�cient way.
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The matrix inverse

I A square matrix A 2 Rn⇥n is invertible or nonsingular if there exists a matrix
inverse A�1 = B 2 Rn⇥n such that

AB = BA = I ,

where I is the identity matrix.
I Matrix norm induced by a given vector norm

kAk = sup
x 6=0

kAxk
kxk

=) kAxk  kAkkxk

with sub-multiplicativity: kABk  kAkkBk

I Special case of interest: The 2-norm or spectral norm: kAk2 = �1 (largest
singular value)

I The Euclidean or Frobenius norm is not an induced norm

kAkF =

sX

i ,j

|aij |2

but still is sub-multiplicative: kABkF  kAkFkBkF
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Condition of solving system of linear equations

Recall that we derived the condition number (A) = kAkkA�1
k of a matrix A
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Condition of solving system of linear equations (cont’d)

Now consider the general perturbations of the data

(A + �A)(x + �x) = b + �b

One obtains the condition (proof in Quarteroni et al., Sec. 3.1)

k�xk
kxk


(A)

1� (A)k�Ak
kAk

✓
k�bk
kbk

+
k�Ak

kAk

◆

Important practical estimate: Roundo↵ error in the data, with rounding unit u (recall
⇡ 10�16 for double precision), produces a relative error

k�xk1
kxk1


2

1� (A)u
u(A)

=) makes no sense to try to numerically solve systems with (A) > 1016 in double
precision
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Numerical solution of linear systems

There are many numerical methods for solving a system of linear equations

The most appropriate method depends on the properties of A
I General dense matrices, where the entries in A are mostly non-zero and nothing

special is known  we focus on Gaussian elimination today

I General sparse matrices, where only a small fraction of aij 6= 0 (sparse typically
means that O(n) entries are non-zero in an n ⇥ n matrix)

I Symmetric and positive-definite matrices

I Special structured sparse matrices, often arising from specific physical properties
of the underlying system

It is also important to consider how many times a linear system with the same or
related matrix or right-hand side needs to be solved.

7 / 48



Numerical Methods I

MATH-GA 2010.001/CSCI-GA 2420.001

Benjamin Peherstorfer
Courant Institute, NYU

Based on slides by G. Stadler and A. Donev

1 / 55

 



Today

Last time

I Cancellation

I Truncation errors

I Solving linear systems

Today

I Solving linear systems

Announcements

I Homework 1 was posted last week; is due next week Mon, Sep 23 before class
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Recap: Linear systems of equations

It is said that 70-80% of computational mathematics research involves solving systems
of m linear equations in n unknowns

nX

j=1

aijxj = bi , i = 1, . . . ,m .

Linear systems arise directly from discrete models (e.g., in machine learning). Or
through representing some abstract linear operator (such as a di↵erential operator) in a
finite basis as when numerically solving partial di↵erential equations.

The common abstract way of writing systems of linear equations is

Ax = b ,

with matrix A 2 Rm⇥n, right-hand side b 2 Rm, and solution x 2 Rn

The goal is to calculate solution x given data A,b in a numerically stable and
computationally e�cient way.
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Recap: The matrix inverse

I A square matrix A 2 Rn⇥n is invertible or nonsingular if there exists a matrix
inverse A�1 = B 2 Rn⇥n such that

AB = BA = I ,

where I is the identity matrix.
I Matrix norm induced by a given vector norm

kAk = sup
x 6=0

kAxk
kxk

=) kAxk  kAkkxk

with sub-multiplicativity: kABk  kAkkBk

I Special case of interest: The 2-norm or spectral norm: kAk2 = �1 (largest
singular value)

I The Euclidean or Frobenius norm is not an induced norm

kAkF =

sX

i ,j

|aij |2

but still is sub-multiplicative: kABkF  kAkFkBkF
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Recap: Condition of solving system of linear equations (cont’d)

Now consider the general perturbations of the data

(A + �A)(x + �x) = b + �b

One obtains the condition (proof in Quarteroni et al., Sec. 3.1)

k�xk
kxk


(A)

1� (A)k�Ak
kAk

✓
k�bk
kbk

+
k�Ak

kAk

◆

Important practical estimate: Roundo↵ error in the data, with rounding unit u (recall
⇡ 10�16 for double precision), produces a relative error

k�xk1
kxk1


2

1� (A)u
u(A)

=) makes no sense to try to numerically solve systems with (A) > 1016 in double
precision
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Recap: Numerical solution of linear systems

There are many numerical methods for solving a system of linear equations

The most appropriate method depends on the properties of A
I General dense matrices, where the entries in A are mostly non-zero and nothing

special is known  we focus on Gaussian elimination today

I General sparse matrices, where only a small fraction of aij 6= 0 (sparse typically
means that O(n) entries are non-zero in an n ⇥ n matrix)

I Symmetric and positive-definite matrices

I Special structured sparse matrices, often arising from specific physical properties
of the underlying system

It is also important to consider how many times a linear system with the same or
related matrix or right-hand side needs to be solved.
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Gauss elimination and LU factorization
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Gauss elimination in Matlab

1: function A = mylu(A) % In-place LU factorization

2: % need square matrix

3: [n, m] = size(A);

4: assert(n == m);

5: for k=1:(n-1) % for variable x(k)

6: % Assumed A(k, k) non -zero and then

7: % calculate multipliers in column k

8: A((k + 1):n, k) = A((k + 1):n, k)/A(k, k);

9: for j = (k + 1):n

10: % eliminate variable x(k)

11: A((k + 1):n, j) = A((k + 1):n, j) - A((k + 1):

n, k)*A(k, j);

12: end

13: end

14: end
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I Gaussian elimination is a general method for dense matrices and is commonly used

I Implementing Gaussian elimination e�ciently is di�cult and we will not discuss it
 course on HPC

I The LAPACK public-domain library is the main repository for excellent
implementations of dense linear solvers

I Matlab (and numpy) use highly optimized variants of GEM by default, mostly
based on LAPACK

I Matlab (and numpy) have specialized solvers for special cases of matrices, so
always check help pages!
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Problem?

1: >> A = [1 1 3; 2 2 2; 3 6 4]

2:
3: A =

4:
5: 1 1 3

6: 2 2 2

7: 3 6 4

8:
9: >> mylu(A)

10:
11: ans =

12:
13: 1 1 3

14: 2 0 -4

15: 3 Inf Inf
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LU with pivoting

Zero diagonal entries (pivots) pose a problem  pivoting by swapping rows

 board
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1: >> A = [1 1 3; 2 2 2; 3 6 4];

2: >> P = [1 0 0; 0 0 1; 0 1 0] % swap row 2 and 3

3:
4: P =

5:
6: 1 0 0

7: 0 0 1

8: 0 1 0

9:
10: >> mylu(P*A)

11:
12: ans =

13:
14: 1 1 3

15: 3 3 -5

16: 2 0 -4
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I For any square (regular or singular) matrix A, partial (row) pivoting ensures exists
of

PA = LU

where P is a permutation matrix

I Q: What else could pivoting be useful for?
 let’s see what Matlab does
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1: >> [L, U, P] = lu(A) % built -in lu

2: L =

3: 1.0000 0 0

4: 0.6667 1.0000 0

5: 0.3333 0.5000 1.0000

6: U =

7: 3.0000 6.0000 4.0000

8: 0 -2.0000 -0.6667

9: 0 0 2.0000

10: P =

11: 0 0 1

12: 0 1 0

13: 1 0 0

14: >> norm(L*U - P*A)

15: ans = 0

Reverses order of rows rather than just swapping 2 and 3.
Leads to entries of L with magnitude  1
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 board

1: >> A = [1e-20 1; 1 1]

2:
3: A =

4:
5: 1.0000e-20 1.0000e+00

6: 1.0000e+00 1.0000e+00

7:
8: >> LUmat = mylu(A);

9: L = [1 0; LUmat(2, 1) 1];

10: U = LUmat; U(2, 1) = 0;

11: L*U

12:
13: ans =

14:
15: 1.0000e-20 1.0000e+00

16: 1.0000e+00 0
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1: >> [L, U, P] = lu(A)

2: L =

3: 1.0000e+00 0

4: 1.0000e-20 1.0000e+00

5: U =

6: 1 1

7: 0 1

8: P =

9: 0 1

10: 1 0

11: >> P'*L*U
12: ans =

13: 1.0000e-20 1.0000e+00

14: 1.0000e+00 1.0000e+00

15: >> A

16: A =

17: 1.0000e-20 1.0000e+00

18: 1.0000e+00 1.0000e+00
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Instability of LU decomposition without pivoting
If A has an LU factorization, then the computed L̃ and Ũ obtained in floating-point
arithmetic with Gaussian elimination satisfy L̃Ũ = A + �A with the bound

k�Ak

kLkkUk
2 O(u) ,

where u is the roundo↵ unit.
I Notice that we would have liked to bound k�Ak/kAk but we got k�Ak/(kLkkUk)
I Thus, for matrices with kLkkUk ⇡ kAk, the algorithm will show stable behavior
I However, if kLkkUk 6⇡ kAk, then we can get an unstable result

 Gaussian elimination is not stable in general

Example  board

A =


10�20 1
1 1

�
,L =


1 0

1020 1

�
,U =


10�20 1
0 1� 1020

�

Compare kLk1kUk1 and kAk1
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LU with row pivoting to maximum element

1: function [A, P] = myplu(A) % In-place LU factorization

2: [n, m] = size(A); P = eye(n);

3: for k=1:(n-1) % for variable x(k)

4: [~, selI] = max(abs(A(k:n, k))); % select pivot

5: c = A(k, k:end); d = P(k, :);

6: A(k, k:end) = A(selI + (k-1), k:end); P(k, :) = P(

selI + (k-1), :);

7: A(selI + (k-1), k:end) = c; P(selI + k-1, :) = d;

8: % calculate multipliers in column k

9: A((k + 1):n, k) = A((k + 1):n, k)/A(k, k);

10: for j = (k + 1):n % eliminate variable x(k)

11: A((k + 1):n, j) = A((k + 1):n, j) - A((k + 1):

n, k)*A(k, j);

12: end

13: end

14: end
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1: >> A = [1e-20 1; 1 1]

2: [LUmat , P] = myplu(A);

3: L = [1 0; LUmat(2, 1) 1];

4: U = LUmat; U(2, 1) = 0;

5: P'*L*U
6:
7: A =

8:
9: 1.0000e-20 1.0000e+00

10: 1.0000e+00 1.0000e+00

11:
12:
13: ans =

14:
15: 1.0000e-20 1.0000e+00

16: 1.0000e+00 1.0000e+00
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Stability of Gaussian elimination with pivoting

For A = LU , introduce the growth factor

⇢ =
maxi ,j |uij |

maxi ,j |aij |

where uij is the i , j-th element of U

Consider the factorization PA = LU with partial row pivoting w.r.t. taking the
maximum element for a matrix A of dimension n ⇥ n. Gaussian elimination gives
P̃, L̃, Ũ that satisfy

L̃Ũ = P̃A + �A ,
k�Ak

kAk
2 O(⇢u) ,

where u is the roundo↵ unit. If all o↵-diagonal entries of L are < 1, implying that
there are no ties in the selection of pivots in exact arithmetic, then P = P̃ for
su�ciently small u.

This means that Gaussian elimination with partial pivoting is backward stable if ⇢
holds uniformly for matrices with n ⇥ n.
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I For any square (regular or singular) matrix A, partial (row) pivoting ensures exists
of

PA = LU

where P is a permutation matrix

I Furthermore, pivoting (w.r.t. max |aij |) leads to a backward stable algorithm.
However, the growth factor ⇢ can be huge and grow with the dimension of A!
Fortunately, large factors ⇢ “never seem to appear in real applications.”
(Trefethen & Bau, Chapter 22)

I There also is full pivoting (rows + columns)

PAQ = LU

to further increases stability but it usually is not worth it in practice (higher costs
to search for pivoting element over rows and columns but little improvement in
terms of stability)
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Solving linear systems

I Once an LU factorization is available, solving a linear system is cheap:

Ax = LUx = L(Ux) = Ly = b

I Solve for y using forward substitution

I Solve for x by using backward substitution Ux = y

What is forward/backward substitution?  board

2

6664

l11 0 · · · · · · 0
l21 l22 0 · · · 0
...

...
ln1 · · · · · · · · · lnn

3

7775

2

66664

x1
...
...
xn

3

77775
=

2

66664

b1
...
...
bn

3

77775
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I If row pivoting is used, the same process works by also permuting the right-hand
side b

PAx = LUx = Ly = Pb

or formally (never implement inverse for solving linear systems of equations)

x = (LU)�1Pb = U�1L�1Pb

I Because P is orthonormal, we have P�1 = PT and thus

A = P�1LU = (PTL)U = L̃U ,

with L̃ a row permutation of a unit lower triangular matrix
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In Matlab, the backslash operator solves linear systems (see help mldivide)

1: A = [1 2 3; 4 5 6; 7 8 0];

2: b = [2; 1; -1];

3: x = A\b; x'
4: [L, U] = lu(A)

5: y = L\b; x = U\y; x'
6: ans =

7: -2.5556e+00 2.1111e+00 1.1111e-01

8: L =

9: 1.4286e-01 1.0000e+00 0

10: 5.7143e-01 5.0000e-01 1.0000e+00

11: 1.0000e+00 0 0

12: U =

13: 7.0000e+00 8.0000e+00 0

14: 0 8.5714e-01 3.0000e+00

15: 0 0 4.5000e+00

16: ans =

17: -2.5556e+00 2.1111e+00 1.1111e-01
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Is the permuted triangular matrix L̃ (which we get from [L, U] = lu(A)) detected as
such? Yes!
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Today

Last time

I Solving linear systems

I LU decomposition

I Pivoting

Today

I Cost analysis of LU decomposition

I Solving linear systems with sparse matrices

I Least-squares problems

Announcements

I Homework 2 has been posted; is due next week Mon, Oct 7 before class
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Recap: Condition of solving system of linear equations (cont’d)

Now consider the general perturbations of the data

(A + �A)(x + �x) = b + �b

One obtains the condition (proof in Quarteroni et al., Sec. 3.1)

k�xk
kxk


(A)

1� (A)k�Ak
kAk

✓
k�bk
kbk

+
k�Ak

kAk

◆

Important practical estimate: Roundo↵ error in the data, with rounding unit u (recall
⇡ 10�16 for double precision), produces a relative error

k�xk1
kxk1


2

1� (A)u
u(A)

=) makes no sense to try to numerically solve systems with (A) > 1016 in double
precision
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Recap: LU decomposition
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Recap: Pivoting
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Recap: Stability of Gaussian elimination with pivoting

For A = LU , introduce the growth factor

⇢ =
maxi ,j |uij |

maxi ,j |aij |

where uij is the i , j-th element of U

Consider the factorization PA = LU with partial row pivoting w.r.t. taking the
maximum element for a matrix A of dimension n ⇥ n. Gaussian elimination gives
P̃, L̃, Ũ that satisfy

L̃Ũ = P̃A + �A ,
k�Ak

kAk
2 O(⇢u) ,

where u is the roundo↵ unit. If all o↵-diagonal entries of L are < 1, implying that
there are no ties in the selection of pivots in exact arithmetic, then P = P̃ for
su�ciently small u.

This means that Gaussian elimination with partial pivoting is backward stable if ⇢
holds uniformly for matrices with n ⇥ n.
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Recap: LU with row pivoting to maximum element

1: function [A, P] = myplu(A) % In-place LU factorization

2: [n, m] = size(A); P = eye(n);

3: for k=1:(n-1) % for variable x(k)

4: [~, selI] = max(abs(A(k:n, k))); % select pivot

5: c = A(k, k:end); d = P(k, :);

6: A(k, k:end) = A(selI + (k-1), k:end); P(k, :) = P(

selI + (k-1), :);

7: A(selI + (k-1), k:end) = c; P(selI + k-1, :) = d;

8: % calculate multipliers in column k

9: A((k + 1):n, k) = A((k + 1):n, k)/A(k, k);

10: for j = (k + 1):n % eliminate variable x(k)

11: A((k + 1):n, j) = A((k + 1):n, j) - A((k + 1):

n, k)*A(k, j);

12: end

13: end

14: end
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Costs: Forward/backward substitution

 board

Forward substitution requires

n(n � 1)

2
multiplications/additions,

n divisons.

Overall: ⇠ n2 floating point operations (flops)  costs scale as O(n2)

Similarly, backward substitution has costs that scale as O(n2)

We count flops to estimate the computational time/e↵ort. What else matters? Besides
floating point operations, computer memory access has a significant influence on the
e�ciency of numerical methods.
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Costs

For forward [backward] substitution at step k there are ⇡ k [(n � k)] multiplications
and subtractions plus a few divisions. The total over all n steps is

nX

k=1

k 2 O(n2)

 the number of floating-point operations (FLOPs) scales as O(n2)

For Gaussian elimination, at step k , there are ⇡ (n � k)2 operations. Thus, the total
scales as

nX

k=1

(n � k)2 2 O(n3)
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Directly applying Gaussian elimination scales as

O(n3)

Computing LU decomposition scales as

O(n3)

Forward/backward substitution scales as

O(n2)

LU + forward/backward scales as
O(n3)

 why useful? can reuse LU for other b

42 / 61



Directly applying Gaussian elimination scales as

O(n3)

Computing LU decomposition scales as

O(n3)

Forward/backward substitution scales as

O(n2)

LU + forward/backward scales as
O(n3)

 why useful? can reuse LU for other b

42 / 61



Directly applying Gaussian elimination scales as

O(n3)

Computing LU decomposition scales as

O(n3)

Forward/backward substitution scales as

O(n2)

LU + forward/backward scales as
O(n3)

 why useful? can reuse LU for other b

42 / 61



Directly applying Gaussian elimination scales as

O(n3)

Computing LU decomposition scales as

O(n3)

Forward/backward substitution scales as

O(n2)

LU + forward/backward scales as

O(n3)

 why useful? can reuse LU for other b

42 / 61



Directly applying Gaussian elimination scales as

O(n3)

Computing LU decomposition scales as

O(n3)

Forward/backward substitution scales as

O(n2)

LU + forward/backward scales as
O(n3)

 why useful?

can reuse LU for other b

42 / 61



Directly applying Gaussian elimination scales as

O(n3)

Computing LU decomposition scales as

O(n3)

Forward/backward substitution scales as

O(n2)

LU + forward/backward scales as
O(n3)

 why useful? can reuse LU for other b

42 / 61



Choleski factorization

A matrix is symmetric positive definite (spd), if A = AT and for all x 2 Rn, x 6= 0, the
inner product hAx , xi > 0.

For spd matrices, we can compute the factorization:

A = LDLT ,

where L is a lower triangular matrix with 1’s on the diagonal, and D is a positive
diagonal matrix.

The Choleski factorization is obtained by multiplying the square root of D (which
exists!) with L:

A = L̄L̄T .
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Algorithms for Choleski factorization are about twice as fast as Gaussian elimination
but also scale as O(n3).

1: >> A = randn (1000, 1000)*diag(linspace(1, 10, 1000))*

randn (1000 , 1000); A = A'*A;
2: >> tic; chol(A); toc

3: Elapsed time is 0.004863 seconds.

4: >> tic; lu(A); toc

5: Elapsed time is 0.010114 seconds.
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Special matrices in Matlab

Matlab tests for special matrices automatically and chooses a good
decomposition/solver
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Conclusions/summary

I The condition of solving a linear system Ax = b is determined by the condition
number of the matrix A

(A) = kAkkA�1
k � 1

I Gaussian elimination can be used to solve general square linear systems and
produces a factorization, if it exists

A = LU
I Partial pivoting is su�cient for existence and stability of the LU decomposition

PA = LU , A = L̃U
I The Cholesky factorization A = LLT exists if A is spd and then it is the better

choice (cheaper) than LU

I Rely on the highly optimized routines in Matlab (LAPACK) and other software
packages than implementing these algorithms yourself  take the course on HPC
next spring to learn more about the e�cient implementation of these algorithms
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Sparse matrices
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Sparse matrix

I A matrix where a substantial fraction of the entries are zero is called a sparse
matrix. Typically, only O(N) non-zero entries in an N ⇥ N matrix are allowed for
sparse algorithms to show benefit over dense linear algebra routines.

I If we have only O(N) non-zero entries, then store only those; in contrast to dense
matrices. Exploiting sparsity is important (life saving) for large matrices

I The structure of a sparse matrix refers to the set of indices i , j such that |aij | > 0
and is visualized in Matlab with spy

I The structure of sparse matrices comes from the nature of the problem, e.g., in an
inter-city road transportation problem it corresponds to the pairs of cities
connected by a road.

I In fact, just counting the number of non-zero elements is not enough: the sparsity
structure is the most important property that determines whether an e�cient
method exists 48 / 61



Banded matrices

Banded matrices are a very special but common type of sparse matrices, e.g.,
tridiagonal matrices 2

66664

a1 c1 0

b2 a2
. . .

. . .
. . . cn�1

0 bn an

3

77775

For example, think of the Laplace problem u00(x) = f (x) on the unit interval and a
finite-di↵erence discretization

u00(x) ⇡
u(x + h)� 2u(x) + u(x � h)

h2

on an equidistant grid. This leads to a system of equations with a tridiagonal matrix
 Numerical Methods II (Spring semester)

There exist special techniques for banded matrices that are much faster than the
general case, e.g., only 8n FLOPs
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Decomposing sparse matrices

There also are general methods for dealing with sparse matrices, such as the sparse LU
factorization.

How well they work depends on the structure of the matrix. What could go wrong?

When factorizing sparse matrices, the factors, e.g., L and U, can be much less sparse
than A  fill-in

For many sparse matrices, there is a large fill-in

I Pivoting can help to reduce fill-in

I However, often “good” pivoting for sparsity leads to less stable behavior and vice
versa
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Sparse matrices in Matlab

1: % S = sparse(i,j,v) generates a sparse matrix S

2: % from the triplets i, j, v with S(i(k),j(k)) = v(k).

3: >> A = sparse ([1 2 2 4 4], [3 1 4 2 3], 1:5)

4: A =

5: (2,1) 2

6: (4,2) 4

7: (1,3) 1

8: (4,3) 5

9: (2,4) 3

10: >> whos A

11: Name Size Bytes Class

Attributes

12: A 4x4 120 double sparse

13: >> nnz(A)

14: ans =

15: 5
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1: % S = sparse(i,j,v,m,n,nz) allocates space for nz

nonzero elements.

2: % Use this syntax to allocate extra space for nonzero

values to be filled in after construction.

3: >> A = sparse ([], [], [], 4, 4, 5);

4: >> A(2, 1) = 2; A(4, 2) = 4; A(1, 3) = 1; A(4, 3) = 5;

A(2, 4) = 3;

5: >> full(A)

6:
7: ans =

8:
9: 0 0 1 0

10: 2 0 0 3

11: 0 0 0 0

12: 0 4 5 0
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1: % generate a random sparse matrix with density 10% and

size 100 x100

2: >> B = sprand (100, 100, 0.1);

3: % the sparse block tridiagonal matrix of order n^2

resulting from discretizing Poisson 's equation with

the 5-point operator on an n-by -n mesh.

4: >> X = gallery('poisson ', 10);

5: >> spy(B);

6: >> spy(X);
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(a) matrix B (b) matrix X
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1: >> [L, U, P] = lu(B);

2: >> spy(L);

3: >> spy(U);

4:
5: >> [L, U, P] = lu(X);

6: >> spy(L);

7: >> spy(U);
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(a) factor L of B (b) factor U of B

A lot of fill-in! Factors L and U are not sparse, even though matrix B is sparse
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(a) factor L of X (b) factor U of X

Though better than for matrix B with random sparsity structure, there still are many
more non-zero entries in the factors of X than in X itself.
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Changing the sparsity structure via re-ordering the matrix can help to reduce fill-in.
For example, in Matlab the sparse reverse Cuthill-McKee ordering is implemented.

The re-ordered matrix tends to have its nonzero elements closer to the diagonal. This
is a good preordering for LU or Cholesky factorization of matrices.

1: >> p = symrcm(B);

2: >> spy(B(p, p));

3: >> [L, U, P] = lu(B(p, p));

4: >> spy(L);

5: >> spy(U);

6:
7: >> p = symrcm(X)

8: >> spy(X(p, p));

9: >> [L, U, P] = lu(X(p, p));

10: >> spy(L);

11: >> spy(U);
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(a) re-ordered B matrix (b) factor L of re-ordered B

I Notice how the non-zero elements tend to be closer to the diagonal of the
re-ordered B compared to the original B

I The fill-in is reduced from ⇠ 3500 to ⇠ 3200 non-zero entries; reduction of < 10%
I It is hard to find a good ordering for matrix with a random sparsity structure
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(a) re-ordered X matrix (b) factor L of re-ordered X

I Non-zero entries of re-ordered X are closer to the diagonal than for the original X
I Fill-in is reduced by a roughly 20% from ⇠ 1000 to ⇠ 800 non-zero entries
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Conclusions/summary

While there are general techniques for dealing with sparse matrices that help greatly, it
all depends on the structure of the matrix

Pivoting has a dual, sometimes conflicting goal:

1. Reduce fill-in, i.e., improve memory use: Still active subject of research!

2. Reduce roundo↵ errors, i.e., improve stability. Typically some threshold pivoting is
used only when needed

For many sparse matrices iterative methods (later) are required when large fill-in.
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Feedback cards

I Upload slides before class

I Neater handwriting and going slower when writing on board

I Define terms clearly instead of assuming everyone knows

I More intuitive explanations and motivations

I Show examples in Matlab rather than just on slides

I TA sessions

I Code examples are interesting
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Least-squares problems
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Least-squares problems

Given data points/measurements

(ti , bi ), i = 1, . . . ,m

and a model function � that relates t and b:

b = �(t; x1, . . . , xn),

where x1, . . . , xn are model function parameters. If the model is supposed to describe
the data, the deviations/errors

�i = bi � �(ti , x1, . . . , xn)

should be small. Thus, to fit the model to the measurements, one must choose
x1, . . . , xn appropriately.
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Least-squares problems

 visualization on board
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Least squares problem

data ti bibi

b ai

bi Ai t.in

parametrization
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Least-squares problems

Least squares: Find x1, . . . , xn such that

1

2

mX

i=1

�2
i ! min

Weighted least squares: Find x1, . . . , xn such that

1

2

mX

i=1

✓
�i

�bi

◆2

! min,

where �bi > 0 contain information about how much we trust the ith data point.
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Least-squares problems (cont’d)

Alternatives to using squares:

L
1 error: Find x1, . . . , xn such that

mX

i=1

|�i | ! min

Result can be very di↵erent, other statistical interpretation, more stable with respect
to outliers.

L
1 error: Find x1, . . . , xn such that

max
1im

|�i | ! min

Keeps the worst-case error small (risk averse)

6 / 34



Numerical Methods I

MATH-GA 2010.001/CSCI-GA 2420.001

Benjamin Peherstorfer
Courant Institute, NYU

Based on slides by G. Stadler and A. Donev

1 / 38

 



Today

Last time

I Cost analysis of LU decomposition

I Solving linear systems with sparse matrices

I Least-squares problems

Today

I Least-squares problems

Announcements

I Homework 2 has been posted; is due next week Mon, Oct 7 before class
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Recap: Least-squares problems

Given data points/measurements

(ti , bi ), i = 1, . . . ,m

and a model function � that relates t and b:

b = �(t; x1, . . . , xn),

where x1, . . . , xn are model function parameters. If the model is supposed to describe
the data, the deviations/errors

�i = bi � �(ti , x1, . . . , xn)

should be small. Thus, to fit the model to the measurements, one must choose
x1, . . . , xn appropriately.
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Recap: Least-squares problems

Least squares: Find x1, . . . , xn such that

1

2

mX

i=1

�2
i ! min

Weighted least squares: Find x1, . . . , xn such that

1

2

mX

i=1

✓
�i

�bi

◆2

! min,

where �bi > 0 contain information about how much we trust the ith data point.
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Linear least-squares

We assume (for now) that the model depends linearly on x1, . . . , xn, e.g.:

�(t; x1, . . . xn) = a1(t)x1 + . . .+ an(t)xn

 board
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Linear least-squares

Choosing the least square error, this results in

min
x

kAx � bk2,

where x = (x1, . . . , xn)T , b = (b1, . . . , bm)T , and aij = aj(ti ).

In the following, we study the overdetermined case, i.e., m � n  board
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Linear least-squares

Di↵erent perspective:
Consider non-square matrices A 2 Rm⇥n with m � n and rank(A) = n. Then the
system

Ax = b

does not necessarily have a solution (more equations than unknowns). We thus instead
solve a minimization problem

min
x

kAx � bk2 = min
x

�(x)

How can we solve this optimization problem?
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Because we consider the Euclidean norm k.k2, we obtain

�(x) = (Ax � b)T (Ax � b) = xTATAx � ...

which is quadratic in x if A has full rank  convex in x

Therefore, the critical point is the global optimum

r�(x) = AT (2(Ax � b)) = 0

which satisfies the normal equations

ATAx = ATb.

If A is full rank, rank(A) = n, then ATA is positive definite and the normal equations
can be solved with the Cholesky factorization

(warning: we shouldn’t do this, can you
already see why?)
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A geometry perspective on the normal equations

14 / 38
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This unique v EU is called the
orthogonal projection of onto U

U PG U

P is linear Thus finite dim there exists
matrix P such that

U Iv
Now apply geometric interpretation to find
normal equations

x ̅ 9 111 5112

V IRM V RCA CV

1lb Axl min Cb Ax Ax's 0 em
CAT b Ax 0 ER

ATAX Atb
ATA Atb

A ATA AT projector onto column spaceof A

solve Ax Pb ACATAS'ATb CATAT'ATb



Linear least-squares problems

Solving the normal equations
A
T
Ax̄ = A

Tb

requires:
I computing A

T
A (which is O(mn

2))

I condition number of AT
A?  board

is square of condition number of A;
(problematic for the Choleski factorization)
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I Least-squares problems
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I Least-squares problems

Announcements

I Homework 2 has been posted; is due next week Mon, Oct 7 before class
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Recap: Linear least-squares

Consider non-square matrices A 2 Rm⇥n with m � n and rank(A) = n. Then the
system

Ax = b
does not necessarily have a solution (more equations than unknowns). We thus instead
solve a minimization problem

min
x

kAx � bk2 = min
x

�(x)

Solving the normal equations
A
T
Ax̄ = A

Tb
requires:
I computing A

T
A (which is O(mn

2))

I condition number of AT
A?  is square of condition number of A; (problematic

for the Choleski factorization)
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Recap: Least-squares problems
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Recap: Linear least-squares problems

Conditioning

Solving the normal equation is equivalent to computing Pb, the orthogonal projection
of b onto the subspace V spanned by columns of A.

Let P : Rm ! V be an orthogonal projection onto V ✓ Rn. For b 2 Rm, denote by ✓
the angle between b and V defined by

sin(✓) =
kb � Pbk2

kbk2
.

The relative condition number of projecting b onto V with P with respect to the
2-norm (b is input) is

rel(b) =
1

cos(✓(b))
kPk2 .

 board
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Linear least-squares problems

Now for the least-squares problem kAx � bk2. The relative condition number  in the
Euclidean norm is bounded by

I With respect to perturbations in b:

  2(A)

cos(✓)

I With respect to perturbations in A:

  2(A) + 2(A)
2 tan(✓)

Proof  next week
What are these bounds telling us?

Small residual problems, small angle ✓ cos(✓) ⇡ 1, tan(✓) ⇡ 0: behavior similar to
linear system.
Large residual problems, large angle ✓ cos(✓) ⌧ 1, tan(✓) ⇡ 1: behavior very di↵erent
from linear system because 2(A)2 shows up
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How should we solve least-squares problems numerically?

We know from the previous slide that if the residual is large, then the condition  is
much larger than 2(A) (closer to 2(A)2)

I This is a poorly condition problem; however, do we care?

I If the residual is large, then our Ax won’t explain well the right-hand side b
I This means that “our curve doesn’t fit well the data” and we probably should try

to find another space in which to search for a solution (another A with a range
that better approximates the projected right-hand side b)
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More relevant is the situation with a small residual and then  ⇡ 2(A)

I Here we have a well condition problem; so what could go wrong?

I If we choose a numerical method that solves the normal equations

ATAx = ATb

then our problem becomes the problem of solving the linear system with matrix
ATA, which has condition number

2(ATA) = 2(A)2

 we are back in the situation of a poorly condition problem (“solving a linear
system with ATA”) even though our original problem (least-squares problem) is
well condition

I Can we do better and solve the least-squares problem (the problem we are
actually interested in) without having to solve a problem with condition that
grows with 2(A)2 on the way?
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The QR decomposition
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Recall that projecting b onto the column span (range) of A was the key step  let’s
try to find a numerical method that computes an orthonormal basis q1, . . . ,qn of the
rank-n column span of A

A =

2

4
| |
a1 . . . an

| |

3

5 2 Rm⇥n , m � n

+

2

4
| |
a1 . . . an

| |

3

5

| {z }
A

=

2

4
| |

q1 . . . qn

| |

3

5

| {z }
Q

2

66664

r11 r12 . . . r1n

r22
...

. . .
rnn

3

77775

| {z }
R

with an invertible matrix R so that

span(a1, . . . , ak) = span(q1, . . . ,qk) , k = 1, . . . , n
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2

4
| |
a1 . . . an

| |

3

5

| {z }
A

=

2

4
| |

q1 . . . qn

| |

3

5

| {z }
Q

2

6664

r11 r12 . . . r1n

r22 . . .
. . .

rnn

3

7775

| {z }
R

+ leads to system of equations +

a1 =r11q1

a2 =r12q1 + r22q2

a3 =r13q1 + r23q2 + r33q3

...

an =r1nq1 + r2nq2 + · · ·+ rnnqn

What process does this motivate?
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This motivates a process for computing the basis q1, . . . ,qn

I At step j , we have q1, . . . ,q j�1 that span span(a1, . . . , aj�1)
I We want to find q j orthonormal to q1, . . . ,q j�1 so that q1, . . . ,q j spans

span(a1, . . . , aj)
I Thus, set

v j = aj � (qT
1 aj)q1 � (qT

2 aj)q2 � · · ·� (qT
j�1aj)q j�1

and normalize
q j =

v j

kv jk2
Notice that at step j , the quantities qT

1 aj ,qT
2 aj , . . . ,qT

j�1aj are the values
rj ,1, . . . , rj ,j�1 and rjj is responsible for the normalization and set to

rjj = kaj �
j�1X

i=1

rijqik2

This process is the classical Gram-Schmidt procedure to compute the QR factorization

However, this process is numerically unstable!
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Instead of directly computing

v j = aj � (qT
1 aj)q1 � (qT

2 aj)q2 � · · ·� (qT
j�1aj)q j�1

based on aj , the modified Gram-Schmidt procedure computes v j iteratively

v (1)
j =aj ,

v (2)
j =v (1)

j � q1qT
1 v (1)

j , ”subtract from v (1)
j what is already in q1”

v (3)
j =v (2)

j � q2qT
2 v (2)

j , ”subtract from v (2)
j what is already in q2”

...

v j =v (j)
j = v (j�1)

j � q j�1qT
j�1v

(j�1)
j

Computing a QR factorization with the modified Gram-Schmidt procedure is stabler
than with the classical Gram-Schmidt procedure. However, even the modified
Gram-Schmidt procedure can lead to vectors q1, . . . ,qn that are far from orthogonal if
the condition number of A is large (see, Golub et al., Matrix Computations, Section
5.2.9)
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Let’s recall what the Gram-Schmidt procedure is doing: It is applying a succession of
triangular matrices Rk on the right of A so that the resulting matrix

AR1R2 . . .Rn| {z }
R�1

= Q

has orthonormal columns and R is upper-triangular.

Instead, we could try to find orthonormal matrices (XTX = XXT = I ) so that

Qn . . .Q2Q1| {z }
Q

A = R

is upper-triangular. The product Qn . . .Q2Q1 = QT is orthonormal too and thus
A = QR a QR factorization of A.

The Householder method judiciously finds the matrices Q1,Q2, . . . ,Qn via so-called
Householder reflectors  board. The Householder method is backward stable.
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The QR factorization

All these three algorithms (classical Gram-Schmidt, modified Gram-Schmidt,
Householder triangularization) have roughly the FLOPs of 2mn

2 for an m ⇥ n matrix

Why would we ever want to use (modified) Gram-Schmidt instead of Householder
triangularization?

Gram-Schmidt can be easier to parallelize, for example (Recall that
best algorithm depends also on what hardware we want to implement it on.)

Every matrix A 2 Rm⇥n with m � n has a QR factorization. It is unique if we require
the diagonal elements of R to be positive.
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The QR factorization

All these three algorithms (classical Gram-Schmidt, modified Gram-Schmidt,
Householder triangularization) have roughly the FLOPs of 2mn

2 for an m ⇥ n matrix

Why would we ever want to use (modified) Gram-Schmidt instead of Householder
triangularization? Gram-Schmidt can be easier to parallelize, for example (Recall that
best algorithm depends also on what hardware we want to implement it on.)

Every matrix A 2 Rm⇥n with m � n has a QR factorization. It is unique if we require
the diagonal elements of R to be positive.
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If m > n and Q 2 Rm⇥n, then we speak of a reduced QR factorization. Otherwise, we
have Q 2 Rm⇥m and we speak of a full QR factorization.

1: >> A = randn(10, 10); [Q, R] = qr(A);

2: >> size(Q)

3: ans =

4: 10 10

5: >> size(R)

6: ans =

7: 10 10
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1: >> A = randn(10, 4); [Q, R] = qr(A)

2: >> size(Q)

3: ans =

4: 10 10

5: >> size(R)

6: ans =

7: 10 4

8: >>

9: >> [Q, R] = qr(A, 0); % reduced QR

10: >> size(Q)

11: ans =

12: 10 4

13: >> size(R)

14: ans =

15: 4 4
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Back to our least-squares problem

One would like to avoid the multiplication A
T
A and use a suitable factorization of A

that avoids solving the normal equation directly:

A = QR =
⇥
Q1,Q2

⇤ R1

0

�
= Q1R1,

where Q 2 Rm⇥m is an orthonormal matrix (QQT = I ), and R 2 Rm⇥n consists of an
upper triangular matrix and a block of zeros.
How can the QR factorization be used to solve the least-squares problem?

min
x

kAx � bk2 = min
x

kQT (Ax � b)k2 = min
x

k

b1 � R1x

b2

�
k2,

= min
x

kb1 � R1xk2 + kb2k2

where Q
Tb =


b1

b2

�
.

Thus, the least squares solution is x = R
�1b1 and the residual is kb2k.
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Stability of solving least-squares problem with Householder

triangularization

Solving a least-squares problem with A 2 Rm⇥n,m � n and rank(A) = n via QR
factorization computed with Householder triangularization is backward stable.
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Eigen decomposition
I For a square matrix A 2 Cn⇥n, there exists at least one � such that

Ax = �x =) (A � �I )x = 0

I Putting the eigenvectors x j as columns in a matrix X , and the eigenvalues �j on
the diagonal of a diagonal matrix ⇤, we get

AX = X⇤

I A matrix is non-defective or diagonalizable if there exist n linearly independent
eigenvectors, which means that X is invertible

X�1AX =⇤

A =X⇤X�1

I The transformation from A to ⇤ = X�1AX is called a similarity transformation
and it preserves the eigenvalues.
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I A matrix is unitarily diagonalizable if there exist n linearly independent orthogonal
eigenvectors, i.e., if the matrix X can be chosen to be unitary (orthonormal),
X = U , where U�1 = UH

A = U⇤UH

Note that unitary matrices generalize orthogonal matrices to the complex domain,
so we use adjoints (conjugate transpose) instead of transpose throughout

I Theorem: A matrix is unitarily diagonlizable i↵ it is normal, i.e., it commutes with
its adjoint:

AHA = AAH

I Theorem: Hermitian (symmetric) matrices, AH = A, are unitarily diagonalizable
and have real eigenvalues.
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I The usual eigenvectors are more precisely called right eigenvectors. There are also
left eigenvectors corresponding to a given eigenvalue �

yHA = �yH =) AHy = �̄y ,

Y HA = ⇤Y H

with conjugate �̄ of �

I For a matrix that is diagonalizable, observe that

Y H = X�1

and so the left eigenvectors provide no new information

I For unitarily diagonalizable matrices, Y = (X�1)H = (XH)H = X = U , so that
the left and right eigenvectors coincide.
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Numerically finding eigenvalues

For a matrix A 2 Cn⇥n (potentially real), we want to find � 2 C and x 6= 0 such that

Ax = �x .

Most relevant problems:

I A symmetric (and large)

I A spd (and large)

I A stochastic matrix, i.e., all entries 0  aij  1 are probabilities, and thusP
j
aij = 1.
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How hard are they to find numerically?

I This is a nonlinear problem.

I How di�cult is this? Eigenvalues are the roots of the characteristic polynomial.
Also, any polynomial is the characteristic polynomial of a matrix  For matrices
larger than 4⇥ 4, eigenvalues cannot be computed in closed form (Abel’s
theorem).

I Must use an iterative algorithm  this is fundamentally di↵erent from what we
have seen previously when solving systems of linear equations! These algorithms
(LU, QR) give the exact solution in exact arithmetic in finite number of steps. We
cannot expect something similar for computing eigenvalues!
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Condition of finding eigenvalues of a matrix
The absolute condition number of determining a simple eigenvalue �0 of a matrix
A 2 Cn⇥n with respect to the k · k2 is

abs =
1

| cos(\(x , y))| , cos(\(x , y)) = |hx , yi|
kxkkyk

and the relative condition number is

rel =
kAk

|�0 cos(\(x , y))|
,

where x is an eigenvector of A for the eigenvalue �0 (Ax = �0x) and y an adjoint
eigenvector (AHy = �̄0y).

Sketch of proof  board  next time

(see also Deuflhard, Theorem 5.2)
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Interpretation

Perturbations of order � in entries of matrix A induce changes of the order
�� = �/ cos(\(x0, y0))

In particular, for normal matrices∗ (AAH = AHA), we have x0 = y0 and thus
\(x0, y0) = 0 and thus cos(\(x0, y0)) = 1, which means abs = 1, which can be
considered well conditioned

Finding non-simple eigenvalues can have very high absolute condition number (but can
still be done numerically). For a detailed treatment have a look at textbook by Golub
et al. on Matrix Computations.

∗
Equivalent: Have orthonormal eigenbasis of C; diagonalizable by unitary matrix.
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Bounding error in eigenvalue computation
Let A 2 Cn⇥n be a Hermitian matrix and let (�̂, x̂) be a computed approximation of
an eigenvalue/eigenvector pair (�, x) of A. Defining the residual

r̂ = Ax̂ � �̂x̂ , x̂ 6= 0 ,

it then follows that

min
�i2�(A)

|�̂� �i | 
kr̂k2
kx̂k2

,

where �(A) = {�|� is an eigenvalue of A} is the spectrum of A.

Proof  board

What is special about this bound?

I This is an a posteriori bound that bounds the error after we have computed the
result

I We will see many more residual-based a posteriori bounds (broadly speaking: the
residual is something we can compute, and if the problem is “well-behaved” then
the norm of the residual is a reasonable bound of the norm of the error.)
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Condition of computing eigenvectors

I The condition of computing eigenvector x i for an eigenvalue �i depends on the
separation between the eigenvalues

 =
1

mini 6=j |�i � �j |

(Quarteroni et al., Section 5)

I Computing x i can be ill-conditioned if some eigenvalue �j is “very close” to the
eigenvalue �i

I This indicates that multiple eigenvalues require care. Even for Hermitian matrices
eigenvectors can be hard to compute
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The Power Method
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Let A 2 Cn⇥n be diagonalizable matrix and �1 be a simple eigenvalue with

|�1| > |�2| � · · · � |�n|

Let x0 be an initial guess that is not orthogonal to the eigenspace of �1, then xk

obtained via the iterations

zk+1 = Axk (1)

xk+1 = zk+1/kzk+1k2 (2)

will converge to the normalized eigenvector of A corresponding to �1 for k ! 1.

This process is called the power method.

Proof  board
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Power method (cont’d)
Start with initial guess x0 and then iterate
I Compute matrix-vector product and normalize it

xk =
Axk�1

kAxk�1k

I Obtain eigenvalue estimate (note that kxkk = 1)

�(k)
1 = xH

k
Axk

I Test for convergence? How?

Compute residual

rk = Axk � �(k)
1 xk

and terminate if the error estimate is small enough (bound if A Hermitian,
heuristic otherwise)

min
i

|�i � �(k)
1 | 

krkk
kxkk

< ✏
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Today

Last time

I Computing eigenvalues

I Perturbation bounds

Today

I More on computing the eigenvalues

Announcements

I Homework 3 posted, is due Mon, Oct 21 before class
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Numerically finding eigenvalues

For a matrix A 2 Cn⇥n (potentially real), we want to find � 2 C and x 6= 0 such that

Ax = �x .

Most relevant problems:

I A symmetric (and large)

I A spd (and large)

I A stochastic matrix, i.e., all entries 0  aij  1 are probabilities, and thusP
j
aij = 1.
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How hard are they to find numerically?

I This is a nonlinear problem.

I How di�cult is this? Eigenvalues are the roots of the characteristic polynomial.
Also, any polynomial is the characteristic polynomial of a matrix  For matrices
larger than 4⇥ 4, eigenvalues cannot be computed in closed form (Abel’s
theorem).

I Must use an iterative algorithm  this is fundamentally di↵erent from what we
have seen previously when solving systems of linear equations! These algorithms
(LU, QR) give the exact solution in exact arithmetic in finite number of steps. We
cannot expect something similar for computing eigenvalues!
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Condition of finding eigenvalues of a matrix
The absolute condition number of determining a simple eigenvalue �0 of a matrix
A 2 Cn⇥n with respect to the k · k2 is

abs =
1

| cos(\(x , y))| , cos(\(x , y)) = |hx , yi|
kxkkyk

and the relative condition number is

rel =
kAk

|�0 cos(\(x , y))|
,

where x is an eigenvector of A for the eigenvalue �0 (Ax = �0x) and y an adjoint
eigenvector (AHy = �̄0y).

Sketch of proof  board  finish proof sketch

(see also Deuflhard, Theorem 5.2)
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The Power Method
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Recap: Power method

Let A 2 Cn⇥n be diagonalizable matrix and �1 be a simple eigenvalue with

|�1| > |�2| � · · · � |�n|

Let x0 be an initial guess that is not orthogonal to the eigenspace of �1, then xk

obtained via the iterations

zk+1 = Axk (3)

xk+1 = zk+1/kzk+1k2 (4)

will converge to the normalized eigenvector of A corresponding to �1 for k ! 1.

This process is called the power method.

Proof  last week
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Recap Power method (cont’d)
Start with initial guess x0 and then iterate
I Compute matrix-vector product and normalize it

xk =
Axk�1

kAxk�1k

I Obtain eigenvalue estimate (note that kxkk = 1)

�(k)
1 = xH

k
Axk

I Test for convergence? How? Compute residual

rk = Axk � �(k)
1 xk

and terminate if the error estimate is small enough (bound if A Hermitian,
heuristic otherwise)

min
i

|�i � �(k)
1 | 

krkk
kxkk

< ✏
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I The power method converges linearly

kxk � (±v1)k 2 O((|�2|/|�1|)
k)

I If A is normal, then the eigenvalue estimate converges a bit faster but still linearly

|�(k)
1 � �1| 2 O((|�2|/|�1|)

2k)

I The power method is fast when the dominant eigenvalue is well separated from
the rest

I This conclusion is rather general for all iterative methods, convergence is often
good if eigenvalues are well separated and bad otherwise

I The power method is typically too slow to be used in practice
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The inverse power method
For any µ not an eigenvalue of A:
I The eigenvectors of (A � µI )�1 are the same as the eigenvectors of A
I The eigenvalues of (A � µI )�1 are {(�j � µ)�1

}  why useful?

Thus, if we have a good estimate µ of an eigenvalue �J of matrix A, then

|�j � µ|�1

|�J � µ|�1
⌧ 1 , j 6= J

and thus the power method applied to (A � µI )�1 converges rapidly to v J :

(A � µI )yk+1 =xk (5)

xk+1 =yk+1/kyk+1k (6)

I What do we need to keep in mind? Costs: Requires matrix solve in every iteration;
same matrix, di↵erent right-hand sides ( LU and Cholesky decompositions)

I This algorithm is used in practice to find eigenvectors if the eigenvalues are
already known
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I The eigenvalues of (A � µI )�1 are {(�j � µ)�1

}  why useful?

Thus, if we have a good estimate µ of an eigenvalue �J of matrix A, then

|�j � µ|�1

|�J � µ|�1
⌧ 1 , j 6= J

and thus the power method applied to (A � µI )�1 converges rapidly to v J :

(A � µI )yk+1 =xk (5)

xk+1 =yk+1/kyk+1k (6)

I What do we need to keep in mind? Costs: Requires matrix solve in every iteration;
same matrix, di↵erent right-hand sides ( LU and Cholesky decompositions)

I This algorithm is used in practice to find eigenvectors if the eigenvalues are
already known
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Rayleigh quotient iterations
I The convergence speed of the inverse power method increases with a better

eigenvalue estimate  what could we do?

I Combine estimating eigenvalue and eigenvector  Rayleigh quotient iteration

Accelerated version of the inverse power method using changing shifts:

I Choose starting vector x0 with kx0
k = 1. Compute �(0) = (x0)TAx0.

I For i = 0, 1, . . . do

(A� �(k)
I )xk+1 = xk , yk+1 = xk+1/kxk+1

k.

I Compute �(k+1) = (yk+1)TAyk+1, and go back.

If it converges (depends on starting point), then it converges cubically  details in
Trefethen & Bau
(This is the only method we will see that converges so quickly!)
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The QR algorithm
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The QR algorithm
The power method is not well suited for finding all eigenvalues of a matrix A

Idea of the QR method: Build a matrix A
0 that shares the eigenvalues of A via

similarity transformations

A0 = P�1AP , A,A0 have the same eigenvalues

and for which we know the eigenvalues.  What matrix would we like A0 to be?

The QR algorithm for finding eigenvalues is as follows (A0 := A), and for k = 0, 1, . . .:
I Compute QR decomposition of Ak , i.e., Ak = QkRk .
I Ak+1 := RkQk , k := k + 1 and go back.

All iterates A1,A2, . . . have the same eigenvalues because

QkAk+1Q
T

k
= QkRkQkQ

T

k
= QkRk = Ak

and Ak converges to a diagonal matrix if A is Hermitian and eigenvalues well separated
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Intuition why QR method converges

Think of it as the power method applied to many linearly independent vectors

z
(0)
1 , . . . , z(0)n at once

Define

Z
(0) =

2

4
| |

z
(0)
1 . . . z

(0)
n

| |

3

5

and define

Z
(k) = A

k
Z

(0) =

2

4
| |

z
(k)
1 . . . z

(k)
n

| |

3

5

Recall that in the power method we had to re-normalize after each step  now we
have multiple vectors and therefore also need to orthogonalize  QR
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With orthogonalization after each iteration, we obtain the algorithm

1. Z
(k) = AQ̄

(k�1)

2. Q̄
(k)

R
(k) = Z

(k)

3. A
(k) = (Q̄(k))TAQ̄(k)

 equivalent to the QR method

Summary: Let the QR algorithm be applied to a symmetric real matrix A with well
separated eigenvalues

|�1| > |�2| > · · · > |�n|

and eigenvectors matrix V that has nonsingular leading principal submatrices (all
upper-left 1⇥ 1, 2⇥ 2, ... submatrices). Then, for k ! 1, the iterates A(k) converge
linearly in

O

✓
max

j

|�j+1|
k

|�j |
k

◆

to diag(�1, . . . ,�n) and Q̄
(k) to V (up to ±)
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I The convergence of the QR algorithm is closely related to that of the power
method: It is only fast if all eigenvalues are well separated

I For more general (e.g., non-symmetric) matrices in complex arithmetic, the
algorithm converges to the Schur decomposition A = UTU

H with triangular
matrix T and unitary matrix U  read eigenvalues from diagonal of T

I The work per iteration of the basic QR algorithm that we discussed is in O(n3)
because of the QR factorization in each step; the power method has cost O(n2)
(mat-vec) per iteration

I There are several key improvements to the basic QR algorithm that bring down
the cost per iteration to O(n2) (Hessenberg matrices)

I There also can be shifts (compare power method) to accelerate the convergence

I As always with linear algebra routines, the “best” are implemented in LAPACK
and can be called via Matlab, numpy, etc
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Eigenvalues in Matlab
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Conclusions/summary
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Today

Last time

I Computing eigenvalues

Today

I Singular value decomposition

Announcements

I Homework 3 posted, is due Mon, Oct 21 before class
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Recap: Power method for computing eigenvectors and eigenvalues

Let A 2 Cn⇥n be diagonalizable matrix and �1 be a simple eigenvalue with

|�1| > |�2| � · · · � |�n|

Let x0 be an initial guess that is not orthogonal to the eigenspace of �1, then xk

obtained via the iterations

zk+1 = Axk (7)

xk+1 = zk+1/kzk+1k2 (8)

will converge to the normalized eigenvector of A corresponding to �1 for k ! 1.

This process is called the power method.
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Recap: The QR algorithm
The power method is not well suited for finding all eigenvalues of a matrix A

Idea of the QR method: Build a matrix A
0 that shares the eigenvalues of A via

similarity transformations

A0 = P�1AP , A,A0 have the same eigenvalues

and for which we know the eigenvalues.  What matrix would we like A0 to be?

The QR algorithm for finding eigenvalues is as follows (A0 := A), and for k = 0, 1, . . .:
I Compute QR decomposition of Ak , i.e., Ak = QkRk .
I Ak+1 := RkQk , k := k + 1 and go back.

All iterates A1,A2, . . . have the same eigenvalues because

QkAk+1Q
T

k
= QkRkQkQ

T

k
= QkRk = Ak

and Ak converges to a diagonal matrix if A is Hermitian and eigenvalues well separated
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Singular Value Decomposition (SVD)
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Let A 2 Cm⇥n. A singular value decomposition of A is a factorization

A = U⌃VH ,

where

U 2 Cm⇥m is unitary (9)

V 2 Cn⇥n is unitary (10)

⌃ 2 Rm⇥n is diagonal. (11)

Additionally, the diagonal entries �j of ⌃ are non-negative and in non-decreasing order
so that �1 � �2 � · · · � �p � 0 where p 2 min(m, n).

I The diagonal matrix ⌃ is real and has the same shape as A even when A is not
square

I The matrices U and V are always square
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[Edited from figure by Georg-Johann, Wikipedia]

The image of the unit sphere un-
der a map A is a hyperellipse (in
Rm). Thus, with A = U⌃VH ,
have

I The unitary map V
H

preserves the sphere
(rotating a sphere is a
sphere)

I The diagonal matrix ⌃
stretches the sphere into a
hyperellipse aligned with the
canonical basis

I The unitary map U rotates
or reflects the hyperellipse
without changing shape
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Existence and uniqueness of SVD
Theorem: Every matrix A 2 Cm⇥n has a singular value decomposition. Furthermore,
the singular values {�j} are uniquely determined, and, if A is square and the �j are
distinct, the left and right singular vectors {uj} and {vj} are uniquely determined up to
complex signs (i.e., complex scalar factors of absolute value 1.) Proof in Trefethen &
Bau.

Reduced SVD

2

66664
A

3

77775

| {z }
m⇥n

=

2

66664
Û

3

77775

| {z }
m⇥n

2

4 ⌃̂

3

5

| {z }
n⇥n

2

4 V̂
H

3

5

| {z }
n⇥n
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SVD vs. eigenvalue decomposition

SVD expresses a matrix in proper bases for domain and range space to represent it as a
diagonal matrix

A = U⌃VH

We have seen something similar with eigenvectors: A non-defective square matrix A

can be expressed as a diagonal matrix of eigenvalues ⇤ if the range and domain are
presented in a basis of eigenvectors

A = X⇤X�1
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There are fundamental di↵erences between the SVD and eigenvalue decomposition

I SVD uses two di↵erent bases (left and right singular vectors); eigenvalue
decomposition uses just one (eigenvectors)

I SVD uses orthonormal bases, whereas eigenvalue basis generally is not orthogonal

I Not all matrices (even square ones) have an eigendecomposition, but all matrices
(even rectangular ones) have a singular value decomposition

Typically, eigenvalues tell us something about the behavior of iterative processes that
involve the matrix A such as Ak and etA

Singular values tend to tell us something about A itself
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The SVD and matrix properties

In the following:

I The matrix A is of dimension m ⇥ n

I p = min(m, n)

I r  p is the number of non-zero singular values of A

We now list how the SVD is related to fundamental properties of the matrix A

I The rank of A is r , the number of non-zero singular values.

I The range (column span) of A is span(u1, . . . , ur ), the kernel is span(vr+1, . . . , vn)

I kAk2 = �1 and kAkF =
q
�2
1 + · · ·+ �2

r

I For square A, | det(A)| =
Q

m

i=1 �i
I The non-zero singular values of A are the square roots of the non-zero eigenvalues

of AH
A and AA

H  proof
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The non zero SV of A are the square roots

of the non zero EV of AHA and AAH

AHA CUEVHJHCUS.VN

VELHU EV
VEHEVH

Need that is diagonal then we have

ligerdecomposition of A A

Σ has size nxn and the

diagonal P Pp

1 i

ppe Σ



Full SVD

A|{z}
m⇥n

= U|{z}
m⇥m

⌃|{z}
m⇥n

VH

|{z}
n⇥n

Reduced SVD

A|{z}
m⇥n

= U|{z}
m⇥n

⌃|{z}
n⇥n

VH

|{z}
n⇥n

Rank-revealing SVD of a rank r matrix with dimension m ⇥ n

A|{z}
m⇥n

= U|{z}
m⇥r

⌃|{z}
r⇥r

VH

|{z}
r⇥n
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Representing matrices via sums of rank-one matrices
Represent A as a sum of M rank-one matrices

A =
XM

j=1
A
(j)

There are many possibilities of choosing A
(j)

I Let A(j) contain the j-th of the m rows of A
I Let A(j) contain the j-th of the n columns of A
I Let A(j) contain one of the mn entries of A
I ...

What is a property of a “sum representation” that we like to see in numerical analysis?

 we can truncate it after a few terms and get a good approximation

A ⇡

XM
0

j=1
A
(j)

with M
0
⌧ M
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SVD for low-rank approximation
Consider the SVD A = U⌃VH , then

A =
rX

j=1

�jujv
H

j

Let us truncate the sum after 1  q  r terms and define

Aq =
qX

j=1

�jujv
H

j .

Then, Aq is a best rank q approximation of A in the k · k2 norm

kA� Aqk2 = inf
B2Cm⇥n

rank(B)q

kA� Bk2

 proof
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Best rash approximation
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SVD for low-rank approximation
Consider the SVD A = U⌃VH , then

A =
rX

j=1

�jujv
H

j

Let us truncate the sum after 1  q  r terms and define

Aq =
qX

j=1

�jujv
H

j .

Then, Aq is a best rank q approximation of A in the k · k2 norm

kA� Aqk2 = inf
B2Cm⇥n

rank(B)q

kA� Bk2 = �q+1

The error is the first left out singular value �q+1!  proof
44 / 62



Furthermore, in the Frobenius norm k · kF , for any 0  q  r , the matrix Aq from the
previous slide also satisfies

kA� AqkF = inf
B2Cm⇥n

rank(B)q

kA� BkF =
q
�2
q+1 + · · ·+ �2

r
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SVD and pseudo inverse
The (Moore-Penrose) pseudo inverse of an m ⇥ n matrix that is regular and square is
A
+ = A

�1.

Otherwise, the pseudo inverse is given by

A
+ = V⌃+

U
H ,

where
⌃+ = diag(��1

1 ,��1
2 , . . . ,��1

r , 0, . . . , 0)

Thus, we can solve least-squares problems minx kb � Axk2 by taking the SVD of A,
computing A

+, and setting x = A
+
b for the minimal norm solution w.r.t. k · k2

The approach we discussed via the QR decomposition is cheaper but the approach via
the SVD is sometimes preferred because it allows to easily regularize the problem by
truncating small singular values.
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How to compute the SVD?

The SVD of an m ⇥ n (m � n) matrix A is related to the eigenvalue decomposition of
A
H
A

A
H
A = V⌃H⌃VH ,

Since we know how to numerically compute the eigendecomposition, we could compute
the SVD of A as follows
1. Form A

H
A

2. Compute the eigendecomposition A
H
A = V⇤VH (Notice that Z = A

H
A is normal

because Z
H
Z = ZZ

H)
3. Let ⌃ be the m ⇥ n non-negative diagonal square root of ⇤
4. Solve the system U⌃ = AV for unitary U

Is this a good idea?  as we have seen before, it is typically dangerous† from a
stability perspective to compute something of the matrix A via the matrix A

H
A (think

of least-squares regression)  board

†
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How not to compute the SVD?
The SVD of an m ⇥ n (m � n) matrix A is related to the eigenvalue decomposition of
A
H
A

A
H
A = V⌃H⌃VH ,

Since we know how to numerically compute the eigendecomposition, we could compute
the SVD of A as follows
1. Form A

H
A

2. Compute the eigendecomposition A
H
A = V⇤VH (Notice that Z = A

H
A is normal

because Z
H
Z = ZZ

H)
3. Let ⌃ be the m ⇥ n non-negative diagonal square root of ⇤
4. Solve the system U⌃ = AV for unitary U

Is this a good idea?  as we have seen before, it is typically dangerous† from a
stability perspective to compute something of the matrix A via the matrix A

H
A (think

of least-squares regression)  board
†https://nhigham.com/2022/10/11/seven-sins-of-numerical-linear-algebra/
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is not good idea
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How we actually compute the SVD
For the sake of the argument, assume that A is a square m⇥m (following is applicable
to rectangular matrices too)  board

Consider the 2m ⇥ 2m Hermitian matrix

H =


0 A

H

A 0

�

Since A = U⌃VH , we have

AV = U⌃ and A
H
U = V⌃H = V⌃ (recall that singular values are real)

which we write in matrix form as

0 A

H

A 0

� 
V V

U �U

�
=


V V

U �U

� 
⌃ 0
0 �⌃

�

which is the eigendecomposition of H  avoids using A
H
A and AA

H and is stable
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Today

Last time

I Singular value decomposition

Today

I Singular value decomposition

I Iterative methods for solving linear systems

Announcements

I Homework 3 posted, is due Mon, Oct 21 before class
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Recap
Let A 2 Cm⇥n. A singular value decomposition of A is a factorization

A = U⌃VH ,

where

U 2 Cm⇥m is unitary (12)

V 2 Cn⇥n is unitary (13)

⌃ 2 Rm⇥n is diagonal. (14)

Additionally, the diagonal entries �j of ⌃ are non-negative and in non-decreasing order
so that �1 � �2 � · · · � �p � 0 where p 2 min(m, n).

I The diagonal matrix ⌃ is real and has the same shape as A even when A is not
square

I The matrices U and V are always square
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Recap

Full SVD

A|{z}
m⇥n

= U|{z}
m⇥m

⌃|{z}
m⇥n

VH

|{z}
n⇥n

Reduced SVD

A|{z}
m⇥n

= U|{z}
m⇥n

⌃|{z}
n⇥n

VH

|{z}
n⇥n

Rank-revealing SVD of a rank r matrix with dimension m ⇥ n

A|{z}
m⇥n

= U|{z}
m⇥r

⌃|{z}
r⇥r

VH

|{z}
r⇥n
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Recap: The SVD and matrix properties

In the following:

I The matrix A is of dimension m ⇥ n

I p = min(m, n)

I r  p is the number of non-zero singular values of A

We now list how the SVD is related to fundamental properties of the matrix A

I The rank of A is r , the number of non-zero singular values.

I The range (column span) of A is span(u1, . . . , ur ), the kernel is span(vr+1, . . . , vn)

I kAk2 = �1 and kAkF =
q
�2
1 + · · ·+ �2

r

I For square A, | det(A)| =
Q

m

i=1 �i
I The non-zero singular values of A are the square roots of the non-zero eigenvalues

of AH
A and AA

H
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Recap: SVD for low-rank approximation
Consider the SVD A = U⌃VH , then

A =
rX

j=1

�jujv
H

j

Let us truncate the sum after 1  q  r terms and define

Aq =
qX

j=1

�jujv
H

j .

Then, Aq is a best rank q approximation of A in the k · k2 norm

kA� Aqk2 = inf
B2Cm⇥n

rank(B)q

kA� Bk2 = �q+1

The error is the first left out singular value �q+1!
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Recap

Furthermore, in the Frobenius norm k · kF , for any 0  q  r , the matrix Aq from the
previous slide also satisfies

kA� AqkF = inf
B2Cm⇥n

rank(B)q

kA� BkF =
q
�2
q+1 + · · ·+ �2

r
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Recap: SVD and pseudo inverse
The (Moore-Penrose) pseudo inverse of an m ⇥ n matrix that is regular and square is
A
+ = A

�1.

Otherwise, the pseudo inverse is given by

A
+ = V⌃+

U
H ,

where
⌃+ = diag(��1

1 ,��1
2 , . . . ,��1

r , 0, . . . , 0)

Thus, we can solve least-squares problems minx kb � Axk2 by taking the SVD of A,
computing A

+, and setting x = A
+
b for the minimal norm solution w.r.t. k · k2

The approach we discussed via the QR decomposition is cheaper but the approach via
the SVD is sometimes preferred because it allows to easily regularize the problem by
truncating small singular values.
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How to compute the SVD?

The SVD of an m ⇥ n (m � n) matrix A is related to the eigenvalue decomposition of
A
H
A

A
H
A = V⌃H⌃VH ,

Since we know how to numerically compute the eigendecomposition, we could compute
the SVD of A as follows
1. Form A

H
A

2. Compute the eigendecomposition A
H
A = V⇤VH (Notice that Z = A

H
A is normal

because Z
H
Z = ZZ

H)
3. Let ⌃ be the m ⇥ n non-negative diagonal square root of ⇤
4. Solve the system U⌃ = AV for unitary U

Is this a good idea?  as we have seen before, it is typically dangerous† from a
stability perspective to compute something of the matrix A via the matrix A

H
A (think

of least-squares regression)  board

†
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How not to compute the SVD?
The SVD of an m ⇥ n (m � n) matrix A is related to the eigenvalue decomposition of
A
H
A

A
H
A = V⌃H⌃VH ,

Since we know how to numerically compute the eigendecomposition, we could compute
the SVD of A as follows
1. Form A

H
A

2. Compute the eigendecomposition A
H
A = V⇤VH (Notice that Z = A

H
A is normal

because Z
H
Z = ZZ

H)
3. Let ⌃ be the m ⇥ n non-negative diagonal square root of ⇤
4. Solve the system U⌃ = AV for unitary U

Is this a good idea?  as we have seen before, it is typically dangerous† from a
stability perspective to compute something of the matrix A via the matrix A

H
A (think

of least-squares regression)  board
†https://nhigham.com/2022/10/11/seven-sins-of-numerical-linear-algebra/
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How we actually compute the SVD
For the sake of the argument, assume that A is a square m⇥m (following is applicable
to rectangular matrices too)  board

Consider the 2m ⇥ 2m Hermitian matrix

H =


0 A

H

A 0

�

Since A = U⌃VH , we have

AV = U⌃ and A
H
U = V⌃H = V⌃ (recall that singular values are real)

which we write in matrix form as

0 A

H

A 0

� 
V V

U �U

�
=


V V

U �U

� 
⌃ 0
0 �⌃

�

which is the eigendecomposition of H  avoids using A
H
A and AA

H and is stable

55 / 68



Instead of AHA let us use

H
0 A

A O

Because A UEV have

AV UE
AHU VS.HU U VEH VE

1 IC t E
Tt

Hi 1l I
an

1518 3 0 3
Would like to find the eigendecomposition of

0 A Algorithm that uses this idea

a o
but avoids assembling Hmatrix



How we actually compute the SVD
For the sake of the argument, assume that A is a square m⇥m (following is applicable
to rectangular matrices too)  board

Consider the 2m ⇥ 2m Hermitian matrix

H =


0 A

H

A 0

�

Since A = U⌃VH , we have

AV = U⌃ and A
H
U = V⌃H = V⌃ (recall that singular values are real)

which we write in matrix form as

0 A

H

A 0

� 
V V

U �U

�
=


V V

U �U

� 
⌃ 0
0 �⌃

�

which is the eigendecomposition of H  avoids using A
H
A and AA

H and is stable
55 / 68



Computing the SVD is typically a two-phase procedure:

First, reduce the matrix A to bidiagonal form, then diagonalize the bidiagonal matrix

2

6666664

⇤ ⇤ ⇤ ⇤

⇤ ⇤ ⇤ ⇤

⇤ ⇤ ⇤ ⇤

⇤ ⇤ ⇤ ⇤

⇤ ⇤ ⇤ ⇤

⇤ ⇤ ⇤ ⇤

3

7777775
!

2

6666664

⇤ ⇤

⇤ ⇤

⇤ ⇤

⇤

3

7777775
!

2

6666664

⇤

⇤

⇤

⇤

3

7777775

I Phase 1 involves a finite number of operations that scale as O(mn
2)

I Phase 2 (recall eigenvalue problems) is iterative but converges very quickly; in
practice achieves convergence in O(n) to machine precision

I Thus, state-of-the-art computation of the SVD has costs that scale as O(mn
2)

This is the celebrated Golub-Kahan approach from the 1960s
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How can we bidiagonalize a matrix? Recall that we already know how to triangualize a
matrix via (unitary) Householder reflection
2

666664

⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤

3

777775
!

2

666664

⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤
⇤ ⇤ ⇤
⇤ ⇤ ⇤
⇤ ⇤ ⇤
⇤ ⇤ ⇤

3

777775
!

2

666664

⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤

⇤ ⇤
⇤ ⇤
⇤ ⇤
⇤ ⇤

3

777775
!

2

666664

⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤

⇤ ⇤
⇤
⇤
⇤

3

777775
!

2

666664

⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤

⇤ ⇤
⇤

3

777775

A Q1A Q2Q1A Q3Q2Q1A Q4Q3Q2Q1A

Now, we apply interleaved Householder reflection from left and right
2

666664

⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤

3

777775
!

2

666664

⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤
⇤ ⇤ ⇤
⇤ ⇤ ⇤
⇤ ⇤ ⇤
⇤ ⇤ ⇤

3

777775
!

2

666664

⇤ ⇤
⇤ ⇤ ⇤
⇤ ⇤ ⇤
⇤ ⇤ ⇤
⇤ ⇤ ⇤
⇤ ⇤ ⇤

3

777775
!

2

666664

⇤ ⇤
⇤ ⇤ ⇤

⇤ ⇤
⇤ ⇤
⇤ ⇤
⇤ ⇤

3

777775
!

2

666664

⇤ ⇤
⇤ ⇤

⇤ ⇤
⇤ ⇤
⇤ ⇤
⇤ ⇤

3

777775
! . . .

A U
H

1 A U
H

1 AV1 U
H

2 U
H

1 AV1 U
H

2 U
H

1 AV1V2

At the end, n reflectors are applied from the left and n � 2 from the right

A variant of the QR algorithm is then applied to the bidiagonal matrix (or other
eigendecomposition algorithms)  details in Golub et al., Matrix Computations.
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Visualizing SVD computation

Video: http://youtu.be/R9UoFyqJca8
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SVD saves the universe
The first Star Trek movie came out in 1979. The producers had asked Los Alamos for
computer graphics to run on the displays on the bridge of the Enterprise:

[Figure: Paramount Pictures]
Link: https://blogs.mathworks.com/cleve/2012/12/10/1976-matrix-singular-value-decomposition-film/ 59 / 68



Matlab
1: >> X = randn (10, 4);
2: >> [U, S, V] = svd(X); % full SVD
3: >> [Ur, Sr, Vr] = svd(X, 0); % reduced (economic) SVD
4: >> size(S)
5: >> size(Sr)
6: ans =
7: 10 4
8: ans =
9: 4 4

In most cases, we want the reduced SVD and then we should explicitly compute it:

1: >> X = randn (10000 , 50);

2: >> tic; [U, S, V] = svd(X); toc

3: Elapsed time is 6.746243 seconds.

4: >> tic; [U, S, V] = svd(X, 0); toc

5: Elapsed time is 0.064572 seconds.
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For very large and sparse matrices, or if the matrix is unavailable and we only have a
procedure that returns the matrix-vector product, we can iteratively compute the first
few singular vectors via svds

1: >> X = gallery('poisson ', 100);

2: >> whos X

3: Name Size Bytes Class

Attributes

4:
5: X 10000 x10000 1033608 double

sparse

6:
7: >> tic; [U, S, V] = svds(X, 1); toc

8:
9: Elapsed time is 0.307015 seconds.

SVD is great because its computation is (very) stable  building block for computing
many basic linear algebra quantities
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type ’edit rank.m’ in Matlab

1: f u n c t i o n r = rank (A, t o l )
2: %RANK Matr i x rank .
3: % RANK(A) p r o v i d e s an e s t ima t e o f the number o f l i n e a r l y
4: % independen t rows or columns o f a mat r i x A .
5: %
6: % RANK(A,TOL) i s the number o f s i n g u l a r v a l u e s o f A
7: % tha t a r e l a r g e r than TOL. By d e f a u l t , TOL = max( s i z e (A) ) ∗ eps ( norm (A)

) .
8: %
9: % C l a s s suppo r t f o r i n pu t A :

10: % f l o a t : double , s i n g l e
11:
12: % Copy r i gh t 1984−2015 The MathWorks , I n c .
13:
14: s = svd (A) ;
15: i f n a r g i n==1
16: t o l = max( s i z e (A) ) ∗ eps (max( s ) ) ;
17: end
18: r = sum( s > t o l ) ;
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type ’edit pinv.m’ in Matlab

1: f u n c t i o n X = p inv (A, t o l )
2: %PINV Pseudo i n v e r s e .
3: % X = PINV(A) p roduce s a mat r i x X o f the same d imens i on s
4: % as A ' so tha t A∗X∗A = A, X∗A∗X = X and A∗X and X∗A
5: % ar e He rm i t i an . The computat ion i s based on SVD(A) and any
6: % s i n g u l a r v a l u e s l e s s than a t o l e r a n c e a r e t r e a t e d as z e r o .
7: %
8: % PINV(A,TOL) t r e a t s a l l s i n g u l a r v a l u e s o f A tha t a r e l e s s than TOL as
9: % ze ro . By d e f a u l t , TOL = max( s i z e (A) ) ∗ eps ( norm (A) ) .

10: %
11: % C l a s s suppo r t f o r i n pu t A :
12: % f l o a t : double , s i n g l e
13: %
14: % See a l s o RANK.
15:
16: % Copy r i gh t 1984−2015 The MathWorks , I n c .
17:
18: [U, S ,V] = svd (A, ' econ ' ) ;
19: s = d i ag (S) ;
20: i f n a r g i n < 2
21: t o l = max( s i z e (A) ) ∗ eps ( norm ( s , i n f ) ) ;
22: end
23: r1 = sum( s > t o l )+1;
24: V ( : , r1 : end ) = [ ] ;
25: U( : , r1 : end ) = [ ] ;
26: s ( r1 : end ) = [ ] ;
27: s = 1 ./ s ( : ) ;
28: X = (V.∗ s . ' ) ∗U ' ;
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type ’edit orth.m’ in Matlab

1: f u n c t i o n Q = or th (A)
2: %ORTH Or t h o g o n a l i z a t i o n .
3: % Q = ORTH(A) i s an o r thono rma l b a s i s f o r the range o f A .
4: % That i s , Q'∗Q = I , the columns o f Q span the same space as
5: % the columns o f A, and the number o f columns o f Q i s the
6: % rank o f A .
7: %
8: % C l a s s suppo r t f o r i n pu t A :
9: % f l o a t : double , s i n g l e

10: %
11: % See a l s o SVD, RANK, NULL .
12:
13: % Copy r i gh t 1984−2015 The MathWorks , I n c .
14:
15: [Q, S ] = svd (A, ' econ ' ) ; %S i s a lways squa r e .
16: s = d i ag (S) ;
17: t o l = max( s i z e (A) ) ∗ eps (max( s ) ) ;
18: r = sum( s > t o l ) ;
19: Q( : , r +1: end ) = [ ] ;
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Application of SVD for image compression

1: >> A = rgb2gray(imread('llama.jpg'));
2: >> figure; imshow(A);

3: >> [U, S, V] = svd(double(A));

4: >> figure; semilogy(diag(S)/S(1, 1), '-o');
5: >> xlabel('index ');ylabel('normalized sing value ');
6:
7: >> r = 50;

8: >> Aapprx = U(:, 1:r)*S(1:r, 1:r)*V(:, 1:r) ';
9: >> figure; imshow(uint8(Aapprx));
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Original picture (left) and reduced picture (right)
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Outlook: Model reduction and latent dynamics
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Iterative methods for solving systems of linear equations

2 / 59



Why iterative methods for linear systems?

I Costs of solving a linear system with direct method are O(n3). This is too much!
If n gets large, then n3 is huge and costs become intractable.

I History of matrix computations over the years (according to Trefethen & Bau)
1950: m = 20
1965: m = 200
1980: m = 2000
1995: m = 20000

This is an increase of a factor 103. However, computing power (FLOP/sec)
increased by about 109. Notice that (103)3 = 109, which reflects the O(n3)
bottleneck

I (Side remark: There are direct methods that beat the complexity O(n3) (think of
Strassen’s algorithm); however,

the numerical stability of these algorithms is not
well understood and the constants hidden in the complexity results are huge so
that we “never” see the improved rate in practice.)
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I Iterative methods can converge geometrically until residual is below machine
precision

I Direct methods make no progress at all until O(n3) work is done, and then lead to
residual on the order of machine precision
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Why iterative methods for linear systems? (cont’d)

I Classical direct methods (e.g., Gauss elimination) follow the pattern of taking O(n) steps
and each step costs O(n2) but don’t exploit properties of the matrix

I Iterative methods reduce the number of steps and the costs of each step, depending on
properties of the problem at hand (e.g., spectral properties of A in Ax = b)

I The ideal iterative method requires O(1) steps and O(n) costs per step to reach machine
precision (think of multigrid and pre-conditioned CG)

I Iterative methods, even in the absence of rounding errors, do not deliver the exact answer
(recall that LU, QR give us exact answer in finite number of steps if we are in exact
arithmetic).

I However, we only can be as accurate as machine precision anyway if we do calculations on
a computer. Furthermore, often matrices are stemming from discretizations of PDEs and
then we need the solution only up to the discretization error.
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Iterative solution of linear systems

Target problems: very large (n = 105, 106, . . .), A is usually sparse and has specific
properties.

To solve
Ax = b

we construct a sequence
x1, x2, . . .

of iterates that converges fast to the solution x , where xk+1 can be cheaply computed
from {x1, . . . , xk} (e.g., one matrix-vector multiplication).

Thought experiment: If we can compute one iteration with cost O(n) (e.g., one
matrix-vector multiplication with a sparse matrix) and need a constant O(1) number
of iterations to reach desired precision, then we solve Ax = b with costs O(n).
Intuitively, we cannot do better than that because we solve for n quantities and thus
need to touch each at least once.
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Prototype of iterative method

Let’s start by trying to write Ax = b more generally as

x = f (x)

For example set f (x) = (I � A)x + b to obtain

x = f (x) = (I � A)x + b

We can now try to solve this via a fixed-point iteration

xk+1 = f (xk)

which is in our case
xk+1 = (I � A)xk + b
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Instead of picking a specific f , let’s look at the prototype

xk+1 = Gxk + c

where G is an iteration matrix somehow related to A and c is related to b.

We must have the actual solution x = A�1b as a unique fixed point of the iteration:

x = Gx + c

And we need that the sequence (xk) converges
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Theorem: The fixed point method xk+1 = Gxk + c with an invertible G converges for
each starting point xo if and only if

⇢(G ) < 1,

where ⇢(G ) = maxj |�j | is the largest magnitude of all eigenvalue of G (i.e., the
spectral radius).
 proof

In particular, for any induced matrix norm k · k we have ⇢(G )  kGk and thus kGk is a
su�cient criterion for convergence. We then obtain

kxk � xk  kGk
k
kx0 � xk

9 / 59



Symmetric G real

There is an orthogonal Q

Q GQT D

with eigenvalues
Because 12 p G for all iii is we have

fig ii
a 0

To
Thus

aligns Gʰ leg Q D QT 0

11am all 11Gram to Gta all

11 G team Xa711

Iii Gam toll

Gis 11 term tall 0 m

Couchy sequence



We often ask for 1161121 which implies

p G

because p G 11611 for 11.11 induced by
or velar man

11 9 11 11111 0 11

estimates how quickly error decays



Theorem: The fixed point method xk+1 = Gxk + c with an invertible G converges for
each starting point xo if and only if
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where ⇢(G ) = maxj |�j | is the largest magnitude of all eigenvalue of G (i.e., the
spectral radius).
 proof

In particular, for any induced matrix norm k · k we have ⇢(G )  kGk and thus kGk is a
su�cient criterion for convergence. We then obtain

kxk � xk  kGk
k
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Let Q be invertible, then

Ax = b , Q�1(b � Ax) = 0

, (I � Q�1A)x + Q�1b = x
, Gx + c = x

Leads to fixed-point iteration with G = (I � Q�1A) and c = Q�1b

xk+1 = Gxk + c

and x = A�1b is stationary point

Gx + c = (I � Q�1A)x + Q�1b = x � Q�1b + Q�1b = x
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Extreme cases for selecting Q
What are two extreme cases for selecting Q (recall: Q needs to be invertible)?

Choose Q = A, then our iteration

xk+1 = Gxk + c , G = I � Q�1A , c = Q�1b

becomes

(I � A�1A)xk + A�1b| {z }
x

= xk+1

0+ x = xk+1

and we are done in just a single step

xk+1 = x

Thus, if we “know the solution” (in form of having the inverse A�1) then no further
work is needed here because we already did all the work when finding A�1
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The other extreme is setting Q = I , this leads to the Richardson method

xk+1 = (I � A)xk + b

We have invested zero costs in finding Q (and Q�1) and so we can expect that Q = I
will require high costs in terms of number of iterations to converge in general, if it
converges at all

When does Richardson method converge?  board
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Today

Last time

I Iterative methods for systems of linear equations

Today

I Iterative methods for systems of linear equations

Announcements

I Homework 4 is due Mon, Nov 4, 2024 before class
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Recap

I Iterative methods can converge geometrically until residual is below machine
precision

I Direct methods make no progress at all until O(n3) work is done, and then lead to
residual on the order of machine precision 14 / 65



Recap: Iterative solution of linear systems

Target problems: very large (n = 105, 106, . . .), A is usually sparse and has specific
properties.

To solve
Ax = b

we construct a sequence
x1, x2, . . .

of iterates that converges fast to the solution x , where xk+1 can be cheaply computed
from {x1, . . . , xk} (e.g., one matrix-vector multiplication).

Thought experiment: If we can compute one iteration with cost O(n) (e.g., one
matrix-vector multiplication with a sparse matrix) and need a constant O(1) number
of iterations to reach desired precision, then we solve Ax = b with costs O(n).
Intuitively, we cannot do better than that because we solve for n quantities and thus
need to touch each at least once.
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Recap

Instead of picking a specific f , let’s look at the prototype

xk+1 = Gxk + c

where G is an iteration matrix somehow related to A and c is related to b.

We must have the actual solution x = A�1b as a unique fixed point of the iteration:

x = Gx + c

And we need that the sequence (xk) converges

16 / 65



Recap

Let Q be invertible, then

Ax = b , Q�1(b � Ax) = 0

, (I � Q�1A)x + Q�1b = x
, Gx + c = x

Leads to fixed-point iteration with G = (I � Q�1A) and c = Q�1b

xk+1 = Gxk + c

and x = A�1b is stationary point

Gx + c = (I � Q�1A)x + Q�1b = x � Q�1b + Q�1b = x

17 / 65



Recap: Extreme cases for selecting Q
What are two extreme cases for selecting Q (recall: Q needs to be invertible)?

Choose Q = A, then our iteration

xk+1 = Gxk + c , G = I � Q�1A , c = Q�1b

becomes

(I � A�1A)xk + A�1b| {z }
x

= xk+1

0+ x = xk+1

and we are done in just a single step

xk+1 = x

Thus, if we “know the solution” (in form of having the inverse A�1) then no further
work is needed here because we already did all the work when finding A�1
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Recap

The other extreme is setting Q = I , this leads to the Richardson method

xk+1 = (I � A)xk + b

We have invested zero costs in finding Q (and Q�1) and so we can expect that Q = I
will require high costs in terms of number of iterations to converge in general, if it
converges at all

When does Richardson method converge?  if �max < 2, very restrictive
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The Richardson method is consistent (solution is a stationary point) but it may not
converge or converge very slowly

xk+1 = (I � A)xk + b

What could we do instead of Richardson method?

Let us think of Q as a preconditioner of the Richardson method:

Q�1
⇡ A�1

and transform
Q�1Ax = Q�1b

Applying the Richardson iteration to this modified system gives

xk+1 = (I � Q�1A)xk + Q�1b = Gxk + c

Thus, with an iteration matrix I � Q�1A ⇡ 0, expect more rapid convergence
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Common choices for Q
Requirements on a good Q are

I Q�1 is representative of A�1

I We can numerically solve Qy = z much quicker than Ax = b because in each step
we solve

Qxk+1 = (Q � A)xk + b

Split the matrix A as follows

A = L + D + U

21 / 65



Common choices for Q
Requirements on a good Q are
I Q�1 is representative of A�1

I We can numerically solve Qy = z much quicker than Ax = b because in each step
we solve

Qxk+1 = (Q � A)xk + b

Split the matrix A as follows

A = L + D + U

21 / 65



Common choices for Q
Requirements on a good Q are
I Q�1 is representative of A�1

I We can numerically solve Qy = z much quicker than Ax = b because in each step
we solve

Qxk+1 = (Q � A)xk + b

Split the matrix A as follows

A = L + D + U

21 / 65

LN



Jacobi method

Theorem: Select now Q = D . . . Jacobi method. The Jacobi method converges for any
starting point xo to the solution of Ax = b if A is strictly diagonal dominant, i.e.,

|aii | >
X

j 6=i

|aij |, for i = 1, . . . , n.

 board

Notice that Q = D is a good choice in terms of computational costs because we can
very quickly solve Dy = z for the diagonal matrix D
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Jacobi method

at I D A at D b
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mithil Ee xp D b
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D Carlile
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Gauss-Seidel method

Theorem: Choose Q = D + L . . . Gauss-Seidel method. The Gauss-Seidel method
converges for any starting point xo if A is symmetric positive definite (spd).
 board

Notice that Q = D + L is a good choice in terms of computational costs because we
can very quickly solve (D + L)y = z for the lower triangular matrix D + L (forward
substitution)
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Gauss Seidel convergence

an I D LJ A x t D LJ's
D LJ DTL DTL D L R x D LJ'b
CD LTR a D LJ'b

For any spot matrix A we have a scolor

product
CX 7 1 x Ays on 1M

and for any matrix Be 1Mt we have the adjoint
w v t 2 A given by

B A BTA
so that

Bx 77A CX BY A V74 ER

T TBTAT XTAA'BTAy TABEY

A self adjoint matrix B B is positive
w.r.t.ci A if Bx 0 0



First we show Let G EIR with adjoint Gt
w.r.t.li s Then if BIEG is positive
w.r.tn it follows L1

B positive
x 0

O L BX CX X G G A

CX 7 Gt Gx

1 11 16 11 x 0

11611 1 1
implies p G 1611 1

Tow we can go back to our original problem

of showing convergence of Gauss Seidel for
any spot matrix

We show that B I GG with

G I CD LTA

is a positive matrix w.r.tt C SA
with A spot
Because A spot have



Because A spot A L D R we have

LT I
GE A GTA

I Eat

I DTR A

BIE CD RT DCD LTA
now show that B pos wrt 2 li

ALBXAA LlEIIDCD LTAx Axz
LD IAx DELA 22

11 DEC D LJAXIL 0 0

B is positive and thus

p G



Gauss-Seidel method

Theorem: Choose Q = D + L . . . Gauss-Seidel method. The Gauss-Seidel method
converges for any starting point xo if A is symmetric positive definite (spd).
 board

Notice that Q = D + L is a good choice in terms of computational costs because we
can very quickly solve (D + L)y = z for the lower triangular matrix D + L (forward
substitution)
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Relaxation methods:

Use linear combination between new and previous iterate:

xk+1 = ! (Gxk + c)| {z }
x 0
k+1

+(1� !)xk = G!xk + !c ,

where ! > 0 is a damping/relaxation parameter (sometimes, ! > 1 is used, leading to
overrelaxation). Target is to choose ! such that ⇢(G!) is minimal.

Def: A fixed point method xk+1 = Gxk + c with G = G (A) is called symmetrizable if
for any symmetric positive definite (spd) matrix A, the matrix I � G is similar to an
spd matrix, i.e., there is a regular W such that W (I � G )W�1 spd.

board
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Symmetrizable need that I G is similar to
on spot matrix

Richardson G I A

I G A is spot if
A is sad

Jacobi G I D'A set W D
WCIG W spot

D I G D I I DED AD

DEAD
which is spot because D has
non sow thorganal entries if A spot

We have the following result for sym schemes

9 1 6 9 C G GCA A spot

r G c as 1 PCG not 51213

11 eigenvalueofA



Because I G is similar to spotmatrix

all eigenvalues are real and positive

eigenvalues of G are

1 2 G 0

1 29 6



Finding the optimal damping parameter:  board

We obtain that

!̄ =
2

2� �max(G )� �min(G )

is the optimal damping parameter for symmetrizable iteration methods that minimizes
the spectral radius. The spectral radius is

⇢(G!̄) < 1

This means that for a suitable choice !̄ we can make any symmetrizable iteration
method convergent for an spd A!

Optimal damping parameter for Richardson iteration  board
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Today

Last time

I Iterative methods for systems of linear equations

Today

I Iterative methods for systems of linear equations

I Conjugate gradient method

Announcements

I Homework 4 is due Mon, Nov 4, 2024 before class
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Recap: Iterative methods

Let Q be invertible, then

Ax = b , Q�1(b � Ax) = 0

, (I � Q�1A)x + Q�1b = x
, Gx + c = x

Leads to fixed-point iteration with G = (I � Q�1A) and c = Q�1b

xk+1 = Gxk + c

and x = A�1b is stationary point

Gx + c = (I � Q�1A)x + Q�1b = x � Q�1b + Q�1b = x
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Recap: Common choices for Q
Requirements on a good Q are

I Q�1 is representative of A�1

I We can numerically solve Qy = z much quicker than Ax = b because in each step
we solve

Qxk+1 = (Q � A)xk + b

Split the matrix A as follows

A = L + D + U
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Recap: Jacobi method

Theorem: Select now Q = D . . . Jacobi method. The Jacobi method converges for any
starting point xo to the solution of Ax = b if A is strictly diagonal dominant, i.e.,

|aii | >
X

j 6=i

|aij |, for i = 1, . . . , n.

Notice that Q = D is a good choice in terms of computational costs because we can
very quickly solve Dy = z for the diagonal matrix D
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Recap: Gauss-Seidel method

Theorem: Choose Q = D + L . . . Gauss-Seidel method. The Gauss-Seidel method
converges for any starting point xo if A is symmetric positive definite (spd).

Notice that Q = D + L is a good choice in terms of computational costs because we
can very quickly solve (D + L)y = z for the lower triangular matrix D + L (forward
substitution)
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Recap: Relaxation methods

Use linear combination between new and previous iterate:

xk+1 = ! (Gxk + c)| {z }
x 0
k+1

+(1� !)xk = G!xk + !c ,

where ! > 0 is a damping/relaxation parameter (sometimes, ! > 1 is used, leading to
overrelaxation). Target is to choose ! such that ⇢(G!) is minimal.

Def: A fixed point method xk+1 = Gxk + c with G = G (A) is called symmetrizable if
for any symmetric positive definite (spd) matrix A, the matrix I � G is similar to an
spd matrix, i.e., there is a regular W such that W (I � G )W�1 spd.

board
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Finding the optimal damping parameter:  board

We obtain that

!̄ =
2

2� �max(G )� �min(G )

is the optimal damping parameter for symmetrizable iteration methods that minimizes
the spectral radius. The spectral radius is

⇢(G!̄) < 1

This means that for a suitable choice !̄ we can make any symmetrizable iteration
method convergent for an spd A!

Optimal damping parameter for Richardson iteration  board
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Algorithmic perspective on iterative methods

Another interpretation of Richardson iterations?

xk+1 = (I � A)xk + b

= xk + (b � Axk)

for k = 0, 1, ...

for i = 0, 1, ..., n-1: xk+1[i ] = xk [i ] + rk [i ]
where the residual rk at iteration k is given by

rk = b � Axk

What would we like to update xk with? We would like to update xk in the direction of
the error ek = x � xk because then

xk+1 = xk + ek = x

However, we don’t have the error ek and therefore it is reasonable to use the next best
thing which is the residual in many situations

rk = b � Axk = Ax � Axk = A(x � xk) = Aek

 Richardson iteration updates xk in the direction of the residual rk
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Jacobi iterations
xk+1 = (I � D�1A)xk + D�1b

for k = 0, 1, ...

for i = 0, 1, ..., n-1: y [i ] = 1/aii rk [i ]
for i = 0, 1, ..., n-1: xk+1[i ] = xk [i ] + y [i ]

I In every substep i of iteration k , an update y [i ] is computed and stored

I Applied immediately, this would lead to the (momentary) disappearance of the
i-th component of the residual rk

I Thus, with this current approximation, equation i would be solved exactly—an
improvement that would be lost immediately in the following substep for the
equation i + 1

I However, the updates of a component are not applied immediately but only at the
end of an iteration step (second i-loop)
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Gauss-Seidel iteration

xk+1 = (I � (L+ D)�1A)xk + (L+ D)�1b

for k = 0, 1, ...

for i = 0, 1, ..., n-1: rk [i ] = b[i ]�
Pi�1

j=1 aijxk+1[j ]�
Pn

j=i aijxk [j ]
y [i ] = 1/aii rk [i ], xk+1[i ] = xk [i ] + y [i ]

I In contrast to Jacobi method, the update is performed immediately

I Therefore the new modified values for components 1, ..., i � 1 are already available
for updating component i

Damping (mostly Jacobi) or over-relaxation (mostly Gauss-Seidel) means to take step
lengths di↵erent from 1 in the direction of the residual
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The spectral radius of typical iterative matrices

I The spectral radius ⇢ determines convergence and speed; the smaller ⇢, the faster the
error decays. In practice, ⇢ is often very close to 1 so that even though ⇢ < 1 it takes an
unreasonable amount of iterations to get a reasonable answer

I An important sample scenario is the discretization of PDEs: It is typical that ⇢ depends
on the dimension n of the matrix A, and thus in terms of PDE discretization it depends
on the mesh width h of the underlying grid. For example

⇢ 2 O(1� h2l ) = O(1�
1

4l
)

with mesh width hl = 2�l in one dimension (O(1� 16�l) in two spatial dimensions)

I This is a huge disadvantage: Why?
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1

4l
)

with mesh width hl = 2�l in one dimension (O(1� 16�l) in two spatial dimensions)

I This is a huge disadvantage: Why? the finer the grid is (and therefore the more accurate
our approximation of the PDE solution should be), the slower these iterative methods get.
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Consider the Laplace equation
�u(x1, x2) = 0 ,

in two dimensions and discretize with five-point second-order finite-di↵erence stencil on
N ⇥ N grid points ( NM2)

Plot the spectral radius ⇢(I � A) (Richardson interpolation) w.r.t. number of grid
points

1: Nlist = 2.^(2:8);
2: eList = [];
3: for N=Nlist
4: X = gallery(’poisson ’, N)*(1/N^2);
5: eList(end + 1) = eigs(speye(N^2) - X, 1);
6: end
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Running Jacobi on a Poisson matrix with N = 10 and N = 100 grid points in each
dimension:

1: A = gallery(’poisson ’, N)*(1/N^2);
2: b = randn(N^2, 1);
3: x = randn(N^2, 1);
4: xTrue = A\b;
5: M = speye(N^2) - spdiags (1./ diag(A), 0, N^2, N^2)*A;
6: c = spdiags (1./ diag(A), 0, N^2, N^2)*b;
7:
8: hist = [];
9: for iter =1:1000

10: x = M*x + c;
11: hist(iter , 1) = norm(x - xTrue)/norm(x);
12: hist(iter , 2) = norm(A*x - b);
13: end
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First few iterations of Jacobi relaxation

1:
2: N = 30; A = gallery(’poisson ’, N)*(1/N^2);
3: [X, Y] = meshgrid(linspace(1, N, N), linspace(1, N, N));
4: b = 10* randn(N^2, 1);
5: x = randn(N^2, 1);
6: xTrue = A\b;
7:
8: for i=1:5
9: x = (speye(N^2) - spdiags (1./ diag(A), 0, N^2, N^2)*A)*x + ...

10: spdiags (1./ diag(A), 0, N^2, N^2)*b;
11: end
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I Relaxation methods such as Jacobi and Gauss Seidel have a smoothing e↵ect on
the error

I Even if ⇢ ⇡ 1, only a few iterations are necessary to obtain a smooth error; this
means that high-frequency error is reduced very quickly whereas the low-frequency
error is reduced slowly

I Multigrid methods exploit this e↵ect and represent the smoothed error on a coarse
grid, where it becomes high-frequency error again, which can be smoothed quickly

 Multigrid methods are among the most e�cient solvers for PDE problems  
NM 2 in Spring 43 / 61



Conjugate gradient method
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In the following A is symmetric positive definite.

Formulate solving Ax = b as an optimization problem: Define

f (x) =
1

2
xTAx � bT x ,

and minimize
min
x2Rn

f (x)

Because A is positive definite, the function f is convex. It is su�cient to look at the
gradient

rf (x) =
1

2
AT x +

1

2
Ax � b = Ax � b = �r(x) = 0 () Ax = b

What is the benefit of this point of view?

We now can let loose all what we know
about optimization to solve Ax = b
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Our first try is applying the method of steepest descent in the direction of the negative
gradient

�rf = r

which happens to be the residual

rk = b � Axk

↵k =
rTk rk
rTk Ark

xk+1 = xk + ↵k rk

The step length ↵k minimizes f (xk + ↵k rk) as a function of ↵k  board

(This is the same as Richardson iterations with damping ↵k ; what is the di↵erence
between ↵k and !̄?  

↵k is computable with just mat-vec with A, whereas !̄ depends
on eigenvalues of A

)
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For steepest descent, if A is spd, we obtain

kx⇤ � xkkA 

✓
2(A)� 1

2(A) + 1

◆k

kx⇤ � x0kA ,

where hx , yiA = xTAy and k · kA =
p
h·, ·iA.

Proof  board
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Today

Last time

I Iterative methods for systems of linear equations

Today

I Conjugate gradient method

Announcements

I Homework 4 is due Mon, Nov 4, 2024 before class
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Recap

In the following A is symmetric positive definite.

Formulate solving Ax = b as an optimization problem: Define

f (x) =
1

2
xTAx � bT x ,

and minimize
min
x2Rn

f (x)

Because A is positive definite, the function f is convex. It is su�cient to look at the
gradient

rf (x) =
1

2
AT x +

1

2
Ax � b = Ax � b = �r(x) = 0 () Ax = b

What is the benefit of this point of view?

We now can let loose all what we know
about optimization to solve Ax = b
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Recap

Our first try is applying the method of steepest descent in the direction of the negative
gradient

�rf = r

which happens to be the residual

rk = b � Axk

↵k =
rTk rk
rTk Ark

xk+1 = xk + ↵k rk

The step length ↵k minimizes f (xk + ↵k rk) as a function of ↵k  last time

(This is the same as Richardson iterations with damping ↵k ; what is the di↵erence
between ↵k and !̄?  

↵k is computable with just mat-vec with A, whereas !̄ depends
on eigenvalues of A
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Recap

For steepest descent, if A is spd, we obtain

kx⇤ � xkkA 

✓
2(A)� 1

2(A) + 1

◆k

kx⇤ � x0kA ,

where hx , yiA = xTAy and k · kA =
p
h·, ·iA.

Proof  board
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[Figure: Kuusela et al., 2009]

The convergence behavior of steepest descent in this context can be poor: we
eventually get arbitrarily close to the minimum but we can always destroy something of
the already achieved when applying the update  can we find better search directions?
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Conjugate gradient method

I What do all iterative methods we looked at so far have in common?

I All methods so far use information about xk�1 to get xk . All information about
earlier iterations is ignored.

I The conjugate gradient (CG) method is a variation of steepest descent that has a
memory.

I Let p1, . . . , pk be the directions up to step k , then CG uses the space

x0 + span{p1, . . . , pk} , x0 starting point

to find the next iterate xk and thus

xk = x0 +
kX

i=1

↵ipi

I (Recall that steepest descent uses only the search direction
pk = rk�1 = �rf (xk�1) to find the iterate xk)
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We want the following

a The search directions p1, . . . , pk should be linearly independent (”we don’t destroy
what we have achieved”)

b We have (”we do the best we can at each step”)

f (xk) = min
x2x0+span(p1,...,pk )

f (x)

c The step xk can be calculated easily from xk�1

What do conditions (a) and (b) guarantee?

Convergence in N steps because at the
N-th step we have x0 + span(p1, . . . , pN) = RN and thus we minimize f over RN
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Let’s start by writing
xk = x0 + Pk�1y + ↵pk ,

where Pk�1 = [p1, . . . , pk�1] 2 RN⇥(k�1), y 2 Rk�1,↵ 2 R.

Our aim is to determine y and ↵. So let’s look at minimizing f (xk) w.r.t. y and ↵

f (xk) = · · · = f (x0 + Pk�1y)| {z }
only depends on y not on ↵

+↵pTk APk�1y +
↵2

2
pTk Apk � ↵pTk r0

| {z }
only depends on ↵ not on y

(recall that f (x) = 1
2x

TAx � bT x).

The mixed term in the middle depends on ↵ and y , otherwise we could optimize
separately for y and ↵. How should we choose pk?

Let’s choose the search direction pk such that

pTk APk�1 = 0

which means
pk 2 span{Ap1, . . . ,Apk�1}

?
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Thus, with pTk APk�1 = 0 we get

min
xk2x0+span{p1,...,pk}

f (xk) = min
y2Rk�1

f (x0 + Pk�1y) + min
↵2R

✓
↵2

2
pTk Apk � ↵pTk r0

◆

I The first minimization problem is solved for y = yk�1 computed from step k � 1
and then xk�1 = x0 + Pk�1yk�1 satisfies

f (xk�1) = min
x0+span{p1,...,pk�1}

f (x)

I The solution to the second minimization problem is just a scalar

↵k =
pTk r0
pTk Apk

 satisfy conditions (b) and (c) from above.
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I We said the search directions p1, . . . , pk have to be conjugate, i.e., orthogonal
w.r.t. A

pTi Apj = 0 , i , j = 1, . . . , k , i 6= j (1)

I One can show that (1) implies that p1, . . . , pk are linearly independent
(w.r.t. h·, ·, i), which satisfies condition (a)

I To find the search direction pk , we want to combine positive aspects of steepest
descent and conjugate gradients. In steepest descent we have pk = rk�1. So let’s
stay close to rk�1 but additionally enforce that pk is A-conjugate to previous
search directions p1, . . . , pk�1

How can we achieve this?

 Gram-Schmidt orthogonalization
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Apply Gram-Schmidt to rk�1 so that we obtain pk that is A-conjugate to p1, . . . , pk�1

pk = rk�1 �

k�1X

j=1

hrk�1, pjiA
kpjk2A

pj

We need following technical statements  board:
I If rk�1 = b � Axk�1 6= 0, then there exists pk 2 span{Ap1, . . . ,Apk�1}

? such
that pTk rk�1 6= 0 and pTk rk�1 = pTk r0

I It then follows that (why is this helpful?)

↵k =
pTk r0
pTk Apk

=
pTk rk�1

pTk Apk
I If rj 6= 0 for j < k , then

hrk�1, pjiA = 0 , j < k � 1 .

to obtain that (why is this useful?)

pk = rk�1 �
hrk�1, pk�1iA

kpk�1k
2
A

pk�1
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The conjugate gradient method

Choose x0 2 RN and set p0 = 0. For k = 1, 2, 3, . . . , stop if rk�1 = b � Axk�1 small

1. Set

�k�1 =
hrk�1, pk�1iA

kpk�1k
2
A

2. Set
pk = rk�1 � �k�1pk�1

3. Set

↵k =
rTk�1pk
kpkk2A

4. Set
xk = xk�1 + ↵kpk

5. Set
rk = b � Axk

and check for convergence
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[Figure: Kuusela et al., 2009]

It can be shown that for k � 1 and ej 6= 0, j < k it holds

kekkA  2

 p
2(A)� 1p
2(A) + 1

!k

ke0kA

for spd matrices A.  Trefethen & Bau 61 / 64



Krylov subspace

Given an spd matrix A 2 RN⇥N , the Krylov subspace of order k is

Kk(A, r0) = span
n
r0,Ar0, . . . ,A

k�1r0
o

where, e.g., r0 = b � Ax0

All search directions of CG are in Kk(A, r0) and all iterates x1, x2, . . . , xk are in
x0 +Kk(A, r0)

There is a range of other methods that apply to more general matrices than spd that
build on approximations in Krylov subspaces to accelerate convergence (e.g., GMRES
(general residual method))
I There are also methods for finding eigenvalues via Krylov methods (Lanczos,

Arnoldi iterations)
I Think of Krylov methods has having a memory of previous iterations, whereas,

e.g., a power method only looks at the previous iteration (if you like stochastic
processes, think of Markovian vs. non-Markovian dynamics)
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Matlab implementation

1: function x = conjgrad(A, b, maxIter)
2:
3: [N, ~] = size(A);
4: x = zeros(N, 1);
5: r = b - A*x;
6: p = r;
7: alpha = (r’*p)/(p’*A*p);
8: x = x + alpha*p;
9: r = b - A*x;

10:
11: for i=1: maxIter
12: beta = (r’*A*p)/(p’*A*p);
13: p = r - beta*p;
14: alpha = (r’*p)/(p’*A*p);
15: x = x + alpha*p;
16: r = b - A*x;
17: end
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Experiment with 10000⇥ 10000 spd matrix

Condition number of this matrix is ⇡ 5 (very! well conditioned)

0 1 2 3 4 5 6
runtime [s]

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

CG, residual norm
CG, error norm
Matlab's backslash
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Discussion of the CG method

I In principle, the CG algorithm is a direct solver because is converges after N steps;
however, it is mostly used as an iterative method because we don’t want to wait
for N steps

I The convergence speed of the CG method depends on matrix properties as well.
Fast convergence if the spectrum is clustered.

I However, similarly slow convergence can be expected for matrices coming from
PDE discretizations and therefore preconditioning is necessary

Q�1Ax = Q�1b

I Preconditioned CG methods (for example multigrid can act as a preconditioner)
are among the fastest solvers and achieve O(N) in ideal settings.
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Function approximation
Consider a function f 2 V in a function space V. Let now �1, . . . ,�n be a basis of an
n-dimensional space Vn.

The task that we are interested in is finding a function f
⇤
2 Vn that approximates f

with coe�cients c1, . . . , cn:

f
⇤(x) =

nX

i=1

ci�i (x) .

If we have an inner product, what is the best approximation? The best-approximation
of f in Vn w.r.t. the induced norm is given by the projection

f
⇤ = ⇧nf ,

where ⇧n is the orthogonal projection onto Vn.

How can we compute the projection? In many cases, we cannot directly compute the
projection of f onto Vn because we have “too little knowledge about f ” Instead?  
interpolation (/regression)
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of f in Vn w.r.t. the induced norm is given by the projection

f
⇤ = ⇧nf ,

where ⇧n is the orthogonal projection onto Vn.

How can we compute the projection? In many cases, we cannot directly compute the
projection of f onto Vn because we have “too little knowledge about f ” Instead?
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Interpolation
Consider n pairs of data samples (xi , yi ), i = 1, . . . , n with

yi = f (xi )

Based on {(xi , yi )}ni=1, we now would like to find an approximation f̃ 2 Vn that is
“close” to f .

For example, we could enforce the interpolation condition, namely that it holds

f̃ (xi ) = f (xi ) , i = 1, . . . , n

We could also use regression (m > n) and minimize, e.g.,

1

m

mX

i=1

|yi � f̃ (xi )|
2
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The error of f̃ w.r.t. f can then typically be split into two components (we will
formalize this moving forward): which?

kf̃ � f k  ⇤(x1, . . . , xn)kf
⇤
� f k

The projection error kf ⇤ � f k describes the best we can do in the space Vn. Even if we
had “full knowledge” of f so that we could compute f

⇤ = ⇧nf , we are limited by the
expressiveness of the space Vn

Intuitively, we’d also expect that the error of f̃ depends on the points x1, . . . , xn at
which we have samples of f . This is captured by the “constant” ⇤(x1, . . . , xn) that is
independent of f but depends on x1, . . . , xn.
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Polynomial interpolation
Consider n + 1 pairs (xi , yi ), i = 0, . . . , n of a function f with

yi = f (xi )

Let now Pn be the set of all polynomials up to degree n over R so that we have for all
P 2 Pn

P(x) = anx
n + an�1x

n�1 + · · ·+ a1x + a0 , an, . . . , a0 2 R

We would like to find a P 2 Pn such that

P(xi ) = yi , i = 0, . . . , n

I The P is what f̃ was on the previous slide

I By saying P is a polynomial of degree n, we fixed the space Vn+1 with the
notation of the previous slide
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Theorem: Given n + 1 points (xi , yi ) with pairwise distinct x0, . . . , xn, there exists a
unique polynomial P 2 Pn such that

P(xi ) = yi , i = 0, . . . , n

We sometimes refer to this unique polynomial as Pf (·|x0, . . . , xn)  board

Let’s try to construct Pf (·|x0, . . . , xn). What do we need to construct P 2 Pn for a
data set {(xi , yi )}ni=0? A basis of Pn. Let’s give the monomial basis 1, x , x2, . . . , xn a
chance  board

7 / 45
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Lagrange basis
The Lagrange polynomials L0, . . . , Ln 2 Pn are uniquely defined for distinct x0, . . . , xn

Li (xj) = �ij , Li 2 Pn .

Lagrange polynomials up to order n = 4 for equidistant x0, . . . , x4. [Figure: Deuflhard]
9 / 45



The corresponding explicit formula is

Li (x) =
nY

j=0
j 6=i

x � xj

xi � xj
, i = 0, . . . , n

What are the coe�cients an, . . . , a0 so that P(xi ) = yi for i = 0, . . . , n?

P(x) =
nX

i=0

yiLi (x)

because

P(xj) =
nX

i=0

yiLi (xj) =
nX

i=0

yi�ij = yj

If we have the basis L0, . . . , Ln, we obtain the polynomial P for free. Drawback? but
the cost of evaluating the polynomial is too high for practical computations
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The Lagrange polynomials are orthogonal w.r.t. the following inner product over Pn

hP ,Qi =
nX

i=0

P(xi )Q(xi ) , P ,Q 2 Pn

Let’s try to generalize this to other scalar products to find other orthogonal bases

11 / 45



Orthogonal polynomials

Define an inner product between functions:

(f , g) =

Z b

a
!(x)f (x)g(x) dx ,

where !(x) > 0 for a  x  b is a weight function. The induced norm is
kf k :=

p
(f , f ).

Let P0,P1,P2, . . . ,PK be polynomials of 0, 1, 2, . . . ,K order, respectively. They are
called orthogonal polynomials on [a, b] with respect to the weight function !(x) if it
holds

(Pi ,Pj) =

Z b

a
!(x)Pi (x)Pj(x)dx = �ij�i , i , j = 0, . . . ,K ,

with �i = kPik
2 > 0.
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To define orthogonal polynomials uniquely, we normalize them so that the leading
coe�cient is one, i.e.,

Pk(x) = x
k + . . .

Theorem: There exist uniquely determined orthogonal polynomials Pk 2 Pk with
leading coe�cient 1. These polynomials satisfy the 3-term recurrence relation:

Pk(x) = (x + ak)Pk�1(x) + bkPk�2(x), k = 2, 3, . . .

with starting values P0 = 1, P1 = x + a1, where

ak = �
(xPk�1,Pk�1)

(Pk�1,Pk�1)
, bk = �

(Pk�1,Pk�1)

(Pk�2,Pk�2)

Proof:  board
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Numerics with 3-term recurrence

I 3-term recurrence can be used to compute polynomials Pk completely, or

I evaluate Pk at a point x0 via pre-computing the a’s and b’s

I However, simple application of 3-term recurrence might not always be stable due
to cancellation (coe�cients ak , bk can be negative)

I Cancellation errors can be avoided with clever numerics (Sec 6.3 in Deuflhard)
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Numerical Methods I
MATH-GA 2010.001/CSCI-GA 2420.001

Benjamin Peherstorfer
Courant Institute, NYU

Based on slides by G. Stadler and A. Donev
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Today

Last time

I Polynomial interpolation

Today

I Interpolation

Announcements

I Homework 5 is due Mon, Nov 18 before class
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Recap: Function approximation
Consider a function f 2 V in a function space V. Let now �1, . . . ,�n be a basis of an
n-dimensional space Vn.

The task that we are interested in is finding a function f
⇤
2 Vn that approximates f

with coe�cients c1, . . . , cn:

f
⇤(x) =

nX

i=1

ci�i (x) .

If we have an inner product, what is the best approximation? The best-approximation
of f in Vn w.r.t. the induced norm is given by the projection

f
⇤ = ⇧nf ,

where ⇧n is the orthogonal projection onto Vn.

How can we compute the projection? In many cases, we cannot directly compute the
projection of f onto Vn because we have “too little knowledge about f ” Instead?  
interpolation (/regression) 16 / 52



Recap: Interpolation
Consider n pairs of data samples (xi , yi ), i = 1, . . . , n with

yi = f (xi )

Based on {(xi , yi )}ni=1, we now would like to find an approximation f̃ 2 Vn that is
“close” to f .

For example, we could enforce the interpolation condition, namely that it holds

f̃ (xi ) = f (xi ) , i = 1, . . . , n

We could also use regression (m > n) and minimize, e.g.,

1

m

mX

i=1

|yi � f̃ (xi )|
2
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Recap: Lagrange basis
The Lagrange polynomials L0, . . . , Ln 2 Pn are uniquely defined for distinct x0, . . . , xn

Li (xj) = �ij , Li 2 Pn .

Lagrange polynomials up to order n = 4 for equidistant x0, . . . , x4. [Figure: Deuflhard]
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Recap: Orthogonal polynomials

Define an inner product between functions:

(f , g) =

Z b

a
!(x)f (x)g(x) dx ,

where !(x) > 0 for a  x  b is a weight function. The induced norm is
kf k :=

p
(f , f ).

Let P0,P1,P2, . . . ,PK be polynomials of 0, 1, 2, . . . ,K order, respectively. They are
called orthogonal polynomials on [a, b] with respect to the weight function !(x) if it
holds

(Pi ,Pj) =

Z b

a
!(x)Pi (x)Pj(x)dx = �ij�i , i , j = 0, . . . ,K ,

with �i = kPik
2 > 0.
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Recap

To define orthogonal polynomials uniquely, we normalize them so that the leading
coe�cient is one, i.e.,

Pk(x) = x
k + . . .

Theorem: There exist uniquely determined orthogonal polynomials Pk 2 Pk with
leading coe�cient 1. These polynomials satisfy the 3-term recurrence relation:

Pk(x) = (x + ak)Pk�1(x) + bkPk�2(x), k = 2, 3, . . .

with starting values P0 = 1, P1 = x + a1, where

ak = �
(xPk�1,Pk�1)

(Pk�1,Pk�1)
, bk = �

(Pk�1,Pk�1)

(Pk�2,Pk�2)
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Chebyshev polynomials
Chebyshev polynomials for �1  x  1 are given by the 3-term recurrence: T0(x) = 1,
T1(x) = x ,

Tk(x) = 2xTk�1(x)� Tk�2(x) for k � 2.

Chebyshev polynomials are orthogonal in the following inner product

Z 1

�1

1
p
1� x2

Tn(x)Tm(x) dx =

8
><

>:

0 n 6= m

⇡ n = m = 0

⇡/2 n = m 6= 0

The roots of Chebyshev polynomials play an important role in interpolation and
numerical quadrature.

Chebyshev polynomials are also given by Tk(x) = cos(k arccos(x)) with roots

xi = cos

✓
⇡(i � 1/2)

k

◆
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Source: Springer, Encyclopedia of Applied and Computational Mathematics.

Question: What property of the roots of the polynomials do you observe?
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Legendre polynomials
Orthogonal polynomials for weight function ! ⌘ 1, satisfy L0 = 1, L1 = x , and

Lk+1(x) =
2k + 1

k + 1
xLk(x)�

k

k + 1
Lk�1(x)

Source: Wikipedia.
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Approximation error of polynomial interpolation
Let f : I ! R and let x0, x1, . . . , xn 2 I be n + 1 distinct nodes. Assume f 2 C

n+1(I ).
Then the interpolation error at point x 2 I is

En(x) = f (x)� Pf (x |x0, . . . , xn) =
f
(n+1)(⇠)

(n + 1)!
!n+1(x) ,

where ⇠ 2 I and

!n+1(x) =
nY

i=0

(x � xi ) ,

is the nodal polynomial.

Proof:  textbook

What are observations can we make?

I The error bound requires increasing smoothness with the degree n  can we
derive bounds for f 2 C

k with k fixed independent of degree n?
I The bound critically depends on !n+1  contains information about the nodes
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Let’s say the function f is continuous, i.e., f 2 C
0([a, b]), but not even di↵erentiable.

Define the maximum norm
kf k1 = max

x2[a,b]
|f (x)|

Given points X = {x0, . . . , xn} ⇢ [a, b], define the interpolation error

En,1(X ) = kf � Pf (·|X )k1

and the best-approximation error with f
⇤
2 Pn

E
⇤
n = kf � f

⇤
k1  kf � f̃ k1 , 8f̃ 2 Pn

Side remark: What does the Stone-Weierstrass theorem tell us about the
best-approximation of continuous functions with polynomials?

Universal
approximation: Uniform convergence (i.e., converge in k · k1). However, the sequence
of polynomials that converges is not necessarily obtained via interpolation.
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Theorem Let f 2 C
0([a, b]) and X = {x0, . . . , xn} ⇢ [a, b]. Then

En,1(X ) = E
⇤
n (1 + ⇤n(X )) ,

where ⇤n(X ) is the Lebesgue constant of X , defined as

⇤n(X ) =
���
Xn

j=0
|L

(n)
j |

���
1

,

where L
(n)
j 2 Pn is the j-th Lagrange polynomial with

L
(n)
j (xi ) =

(
1 , i = j ,

0 , otherwise

Notice the decomposition of the error into component E ⇤
n (independent of X but

dependent on f ) and ⇤n(X ) (independent of f but dependent on X )
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We control the best-approximation error E ⇤
n with the space Pn

We control the Lebesgue constant ⇤n(X ) with the nodes x0, . . . , xn

What are two important questions to ask about the Lebesgue constant ⇤n(X )?

I What are “good” nodes x0, . . . , xn that keep ⇤n(X ) low or even minimize it?
I In the best case, how does ⇤n(X ) behave with respect to n ! 1

Famous result by Faber (1914): Given a sequence of any nodes∗

Xn = {xn,0, xn,1, . . . , xn,n} ⇢ [a, b], then there always exists a continuous function f so
that Pf (·|x0, . . . , xn) does not converge to f in k · k1 for n ! 1

Thus, polynomial interpolation does not allow for approximating any continuous
function

However, interpolation works fantastic for “most” functions  “Six myths of
polynomial interpolation and quadrature,” Trefethen, Approximation Theory and
Approximation Practice and also chebfun.org

∗Not necessarily nested
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Thus, polynomial interpolation does not allow for approximating any continuous
function

However, interpolation works fantastic for “most” functions  “Six myths of
polynomial interpolation and quadrature,” Trefethen, Approximation Theory and
Approximation Practice and also chebfun.org

∗Not necessarily nested
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It also has been shown that for any possible choice Xn = {xn,0, . . . , xn,n}, there exists a
constant C > 0 such that

⇤n(Xn) >
2

⇡
log(n + 1)� C , n = 0, 1, . . .

Thus ⇤n(Xn) ! 1 for n ! 1

I This is an instability statement in the sense that “investing more time” (by
selecting more grid points), leads to a larger Lebesgue constant

I However, the Lebesgue constant might grow very slowly with n (even slower than
E
⇤
n decreases!)

The Lebesgue constant is also the absolute condition number of polynomial
interpolation on [a, b] with points X

abs = ⇤n(X )

 textbook by Deuflhard
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Let’s approximate

f (x) =
1

1 + x2
, �5  x  5 ,

using polynomial interpolation on equally
spaced nodes in [�5, 5].

[Figure: Quarteroni]

Interpolants of degree n = 5 and n = 10 of f (x) = 1/(1 + x
2) on equidistant nodes. It

can be shown that polynomial interpolation does not converge for |x | > 4 for this f

It is a very common situation that interpolation on equidistant nodes leads to high
oscillations near the interval ends  Runge’s phenomenon
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For equidistant nodes, the Lebesgue constant grows dramatically near the interval ends

What is a way out of this? Use di↵erent nodes
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Lebesgue constants for di↵erent orders:

184 7. Interpolation and Approximation 

any choice of nodes. For comparison, Table 7.1 also shows the Lebesgue 
constants for the Chebyshev nodes (see Section 7.1.4) 

ti = cos --7[" for z = 0, ... ,n ( 2i + 1) . 
2n+ 2 

(where the maximum was taken over [-1,1]). They grow only very slowly. 

Table 7.1. Lebesgue constant An for equidistant and for Chebyshev nodes. 

n 

5 
10 
15 
20 

An for equidistant nodes 
3.106292 

29.890695 
512.052451 

10986.533993 

An for Chebyshev nodes 
2.104398 
2.489430 
2.727778 
2.900825 

7.1.2 Hermite Interpolation and Divided Differences 
If one is only interested in the interpolating polynomial P at a single po-
sition t, then the recursive computation of P(t) turns out to be the most 
effective method. It is based on the following simple observation, the Aitken 
lemma. 

Lemma 7.4 The interpolating polynomial P = P(f I to,· .. , tn) satisfies 
the recurrence relation 

P(f I ) = (to - t)P(f I tl,·.·, tn) - (tn - t)P(f I to,.··, tn-d to, . .. , tn . 
to - tn 

(7.3) 

Proof. Let <p(t) be defined as the expression on the right-hand side of (7.3). 
Then <p E P n , and 

(t .) - (to - ti)fi - (tn - ti)!; - f. C • - 1 - 1 <p t - - t lOr z - , ... , n . 
to - tn 

Similarly, it is simple to conclude that <p(to) = fa and <p(tn) = fn, and the 
statement therefore follows. 0 

The interpolation polynomials for only one single node are nothing else 
than the constants 

P(f I ti) = fi for i = 0, ... ,n. 

If we simplify the notation for fixed t by 

Chebyshev nodes are the roots of the Chebyshev polynomials:

ti = cos

✓
2i + 1

2n + 2
⇡

◆
, for i = 0, . . . , n

Lebesgue constant for Chebyshev nodes is bounded as

⇤n 
2

⇡
log(n + 1) + 1 ,

which is close to the lower bound from previous slides
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Lebesgue constant for n = 10, uniform vs. Chebyshev nodes:
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Lebesgue constant for n = 40, uniform vs. Chebyshev nodes:
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The Lebesgue constant for Chebyshev points is bounded as

⇤n 
2

⇡
log(n + 1) + 1 ,

We know that for all interpolation points there exists a continuous function f such
that polynomial interpolation does not converge (result by Faber, see previous slides)

This is also true for Cheybshev points! However, if f is Lipschitz continuous, then one
can show uniform convergence.

The smoother the function (e.g., continuously di↵erentiable, ⌫-times continuously
di↵erentiable, analytic), the faster interpolation on Chebyshev nodes converges
uniformly.

This is a general principle: The more regularity there is in the function, the easier we
can approximate it (faster convergence w.r.t. number of degrees of freedom of the
approximation)
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Beyond the material we cover here...
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Pointwise evaluation of interpolating polynomials
Aitken Lemma: The interpolating polynomial Pf (·|x0, . . . , xn) satisfies the recurrence
relation

Pf (x |x0, . . . , xn) =
(x0 � x)Pf (x |x1, . . . , xn)� (xn � x)Pf (x |x0, . . . , xn�1)

x0 � xn

Proof  board

Introduce the notation

Pik = Pf (x |xi�k , . . . , xi ) , i � k

then Pf (x |x0, . . . , xn) = Pnn can be computed based on the Neville scheme

Pi0 =f (xi ) , i = 0, . . . , n

Pik =Pi ,k�1 +
x � xi

xi � xi�k
(Pi ,k�1 � Pi�1,k�1) , i � k

 a numerically stable and e�cient (O(n2)) way to evaluate (!) Pf (x |x0, . . . , xn)
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Hermite interpolation
Given

a = x0  x1  . . .  xn = b

with possibly duplicated nodes. Less information than degrees of freedom?

Therefore,
if the node xi occurs k times, the corresponding node values correspond to
f (xi ), f 0(xi ), . . . , f k�1(xi ).

The Hermite interpolation polynomial p(x) is a polynomial of order n, which coincides
with the nodal values (and, for duplicated nodes, derivatives at nodal values) at the
nodes.

Aitken lemma for Hermite interpolation: The (Hermite) interpolating polynomial
P = Pf (·|x0, . . . , xn) satisfies, if xi 6= xj , the recurrence relation:

Pf (x |x0, . . . , xn) =

(xi � x)Pf (x |x0, . . . , x̂i , . . . , xn)� (xj � x)Pf (x |x0, . . . , x̂j , . . . , xn)

xi � xj
,

where the hat symbol indicates that the corresponding node is omitted.
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Polynomial interpolation in Newton basis

The Newton basis !0, . . . ,!n is given by

!i (x) :=
i�1Y

j=0

(x � xj) 2 Pi .

Would like to find coe�cients c0, c1, . . . , cn of interpolating polynomial in Newton basis

Pf (x |x0, . . . , xn) = c0!0(x) + c1!1(x) + · · ·+ cn!n(x)
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Newton polynomial basis

The leading coe�cient an of the interpolation polynomial (monomial basis!)

Pf (x |x0, . . . , xn) = anx
n + · · ·+ a0

is called the n-th divided di↵erence, [x0, . . . , xn]f := an.

The divided di↵erences are the coe�cients c0, . . . , cn: The interpolation polynomial
Pf (·|x0, . . . , xn) for x0  x1  · · ·  xn (not necessarily distinct and thus need
f 2 C

n+1) is given by

P(x) =
nX

i=0

[x0, . . . , xi ]f !i (x).

Furthermore,
f (x) = P(x) + [x0, . . . , xn, x ]f !n+1(x).

Proof  board

41 / 52



Newton differences

for 4 0 p x

p to 00 Exo f f to
Wo x

4 0 Cet

Pm 1 ÉÉEa ixi f wilt

interpolates to thy

Pn Exo x f x On too

as

Pn x to n3fwn x Quilt
with some polynomial Q Any ofdegreen
Notice that

waft ITCti x

Wn Xi 0 5 0 4 1

Qu Xi Puki Exo a fwu.fi
flxi



Qu interpolals to tut

Quy Exo xi f wi

Py x Exo Xn fwalt to ti fwilt



Numerical Methods I
MATH-GA 2010.001/CSCI-GA 2420.001

Benjamin Peherstorfer
Courant Institute, NYU

Based on slides by G. Stadler and A. Donev
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Today

Last time

I Polynomial interpolation

Today

I Interpolation

Announcements

I Homework 5 is due Mon, Nov 18 before class
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Recap

Let’s say the function f is continuous, i.e., f 2 C
0([a, b]), but not even di↵erentiable.

Define the maximum norm
kf k1 = max

x2[a,b]
|f (x)|

Given points X = {x0, . . . , xn} ⇢ [a, b], define the interpolation error

En,1(X ) = kf � Pf (·|X )k1

and the best-approximation error with f
⇤
2 Pn

E
⇤
n = kf � f

⇤
k1  kf � f̃ k1 , 8f̃ 2 Pn
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Recap
Theorem Let f 2 C

0([a, b]) and X = {x0, . . . , xn} ⇢ [a, b]. Then

En,1(X ) = E
⇤
n (1 + ⇤n(X )) ,

where ⇤n(X ) is the Lebesgue constant of X , defined as

⇤n(X ) =
���
Xn

j=0
|L

(n)
j |

���
1

,

where L
(n)
j 2 Pn is the j-th Lagrange polynomial with

L
(n)
j (xi ) =

(
1 , i = j ,

0 , otherwise

Notice the decomposition of the error into component E ⇤
n (independent of X but

dependent on f ) and ⇤n(X ) (independent of f but dependent on X )
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Recap: Pointwise evaluation of interpolating polynomials
Aitken Lemma: The interpolating polynomial Pf (·|x0, . . . , xn) satisfies the recurrence
relation

Pf (x |x0, . . . , xn) =
(x0 � x)Pf (x |x1, . . . , xn)� (xn � x)Pf (x |x0, . . . , xn�1)

x0 � xn

Introduce the notation

Pik = Pf (x |xi�k , . . . , xi ) , i � k

then Pf (x |x0, . . . , xn) = Pnn can be computed based on the Neville scheme

Pi0 =f (xi ) , i = 0, . . . , n

Pik =Pi ,k�1 +
x � xi

xi � xi�k
(Pi ,k�1 � Pi�1,k�1) , i � k

 a numerically stable and e�cient (O(n2)) way to evaluate (!) Pf (x |x0, . . . , xn)
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Recap: Polynomial interpolation in Newton basis

The Newton basis !0, . . . ,!n is given by

!i (x) :=
i�1Y

j=0

(x � xj) 2 Pi .

Would like to find coe�cients c0, c1, . . . , cn of interpolating polynomial in Newton basis

Pf (x |x0, . . . , xn) = c0!0(x) + c1!1(x) + · · ·+ cn!n(x)
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Recap: Newton polynomial basis

The leading coe�cient an of the interpolation polynomial (monomial basis!)

Pf (x |x0, . . . , xn) = anx
n + · · ·+ a0

is called the n-th divided di↵erence, [x0, . . . , xn]f := an.

The divided di↵erences are the coe�cients c0, . . . , cn: The interpolation polynomial
Pf (·|x0, . . . , xn) for x0  x1  · · ·  xn (not necessarily distinct and thus need
f 2 C

n+1) is given by

P(x) =
nX

i=0

[x0, . . . , xi ]f !i (x).

Furthermore,
f (x) = P(x) + [x0, . . . , xn, x ]f !n+1(x).

Proof  board
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Divided di↵erences

The divided di↵erences [x0, . . . , xn]f satisfy the following properties:

I [x0, . . . , xn]P = 0 for all P 2 Pn�1 (because an = 0 for degree n � 1 polynom)

I If x0 = . . . = xn:

[x0, . . . , xn]f =
f
(n)(x0)

n!
I The following recurrence relation holds for xi 6= xj :

[x0, . . . , xn]f =
([x0, . . . , x̂i , . . . , xn]f � [x0, . . . , x̂j , . . . , xn]f )

xj � xi

I [x0, . . . , xn]f = 1
n! f

(n)(⌧) with a a  ⌧  b, if f in C
n+1

48 / 57



Divided di↵erences

Let us use divided di↵erences to compute the coe�cients for the Newton basis for the
cubic interpolation polynomial p that satisfies p(0) = 1, p(0.5) = 2, p(1) = 0,
p(2) = 3.

xi

0 [x0]f = 1

0.5 [x1]f = 2 [x0x1]f = [x1]f�[x0]f
x1�x0

= 2

1 [x2]f = 0 [x1x2]f = [x2]f�[x1]f
x2�x1

= �4 [x0x1x2]f = �6

2 [x3]f = 3 [x2x3]f = [x3]f�[x2]f
x3�x2

= 3 [x1x2x3]f = 14
3

16
3

Thus, the interpolating polynomial is

p(x) = 1 + 2x + (�6)x(x � 0.5) +
16

3
x(x � 0.5)(x � 1).
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Divided di↵erences
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Divided di↵erences

Let us now use divided di↵erences to compute the coe�cients for the Newton basis for
the cubic interpolation polynomial p that satisfies p(0) = 1, p0(0) = 2, p00(0) = 1,
p(1) = 3.

xi

0 [x0]f = 1
0 [x0]f = 1 [x0x1]f = p

0(0) = 2

0 [x0]f = 1 [x1x2]f = p
0(0) = 2 [x0x1x2]f = p00(0)

2! = 1
2

1 [x3]f = 3 [x2x3]f = [x3]f�[x0]f
x3�x0

= 2 [x1x2x3]f = 0 [x0x1x2x3]f = �
1
2

Thus, the interpolating polynomial is

p(t) = 1 + 2t +
1

2
t
2 + (�

1

2
)t3
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Polynomial interpolation

I Polynomial interpolation

I Hermite interpolation

I (Least squares with polynomials)

I What else?

Splines, i.e., piecewise polynomial interpolation
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Splines

Assume (l + 2) pairwise disjoint nodes:

a = x0 < x1 < . . . < xl+1 = b.

A spline of degree k � 1 (order k) is a function in C
k�2 which on each interval

[xi , xi+1] coincides with a polynomial in Pk�1.

Most important examples:

I linear splines, k = 2

I cubic splines, k = 4
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Splines
Linear spline (piecewise linear polynomial)
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Splines
Cubic splines look smooth:220 7. Interpolation and Approximation 

s 
So 

a = to 

Figure 7.13. Cubic splines, order k = 4. 

curvature, i.e., of the second derivative. Thus the C 2-smooth cubic splines 
are recognized as "smooth." 

It is obvious that Sk,L:> is a real vector space, which, in particular, contains 
all polynomials of degree::; k - 1, i.e., Pk-l C Sk,L:>. Furthermore, the 
truncated powers of degree k, 

if 
if 

t ? ti 
t < ti 

are contained in Sk,L:>. Together with the monomials 1, t, ... ,tk - l , they 
form a basis of Sk,L:> , as we shall show in the following theorem: 

Theorem 7.48 The monomials and truncated powers form a basis 

(7.27) 

of the spline space Sk,L:>. In particular, the dimension of Sk,fl. zs 

dimSk,L:> = k + l. 

Proof. We first show that one has at most k + l degrees of freedom for the 
construction of a spline s E Sk,L:>. On the interval [to, tIl, we can choose 
any polynomial of degree::; k - 1; these are k free parameters. Because of 
the smoothness requirement s E C k - 2 , the polynomials on the following 
intervals [tl, t2]' ... , [tl' t£+l] are determined by their predecessor up to one 
parameter. Thus, we have another l parameters. Therefore dim Sk,L:> ::; k+l. 
The remaining claim is that the k+l functions in B are linearly independent. 
To prove this, let 

k-l 1 

s(t) := L ai ti + L Ci(t - = 0 for all t E [a, b]. 
i=O i=l 
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Trigonometric Interpolation for periodic functions

Instead of polynomials, use sin(jt), cos(jt) for di↵erent j 2 N.

For N � 1, we define the set of complex trigonometric polynomials of degree  N � 1
as

TN�1 :=

8
<

:

N�1X

j=0

cje
ijt , cj 2 C

9
=

; ,

where i =
p
�1.

Complex interpolation problem: Given pairwise distinct nodes t0, . . . , tN�1 2 [0, 2⇡)
and corresponding nodal values f0, . . . , fN�1 2 C, find a trigonometric polynomial
p 2 TN�1 such that p(ti ) = fi , for i = 0, . . . ,N � 1.
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I There exists exactly one p 2 TN�1, which solves this interpolation problem.

I Choose the equidistant nodes tk := 2⇡k
N for k = 0, . . . ,N � 1. The trigonometric

polynomial that satisfies p(ti ) = fi for i = 0, . . . ,N � 1 has the coe�cients

cj =
1

N

N�1X

k=0

e
� 2⇡ijk

N fk .

I For equidistant nodes, the linear map from CN
! CN defined by

(f0, . . . , fN�1) 7! (c0, . . . , cN�1) is called the discrete Fourier transformation
(DFT). The Fast Fourier Transform (FFT) is a (very famous!) algorithm that
computes the DFT and its inverse in O(N logN) flops.  Numerical Methods II
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Conclusions
I Interpolation means approximating function values in the interior of a domain

when there are known samples of the function at a set of interior and boundary
nodes

I Given a set of basis functions, interpolation amounts to solving a linear system of
equations for the coe�cients; there are clever choices to avoid explicitly
computing the solution of the system of equations

I Interpolation on equidistant nodes is a bad idea: Not accurate and not stable!
Instead, use Chebyshev nodes, then also higher-order polynomials are safe!

I Another option is to use piecewise polynomial interpolation such as splines, which
is very common when solving PDEs numerically

I What about higher dimensions?
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Solving nonlinear equations
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Solving nonlinear equations (“root finding”)
We want to solve the nonlinear equation

f (x) = 0, x 2 R.

We could also have n < 1 equations in n unknowns with f : Rn ! Rn

f (x) = 0

In general, we will need an iterative approach that constructs x1, x2, x3, . . . such that

lim
k!1

xk = x⇤ ,

with f (x⇤) = 0.

What are important properties of a method for solving nonlinear equations?

I Does it converge? From which starting point x0?
I How quickly does it converge?

I How expensive is each step?
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Bisection method

The bisection method exploits that given a continuous function f : [a, b] ! R, such
that f (a)f (b) < 0, there exists x⇤ 2 (a, b) with f (x⇤) = 0

I Assumption: f is continuous over [a, b] (very weak assumption!)

I We have chosen a reasonable interval [a, b] so that there exists a solution

x⇤ 2 (a, b) with f (x⇤) = 0

Set a0 = a, b0 = b, x0 = (a+ b)/2 and iterate for k = 0, 1, 2, 3, . . . as follows:

1. Set ak+1 = ak , bk+1 = xk if f (xk)f (ak) < 0

2. Set ak+1 = xk , bk+1 = bk if f (xk)f (bk) < 0

3. Set xk+1 = (ak+1 + bk+1)/2

4. Terminate if |bk+1 � ak+1|  ✏

Visualization  board
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Numerical example
Experiment: Solve f (x) = x2 � c = 0 over [0.5, 1.5] with c = 0.81 and x0 = 1

1: a = 0.5; b = 1.5; c = 0.81; xStar = sqrt(c);
2: f = @(x)x^2 - c;
3: x = (a + b)/2;
4:

5: res = [x, xStar];
6: for k=1:20
7: if(f(a)*f(x) < 0)
8: b = x;
9: else

10: a = x;
11: end
12: x = (a + b)/2;
13: res(end + 1, :) = [x, xStar];
14: end
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1: 1.0000e+00 9.0000e-01
2: 7.5000e-01 9.0000e-01
3: 8.7500e-01 9.0000e-01
4: 9.3750e-01 9.0000e-01
5: 9.0625e-01 9.0000e-01
6: 8.9062e-01 9.0000e-01
7: 8.9844e-01 9.0000e-01
8: 9.0234e-01 9.0000e-01
9: 9.0039e-01 9.0000e-01

10: 8.9941e-01 9.0000e-01
11: 8.9990e-01 9.0000e-01
12: 9.0015e-01 9.0000e-01
13: 9.0002e-01 9.0000e-01
14: 8.9996e-01 9.0000e-01
15: 8.9999e-01 9.0000e-01
16: 9.0001e-01 9.0000e-01
17: 9.0000e-01 9.0000e-01
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I Bisection is a slow but sure method.

I It uses no information about the value of the function or its derivatives - only the

sign

I There are variants that achieve faster convergence  textbook by Quarterioni

I How can we achieve faster convergence in general?

 need to use additional

information, at least the function value instead of just the sign
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More general formulation via fixed point iterations

Reformulation as fixed point method so that x⇤ is fixed point

x⇤ = �(x⇤)

Corresponding iteration: Choose x0 (initialization) and compute x1, x2, . . . from

xk+1 = �(xk)

We now want to study when this iteration converges to x⇤ with f (x⇤) = 0

8 / 27



Convergence of fixed point methods

A mapping � : [a, b] ! R is called contractive on [a, b] if there is a 0  ⇥ < 1 such

that

|�(x)� �(y)|  ⇥|x � y | for all x , y 2 [a, b].

If � is continuously di↵erentiable on [a, b], then

⇥ = sup

x ,y2[a,b]

|�(x)� �(y)|
|x � y | = sup

z2[a,b]
|�0

(z)|

9 / 27



Convergence of fixed point methods

Let � : [a, b] ! [a, b] be contractive with constant ⇥ < 1. Then:

I There exists a unique fixed point x̄ with x̄ = �(x̄)

I For any starting guess x0 in [a, b], the fixed point iteration converges to x̄ and

|xk+1 � xk |  ⇥|xk � xk�1|

and

|x̄ � xk | 
⇥

k

1�⇥
|x1 � x0|.

The second expression allows to estimate the required number of iterations.

 board

10 / 27
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Newton’s method

What is the standard approach in numerics when we encounter a nonlinear problem?

 we linearize

 board
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Today

Last time

I Interpolation

I Solving systems of nonlinear equations

I Bisection methods

Today

I Newton method

Announcements

I Homework 5 posted and is due Mon, Nov 18 before class
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Recap: Solving nonlinear equations (“root finding”)
We want to solve the nonlinear equation

f (x) = 0, x 2 R.

We could also have n < 1 equations in n unknowns with f : Rn ! Rn

f (x) = 0

In general, we will need an iterative approach that constructs x1, x2, x3, . . . such that

lim
k!1

xk = x⇤ ,

with f (x⇤) = 0.

What are important properties of a method for solving nonlinear equations?

I Does it converge? From which starting point x0?
I How quickly does it converge?

I How expensive is each step?
13 / 32



Recap: Bisection method

The bisection method exploits that given a continuous function f : [a, b] ! R, such
that f (a)f (b) < 0, there exists x⇤ 2 (a, b) with f (x⇤) = 0

I Assumption: f is continuous over [a, b] (very weak assumption!)

I We have chosen a reasonable interval [a, b] so that there exists a solution

x⇤ 2 (a, b) with f (x⇤) = 0

Set a0 = a, b0 = b, x0 = (a+ b)/2 and iterate for k = 0, 1, 2, 3, . . . as follows:

1. Set ak+1 = ak , bk+1 = xk if f (xk)f (ak) < 0

2. Set ak+1 = xk , bk+1 = bk if f (xk)f (bk) < 0

3. Set xk+1 = (ak+1 + bk+1)/2

4. Terminate if |bk+1 � ak+1|  ✏

Visualization  board
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Recap: Newton’s method

What is the standard approach in numerics when we encounter a nonlinear problem?

 we linearize

 board
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In one dimension, solve f (x) = 0:

Start with x0, and compute x1, x2, . . . from

xk+1 = xk �
f (xk)

f 0(xk)
, k = 0, 1, . . .

Requires f 0(xk) 6= 0 to be well-defined (i.e., tangent has nonzero slope).

Experiment: Solve f (x) = x2 � c = 0 with c = 0.81 and x0 = 1

�(x) = x � f (x)

f 0(x)
= x � x2 � c

2x
= x � x

2
+

c

2x
=

1

2

⇣
x +

c

x

⌘

Iterations

xk+1 =
1

2

✓
xk +

c

xk

◆
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1: format longE
2: c = 0.81;
3: xStar = sqrt(c);
4: x = 1;
5: res = [x, xStar];
6: for i=1:4
7: x = 0.5*(x + c/x);
8: res(end + 1, :) = [x, xStar];
9: end

10: res

1: res =
2: 1.000000000000000e+00 9.000000000000000e-01
3: 9.050000000000000e-01 9.000000000000000e-01
4: 9.000138121546961e-01 9.000000000000000e-01
5: 9.000000001059849e-01 9.000000000000000e-01
6: 9.000000000000000e-01 9.000000000000000e-01

 very quick convergence; certainly faster than linear convergence
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Newton’s method

Let F : Rn ! Rn
, n � 1 and solve

F (x) = 0.

Truncated Taylor expansion of F about starting point x0
:

F (x) ⇡ F (x0
) + F 0

(x0
)(x � x0

).

Hence:

x1
= x0 � F 0

(x0
)
�1F (x0

)

Newton iteration: Start with x0 2 Rn
, and for k = 0, 1, . . . compute

F 0
(xk

)�xk
= �F (xk

), xk+1
= xk

+�xk

Requires that F 0
(xk

) 2 Rn⇥n
is invertible.

20 / 32



Newton’s method

Newton iteration: Start with x0 2 Rn
, and for k = 0, 1, . . . compute

F 0
(xk

)�xk
= �F (xk

), xk+1
= xk

+�xk

Equivalently:

xk+1
= xk � F 0

(xk
)
�1F (xk

)

Newton’s method is a�ne invariant, that is, the sequence is invariant to a�ne

transformations  board
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Newton is offine invariant

Solving FG 0 is equivalent to solving

AFA O

for regular Aep

Set G x AFG then apply Newton to G

Yan Ya G'G GG

Ya A F 4 J AFCA

Yr F y A'A Flu

Yg
F n Fly

iterates are the same even if we
tran form F G via regular matrix

not affected by bad scaling
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Convergence of Newton’s method

Assumptions on F : D ⇢ Rn
open and convex, F : D ! Rn

continuously di↵erentiable

with F 0
(x) invertible for all x , and there exists ! � 0 such that

kF 0
(x)�1

(F 0
(x + sv)� F 0

(x))vk  s!kvk2

for all s 2 [0, 1], x 2 D, v 2 Rn
with x + v 2 D.

Assumptions on x⇤
and x0

: There exists a solution x⇤ 2 D and a starting point

x0 2 D such that

⇢ := kx⇤ � x0k  2

!
and B⇢(x⇤

) ⇢ D

where

B⇢(x⇤
) = {y 2 Rn | ky � x⇤k < ⇢}

Q: Meaning of !?

22 / 32



Theorem: Under the assumptions of the previous slide, the Newton sequence xk
stays

in B⇢(x⇤
) and limk!1 xk

= x⇤
, and

kxk+1 � x⇤k  !

2
kxk � x⇤k2

Moreover, the solution x⇤ is unique in B2/!(x
⇤
).

Proof:  board

Summary: The Newton method converges locally and quadratically.
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Theorem: Under the assumptions of the previous slide, the Newton sequence xk
stays

in B⇢(x⇤
) and limk!1 xk

= x⇤
, and

kxk+1 � x⇤k  !

2
kxk � x⇤k2

Moreover, the solution x⇤ is unique in B2/!(x
⇤
).

Proof:  board

Summary: The Newton method converges locally and quadratically.
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Role of initialization

Choice of initialization x0
is critical. Depending on the initialization, the Newton

iteration might

I not converge (it could “blow up” or “oscillate” between two points)

I converge to di↵erent solutions

I fail because it hits a point where the Jacobian is not invertible (this cannot

happen if the conditions of the convergence theorem are satisfied)

I . . .

Sometimes, continuation ideas must be used to find good initializations: Solve simpler

problems first and use solution as starting point for harder problems.
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General comments

The “more nonlinear” a problem, the harder it is to solve.

kF 0
(x)�1

(F 0
(x + sv)� F 0

(x))vk  s!kvk2

Very nonlinear  F 0
(x) changes a lot  ! large (need x0 closers to x⇤ required)

Computation of Jacobian can be costly/complicated

 sometimes approximate F 0
(xk)

There’s no reliable black-box solver for nonlinear problems; at least for

higher-dimensional problems, the structure of the problem must be taken into account.

“Classification of mathematical problems as linear and nonlinear is like classification of

the Universe as bananas and non-bananas.”
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Overview

Nonlinear least squares—Gauss-Newton
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Nonlinear least-squares problems

Assume a least squares problem, where the parameters x do not enter linearly into the

model.

Instead of

min
x2Rn

kAx � bk2,

we have with F : D ! Rm,m � n, D ⇢ Rn
:

min
x2Rn

g(x) :=
1

2
kF (x)k2, where F (x)i = '(ti , x)� bi , 1  i  m

A (local) minimum x⇤
of this optimization problem satisfies:

g 0
(x) = 0, g 00

(x) is positive definite.

27 / 32



Nonlinear least-squares problems
The derivative of g(·) is

G (x) := g 0
(x) = F 0

(x)F (x)

Setting G (x) = 0 gives a nonlinear system in x , G : D ! Rm
.

Let’s try to solve it G (x) = 0 using Newton’s method:

G 0
(xk

)�xk
= �G (xk

), xk+1
= xk

+�xk

where

G 0
(x) = F 0

(x)TF 0
(x) + F 00

(x)TF (x) Hessian of g (objective)

 second-order information of F enters through F 00
(X )

T

Q: What are you observing about how second-order information enters?

 multiplied

with F (x)
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Q: What are you observing about how second-order information enters? multiplied

with F (x)
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Nonlinear least-squares problems

If the data is compatible with the model, which means that the model can perfectly fit

the data with zero training error, then F (x⇤
) = 0

Then, term involving F 00
(x⇤

) drops out in G 0
(x⇤

) anyway as we move towards x⇤
.

If kF (x⇤
)k is small, and thus data almost compatible with model, then neglecting that

term might not make the convergence much slower.

Also, it’s expensive to compute F 00
(x)
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Nonlinear least-squares problems—Gauss-Newton

The resulting Newton method for the nonlinear least squares problem is called

Gauss-Newton method: Initialize x0
and for k = 0, 1, . . . solve

F 0
(xk

)
TF 0

(xk
)�xk

= �F 0
(xk

)
TF (xk

) (solve) (1)

xk+1
= xk

+�xk . (update step)

Q: Should we implement GN like this?

The solve step is the normal equation for the linear least squares problem

min
�x

kF 0
(xk

)�xk
+ F (xk

)k. (2)

so we better solve (2) rather than directly (1)
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Convergence of Gauss-Newton method
Assumptions on F : D ⇢ Rn

open and convex, F : D ! Rm
, m � n continuously

di↵erentiable with F 0
(x) has full rank for all x , and let ! � 0, 0  ⇤ < 1 such that

kF 0
(x)+(F 0

(x + sv)� F 0
(x))vk  s!kvk2

for all s 2 [0, 1], x 2 D, v 2 Rn
with x + v 2 D.

Assumptions on x⇤
and x0

: Assume there exists a solution x⇤ 2 D of the least squares

problem and a starting point x0 2 D such that

kF 0
(x)+F (x⇤

)k  ⇤kx � x⇤k

⇢ := kx⇤ � x0k  2(1� ⇤)

!
:= �

Theorem: Then, the sequence xk
stays in B⇢(x⇤

) and limk!1 xk
= x⇤

, and

kxk+1 � x⇤k  !

2
kxk � x⇤k2 + ⇤kxk � x⇤k| {z }

 linear convergence if ⇤>0!

 we usually want to choose models that are “almost compatible” which means ⇤ is

often very small
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Conclusions

I Solving nonlinear systems of equations (“root finding”) is iterative in nature in

general

I The order of convergence matters; quadratic is good enough but mind costs per

step

I Newton’s method is second order but requires derivatives/Jacobian evaluations.

I In higher dimensions, a good initial guess is critical for Newton’s method

I There are many variants of Newton’s method (e.g., Quasi-Newton methods) that

avoid the computational costs of computing the Hessian

I (Machine learning is using first-order methods only anyway...)
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Today

Two weeks ago

I Function approximation

I Interpolation with polynomials

I Interpolation beyond polynomials

Today

I Numerical integration

I Newton-Cotes

Announcements

I Homework 5 is posted and due Mon, Nov 18 before class
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Numerical quadrature
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Numerical integration
We want to approximate the definite integral

I (f ) = I ba (f ) =

Z b

a
f (t) dt

numerically.

Properties of the integral:

I I is linear

I positive, i.e., if f is nonnegative, then
I (f ) is nonnegative

I additive w.r.t. the interval bounds:
I ca = I ba + I cb
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Condition of numerical integration
Lets study the map

([a, b], f ) !
Z b

a
f (t) dt,

where we use the L1-norm for f

kf k1 =
Z b

a
|f (t)|dt = I (|f |)

The absolute and relative condition numbers of integration are:

abs = 1,

rel =
I (|f |)
|I (f )| .

What does this mean?

Integration is harmless w.r.t. the absolute condition number,
and problematic w.r.t. the relative condition number if I (f ) is small and f changes sign
 board
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Numerical integration

We are looking for a map

Î :

(
C ([a, b]) ! R
f 7! Î (f )

such that the integration error |I (f )� Î (f )| is small.

What ideas come to your mind?

Example: Trapezoidal sum  board

General quadrature formula:

Î (f ) =
nX

i=0

�i f (ti ),

with weights �i and nodal points ti , i = 0, 1, . . . , n.
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Newton-Cotes formulas

Trapezoidal rule replaces f by easy-to-integrate piecewise linear approximation f̂ .
What other easy-to-integrate approximations could we use?

Polynomials!
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Quick recap on polynomial interpolation
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Recap: Interpolation
Consider n pairs of data samples (xi , yi ), i = 1, . . . , n with

yi = f (xi )

Based on {(xi , yi )}ni=1, we now would like to find an approximation f̃ 2 Vn that is
“close” to f .

For example, we could enforce the interpolation condition, namely that it holds

f̃ (xi ) = f (xi ) , i = 1, . . . , n

We could also use regression (m > n) and minimize, e.g.,

1

m

mX

i=1

|yi � f̃ (xi )|2
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Recap: Orthogonal polynomials

Define an inner product between functions:

(f , g) =

Z b

a
!(x)f (x)g(x) dx ,

where !(x) > 0 for a  x  b is a weight function. The induced norm is
kf k :=

p
(f , f ).

Let P0,P1,P2, . . . ,PK be polynomials of 0, 1, 2, . . . ,K order, respectively. They are
called orthogonal polynomials on [a, b] with respect to the weight function !(x) if it
holds

(Pi ,Pj) =

Z b

a
!(x)Pi (x)Pj(x)dx = �ij�i , i , j = 0, . . . ,K ,

with �i = kPik2 > 0.
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Recap

To define orthogonal polynomials uniquely, we normalize them so that the leading
coe�cient is one, i.e.,

Pk(x) = xk + . . .

Theorem: There exist uniquely determined orthogonal polynomials Pk 2 Pk with
leading coe�cient 1. These polynomials satisfy the 3-term recurrence relation:

Pk(x) = (x + ak)Pk�1(x) + bkPk�2(x), k = 2, 3, . . .

with starting values P0 = 1, P1 = x + a1, where

ak = �(xPk�1,Pk�1)

(Pk�1,Pk�1)
, bk = �(Pk�1,Pk�1)

(Pk�2,Pk�2)
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Recap: Lagrange basis
The Lagrange polynomials L0, . . . , Ln 2 Pn are uniquely defined for distinct x0, . . . , xn

Li (xj) = �ij , Li 2 Pn .

Lagrange polynomials up to order n = 4 for equidistant x0, . . . , x4. [Figure: Deuflhard]
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Recap: Runge’s phenomenon

Let’s approximate

f (x) =
1

1 + x2
, �5  x  5 ,

using polynomial interpolation on equally
spaced nodes in [�5, 5].

[Figure: Quarteroni]

Interpolants of degree n = 5 and n = 10 of f (x) = 1/(1 + x2) on equidistant nodes. It
can be shown that polynomial interpolation does not converge for |x | > 4 for this f
It is a very common situation that interpolation on equidistant nodes leads to high
oscillations near the interval ends  Runge’s phenomenon
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Recap: Newton polynomial basis

The leading coe�cient an of the interpolation polynomial (monomial basis!)

Pf (x |x0, . . . , xn) = anx
n + · · ·+ a0

is called the n-th divided di↵erence, [x0, . . . , xn]f := an.

The divided di↵erences are the coe�cients c0, . . . , cn: The interpolation polynomial
Pf (·|x0, . . . , xn) for x0  x1  · · ·  xn (not necessarily distinct and thus need
f 2 Cn+1) is given by

P(x) =
nX

i=0

[x0, . . . , xi ]f !i (x).

Furthermore,
f (x) = P(x) + [x0, . . . , xn, x ]f !n+1(x).
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Back to quadrature
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Newton-Cotes formulas continued

Given fixed nodes t0, . . . , tn, use polynomial approximation

f̂ = Pf (t|t0, . . . , tn) =
nX

i=0

f (ti )Lin(t)

with Lagrange polynomials L0n, . . . , Lnn

Thus:

Î (f ) = (b � a)
nX

i=0

�inf (ti ),

where

�in =
1

b � a

Z b

a
Lin(t) dt
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Newton-Cotes formulas (cont’d)

Quadrature formulas defined in this way are exact for polynomials P 2 Pn of degree
less than or equal to n

Î (P) = I (Pn(P)) = I (P) , for all P 2 Pn

Theorem: For (n + 1) pairwise distinct nodes t0, . . . , tn, there exists exactly one
quadrature formula (i.e., unique weights �0, . . . ,�n)

Î (f ) = (b � a)
nX

i=0

�i f (ti ) ,

that is exact for all p 2 Pn.

Proof  board
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Equidistantly spaced nodes

hi = h =
b � a

n
, ti = a+ ih , i = 0, . . . , n

then quadrature formulas are called the Newton-Cotes formulas with weights

�in =
1

b � a

Z b

a

Y

i 6=j

t � ti
ti � tj

dt =
1

n

Z n

0

Y

i 6=j

s � j

i � j
ds

These weights are independent of the interval boundaries a and b and can be
pre-computed once and for all:

9.2. Newton-Cotes Formulas 275 

the constructed quadrature formulas are called Newton-Cotes formulas. 
The term for the corresponding Newton-Cotes weights Ain simplifies via 
the substitution s := (t - a)/h: 

1 lb n t - tj 1 in n S - j 
Ain = -- II-- dt= - II-- ds. 

b - a a j=O ti - tj n 0 j=O i - j 
j#i j#i 

The weights Ain, which are independent of the interval boundaries, only 
have to be computed once, respectively, given once. In Table 9.1, we have 
listed them up to order n = 4. The weights, and therefore also the quadra-
ture formulas, are always positive for the orders n = 1, ... , 7. Higher orders 
are less attractive, since starting with n = 8, negative weights may occur. 
In this case, the Lebesgue constant is the characteristic quantity (9.3), up 
to the normalization factor (b - a)-I. Note that we have already encoun-
tered the Lebesgue constant in Section 7.1 as the condition number of the 
polynomial interpolation. 

Table 9.1. Newton-Cotes weights Ain for n = 1, ... ,4. 

n AOn , ... , Ann Error Name 

1 1 1 1" (,) Trapezoidal rule "2 "2 

2 1 4 1 Simpson's rule, Kepler's barrel rule (; (; (; 

3 1 3 3 1 3:05 f(4)(,) Newton's 3/8-rule 8 8 8 8 

4 7 32 12 32 7 f(6)(,) Milne's rule 90 90 90 90 90 

In Table 9.1, we have already assigned the respective approximation er-
rors to the Newton-Cotes formulas (for sufficiently smooth integrands), 
expressed as a power of the step size h and a derivative at an intermediate 
position, E [a, b]. Observe that for the even orders n = 2,4, the power 
of h and the degree of the derivative always jump by 2. In the following 
we shall verify these estimates for the first two formulas, by which one can 
already see the principle for odd n (see Exercise 9.3). 

Before starting, we recall a not so obvious variant of the mean value theo-
rem, which we shall encounter repeatedly in the proof of the approximation 
statements. 

Lemma 9.5 Let g, h E C[a, b] be continuous functions on [a, b], where g 
has only one sign, i.e., either g(t) 2: 0 or g(t) ::; 0 for all t E [a, b]. Then 

lb h(t)g(t) dt = h(,) lb g(t) dt 

for some, E [a, b]. 
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Lemma Let f 2 C 2([a, b]) be a twice continuously di↵erentiable function. Then the
integration error of the trapezoidal rule

T =
b � a

2
(f (a) + f (b))

with step size h = b � a can be expressed by

T �
Z b

a
f =

(b � a)3

12
f 00(⌧) ,

for some ⌧ 2 [a, b]

Proof  board

Integration errors of other Newton-Cotes formulas are listed in the table on the
previous slide.
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We use equidistantly spaced nodes?

We know that this leads to poorly conditioned
interpolation problems!

Recall: Polynomial interpolation can lead to Runge’s phenomenon  high frequency
oscillations  we saw that the relative condition number of numerical integration can
increase for oscillatory functions

Another point of view: The weights �n0, . . . ,�nn of Newton-Cotes formulas can
become negative for larger n  cancellation because we subtract “almost equal
numbers∗” in

Î (f ) = (b � a)
X

i=0

�i f (ti )

Weights are positive up to order 7, then some start to become negative.

∗almost equal because the f does not change too much (smoothness) from ti to ti+1
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Trapezoidal sums
To avoid poorly conditioned problems, let us split the integration interval [a, b] into n
sub-intervals [ti�1, ti ] , i = 1, . . . , n. Then consider the rule

Î (f ) =
nX

i=1

Î titi�1
(f ) ,

where Î titi�1
is a quadrature formula on the interval [ti�1, ti ].
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Same assumptions on f as before. We have seen already the trapezoidal sum with
h = (b � a)/n

T (h) =
nX

i=1

Ti = h

 
1

2
(f (a) + f (b)) +

n�1X

i=1

f (a+ ih)

!

It has error

T (h)�
Z b

a
f =

(b � a)h2

12
f 00(⌧) , ⌧ 2 [a, b]

Proof  board

What did we achieve with this?  We can increase n (and thus decrease h) to reduce
the error without increasing the degree of the underlying polynomial
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Today

Last week

I Numerical integration

I Newton-Cotes formulas

Today

I Gauss quadrature

I Integration in multiple dimensions

Announcements

I Homework 6 is posted and due Mon, Dec 2 before class
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Recap: Condition of numerical integration
Lets study the map

([a, b], f ) !
Z b

a
f (t) dt,

where we use the L1-norm for f

kf k1 =
Z b

a
|f (t)|dt = I (|f |)

The absolute and relative condition numbers of integration are:

abs = 1,

rel =
I (|f |)
|I (f )| .

What does this mean?

Integration is harmless w.r.t. the absolute condition number,
and problematic w.r.t. the relative condition number if I (f ) is small and f changes sign
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Recap: Newton-Cotes formulas

Given fixed nodes t0, . . . , tn, use polynomial approximation

f̂ = Pf (t|t0, . . . , tn) =
nX

i=0

f (ti )Lin(t)

with Lagrange polynomials L0n, . . . , Lnn

Thus:

Î (f ) = (b � a)
nX

i=0

�inf (ti ),

where

�in =
1

b � a

Z b

a
Lin(t) dt
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Recap: Newton-Cotes formulas (cont’d)

Quadrature formulas defined in this way are exact for polynomials P 2 Pn of degree
less than or equal to n

Î (P) = I (Pn(P)) = I (P) , for all P 2 Pn

Theorem: For (n + 1) pairwise distinct nodes t0, . . . , tn, there exists exactly one
quadrature formula (i.e., unique weights �0, . . . ,�n)

Î (f ) = (b � a)
nX

i=0

�i f (ti ) ,

that is exact for all p 2 Pn.
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Recap
Equidistantly spaced nodes

hi = h =
b � a

n
, ti = a+ ih , i = 0, . . . , n

then quadrature formulas are called the Newton-Cotes formulas with weights

�in =
1

b � a

Z b

a

Y

i 6=j

t � ti
ti � tj

dt =
1

n

Z n

0

Y

i 6=j

s � j

i � j
ds

These weights are independent of the interval boundaries a and b and can be
pre-computed once and for all:
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In this case, the Lebesgue constant is the characteristic quantity (9.3), up 
to the normalization factor (b - a)-I. Note that we have already encoun-
tered the Lebesgue constant in Section 7.1 as the condition number of the 
polynomial interpolation. 

Table 9.1. Newton-Cotes weights Ain for n = 1, ... ,4. 

n AOn , ... , Ann Error Name 

1 1 1 1" (,) Trapezoidal rule "2 "2 

2 1 4 1 Simpson's rule, Kepler's barrel rule (; (; (; 

3 1 3 3 1 3:05 f(4)(,) Newton's 3/8-rule 8 8 8 8 

4 7 32 12 32 7 f(6)(,) Milne's rule 90 90 90 90 90 

In Table 9.1, we have already assigned the respective approximation er-
rors to the Newton-Cotes formulas (for sufficiently smooth integrands), 
expressed as a power of the step size h and a derivative at an intermediate 
position, E [a, b]. Observe that for the even orders n = 2,4, the power 
of h and the degree of the derivative always jump by 2. In the following 
we shall verify these estimates for the first two formulas, by which one can 
already see the principle for odd n (see Exercise 9.3). 

Before starting, we recall a not so obvious variant of the mean value theo-
rem, which we shall encounter repeatedly in the proof of the approximation 
statements. 

Lemma 9.5 Let g, h E C[a, b] be continuous functions on [a, b], where g 
has only one sign, i.e., either g(t) 2: 0 or g(t) ::; 0 for all t E [a, b]. Then 

lb h(t)g(t) dt = h(,) lb g(t) dt 

for some, E [a, b]. 
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Recap: Trapezoidal sums
To avoid poorly conditioned problems, let us split the integration interval [a, b] into n
sub-intervals [ti�1, ti ] , i = 1, . . . , n. Then consider the rule

Î (f ) =
nX

i=1

Î titi�1
(f ) ,

where Î titi�1
is a quadrature formula on the interval [ti�1, ti ].

28 / 48



Recap: Error of Trapezoidal sum

Trapezoidal sum with h = (b � a)/n

T (h) =
nX

i=1

Ti = h

 
1

2
(f (a) + f (b)) +

n�1X

i=1

f (a+ ih)

!

It has error

T (h)�
Z b

a
f =

(b � a)h2

12
f 00(⌧) , ⌧ 2 [a, b]

What did we achieve with this? 

We can increase n (and thus decrease h) to reduce
the error without increasing the degree of the underlying polynomial
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Gauss-Christo↵el quadrature

Besides piecewise approximations, what else could we do to avoid issues with
high-degree polynomials?

Change the nodes

So far, we allowed to choose weights but the nodes were given (e.g., equidistant).
Now, let’s allow changing the nodes t0, . . . , tn too.

What highest degree can we hope for? The best we can hope for is exact interpolation
up to polynomials of degree 2n + 1 (2(n + 1) coe�cients) based on a non-rigorous
counting argument of having n + 1 DoFs because of nodes t0, . . . , tn and n + 1 DoFs
because of weights �0, . . . ,�n.
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Also, for generalization, we consider quadrature of weighted integrals, with a positive
weight function !(t):

I (f ) =

Z b

a
!(t)f (t) dt

with weight functions !(t) = 1,!(t) = 1/
p
1� t2, . . ..

Our goal is the construction of quadrature formulas of the form

În(f ) =
nX

i=0

�inf (⌧in) ,

to approximate I (f ). Thus, for a given n, we seek n + 1 notes ⌧0n, . . . , ⌧nn and n + 1
weights �0n, . . . ,�nn so that polynomials up to as high degree N as possible can be
integrated exactly

În(P) = I (P) , for all P 2 PN
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Gauss-Christo↵el quadrature (cont’d)
Can we say something about the nodes ⌧0n, . . . , ⌧nn?

Theorem: For n 2 N, consider nodes ⌧0n, . . . , ⌧nn. For an n, define Î as

În(f ) =
nX

i=0

�inf (⌧in)

and let it be exact for polynomials p 2 P2n+1

În(p) =

Z b

a
!(t)p(t)dt .

Then, the polynomials {Pn} given by

Pn+1(t) = (t � ⌧0n) · . . . · (t � ⌧nn) 2 Pn+1

are orthogonal with respect to the scalar product induced by !(t)  proof
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Gauss-Christo↵el quadrature (cont’d)
Can we say something about the nodes ⌧0n, . . . , ⌧nn?

Theorem: For n 2 N, consider nodes ⌧0n, . . . , ⌧nn. For an n, define Î as

În(f ) =
nX
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Z b

a
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Gauss-Christo↵el quadrature (cont’d)

Therefore, the nodes ⌧in have to be roots of pairwise orthogonal polynomials {Pj} of
degree deg(Pj) = j

For a given !, we already know that the set of orthogonal polynomials {Pj} is unique
(if leading coe�cient is 1)

We also know that the roots of these polynomials are real and have to lie in (a, b)  
proof board

For each ! and n 2 N, this gives us a unique set of nodes, namely the roots of the
corresponding orthogonal polynomial Pn+1

We thus have fixed n + 1 degrees of freedom so far...
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What do we know about the weights for fixed t0, . . . , tn when we want to integrate
exactly polynomials up to degree n?

Because we want to be able to exactly integrate polynomials up to degree 2n + 1, we
already know that to even achieve exactness up to degree n, the weights are fixed for
given nodes t0, . . . , tn:

�in =
1

b � a

Z b

a
Lin(t)dt , Lagrange poly Lin(⌧jn) = �ij

(“For n+ 1 pairwise distinct nodes, the exists only one quadrature formula that exactly
integrate polynomials up to degree n.”)

Theorem: Let ⌧0n, . . . , ⌧nn be the roots of the (n + 1)st orthogonal polynomial for the
weight !. Then any quadrature formula Î is exact for polynomials up to order n if and
only if it is exact up to order 2n + 1.

Proof
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Weight functions for Gauss-Christo↵el quadrature
9.3. Gauss-Christoffel Quadrature 285 

Table 9.3. Commonly occurring classes of orthogonal polynomials. 

w(t) Interval I = [a, b] Orthogonal polynomials 

1 [-1,1] Chebyshev polynomials Tn 
v'1-t2 

e- t [0,00] Laguerre polynomials Ln 

e- t2 [-00,00] Hermite polynomials Hn 

1 [-1,1] Legendre polynomials Pn 

(w == 1) is only used in special applications. For general integrands, the 
trapezoidal sum extrapolation, about which we shall learn in the next sec-
tion, is superior. However, the weight function of the Gauss-Chebyshev 
quadrature is weakly singular at t = ±1, so that the trapezoidal rule 
is not applicable. Of particular interest are the Gauss-Hermite and the 
Gauss-Laguerre quadrature, which allow the approximation of integrals 
over infinite intervals (and even solve exactly for polynomials P E P 2n+1)' 

Let us finally note an essential property of the Gauss quadrature for 
weight functions w t 1: The quality of the approximation can only be 
improved by increasing the order. A partitioning into subintervals, however, 
is only possible for the Gauss-Legendre quadrature (respectively, the Gauss-
Lobatto quadrature; compare Exercise 9.11). 

9.3.2 Computation of Nodes and Weights 

For the effective computation of the weights Ain, we need another represen-
tation. For this purpose, let {Fd be a family of orthonormal polynomials 
Fk E Pk, i.e., 

(Fi' Fj ) = bij . 

These satisfy the Christoffel-Darboux formula (see, e.g., [82] or [64]). 

Lemma 9.14 Suppose that kn are the leading coefficients of the or-
thonormal polynomials Fn(t) = kntn + O(tn- 1 ). Then, for all 8, t E 

R, 

(Fn+l (t)Fn(s) - Fn(t)Fn+l (8)) = t Fj(t)Fj(s) . 
kn+l t - s . 

J=O 

The following formula for the weights Ain can be derived from this 
formula. 

Lemma 9.15 The weights Ain satisfy 

(9.5) 

Corresponding quadrature rules are usually prefixed with “Gauss-”, i.e.,
“Gauss-Legendre quadrature”, or “Gauss-Chebyshev quadrature”.
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Summary of Gauss quadrature
There exist uniquely determined nodes ⌧0n, . . . , ⌧nn and weights �0n, . . . ,�nn such that
the quadrature formula

În(f ) =
nX

i=0

�inf (⌧in)

integrates exactly all polynomials of degree less than or equal to 2n + 1, i.e.,

În(P) =

Z b

a
!P , P 2 P2n+1 .

The nodes ⌧in are the roots of the n+ 1-st orthogonal polynomial Pn+1 with respect to
the weight function ! and the weights are

�in =
1

b � a

Z b

a
Lin(t)dt ,

with the Lagrange polynomials Lin(⌧jn) = �ij . Furthermore, the weights are all positive
�in > 0.  proof
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Approximation error

For any function f 2 C 2n+2, the approximation error of Gauss quadrature can be
expressed in the form

Z b

a
!f � În(f ) =

f (2n+2)(⌧)

(2n + 2)!
(Pn+1,Pn+1) ,

with some ⌧ 2 [a, b].

 proof
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Summary of Gauss quadrature (cont’d)
I Gauss quadrature gives the highest degree 2n + 1 of polynomials that can be

exactly integrated with n + 1 function evaluations in general

I Accuracy in Gauss-(Chebyshev, Laguerre, Hermite, Legendre,. . . ) w.r.t. to
polynomial degree can only be improved by increasing number of points; not by
better weights

I Of particular interest are quadrature points for infinite intervals (Laguerre,
Hermite)

I Interval partitioning superior, but only possible for ! ⌘ 1 (Gauss-Legendre);
otherwise weight function is di↵erent in each sub-interval

I Gauss quadrature is typically used in finite-element approximation to integrate
over a local element. However, in many other cases in scientific computing,
interval partitioning is superior.
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Adaptive interval partitioning
Idea: On each sub-interval, estimate the quadrature error by either:

I Using a higher-order quadrature (e.g., Simpson rule), or

I Comparing the error on a subinterval with the error on a refinement

Then, subdivide the interval depending on the error estimation, and repeat  
visualization!

Such a method refines the nodes a posteriori (after having seen the function to
integrate).
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Di�cult cases for numerical integration

I (Unknown) discontinuities in f : adaptive quadrature continues to refine, which
can be used to locate discontinuities

I Highly oscillating integrals

I (Weakly) singular integrals
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I Interpolation and quadrature in one dimension
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I Function approximation and interpolation in higher dimensions

I Quadrature in higher dimensions

Announcements

I Homework 6 is due Mon, Dec 2 before class

2 / 54



Recap: Newton-Cotes formulas

Given fixed nodes t0, . . . , tn, use polynomial approximation

f̂ = Pf (t|t0, . . . , tn) =
nX

i=0

f (ti )Lin(t)

with Lagrange polynomials L0n, . . . , Lnn

Thus:

Î (f ) = (b � a)
nX

i=0

�inf (ti ),

where

�in =
1

b � a

Z b

a
Lin(t) dt
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Recap

Equidistantly spaced nodes

hi = h =
b � a

n
, ti = a+ ih , i = 0, . . . , n

then quadrature formulas are called the Newton-Cotes formulas with weights

�in =
1

b � a

Z b

a

Y

i 6=j

t � ti
ti � tj

dt =
1

n

Z n

0

Y

i 6=j

s � j

i � j
ds

These weights are independent of the interval boundaries a and b and can be
pre-computed once and for all:

9.2. Newton-Cotes Formulas 275 

the constructed quadrature formulas are called Newton-Cotes formulas. 
The term for the corresponding Newton-Cotes weights Ain simplifies via 
the substitution s := (t - a)/h: 

1 lb n t - tj 1 in n S - j 
Ain = -- II-- dt= - II-- ds. 

b - a a j=O ti - tj n 0 j=O i - j 
j#i j#i 

The weights Ain, which are independent of the interval boundaries, only 
have to be computed once, respectively, given once. In Table 9.1, we have 
listed them up to order n = 4. The weights, and therefore also the quadra-
ture formulas, are always positive for the orders n = 1, ... , 7. Higher orders 
are less attractive, since starting with n = 8, negative weights may occur. 
In this case, the Lebesgue constant is the characteristic quantity (9.3), up 
to the normalization factor (b - a)-I. Note that we have already encoun-
tered the Lebesgue constant in Section 7.1 as the condition number of the 
polynomial interpolation. 

Table 9.1. Newton-Cotes weights Ain for n = 1, ... ,4. 

n AOn , ... , Ann Error Name 

1 1 1 1" (,) Trapezoidal rule "2 "2 

2 1 4 1 Simpson's rule, Kepler's barrel rule (; (; (; 

3 1 3 3 1 3:05 f(4)(,) Newton's 3/8-rule 8 8 8 8 

4 7 32 12 32 7 f(6)(,) Milne's rule 90 90 90 90 90 

In Table 9.1, we have already assigned the respective approximation er-
rors to the Newton-Cotes formulas (for sufficiently smooth integrands), 
expressed as a power of the step size h and a derivative at an intermediate 
position, E [a, b]. Observe that for the even orders n = 2,4, the power 
of h and the degree of the derivative always jump by 2. In the following 
we shall verify these estimates for the first two formulas, by which one can 
already see the principle for odd n (see Exercise 9.3). 

Before starting, we recall a not so obvious variant of the mean value theo-
rem, which we shall encounter repeatedly in the proof of the approximation 
statements. 

Lemma 9.5 Let g, h E C[a, b] be continuous functions on [a, b], where g 
has only one sign, i.e., either g(t) 2: 0 or g(t) ::; 0 for all t E [a, b]. Then 

lb h(t)g(t) dt = h(,) lb g(t) dt 

for some, E [a, b]. 
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Recap: Trapezoidal sums

To avoid poorly conditioned problems, let us split the integration interval [a, b] into n
sub-intervals [ti�1, ti ] , i = 1, . . . , n. Then consider the rule

Î (f ) =
nX

i=1

Î titi�1
(f ) ,

where Î titi�1
is a quadrature formula on the interval [ti�1, ti ].
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Recap: Error of Trapezoidal sum

Trapezoidal sum with h = (b � a)/n

T (h) =
nX

i=1

Ti = h

 
1

2
(f (a) + f (b)) +

n�1X

i=1

f (a+ ih)

!

It has error

T (h)�

Z b

a
f =

(b � a)h2

12
f 00(⌧) , ⌧ 2 [a, b]

What did we achieve with this? 

We can increase n (and thus decrease h) to reduce
the error without increasing the degree of the underlying polynomial
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Summary of Gauss quadrature

There exist uniquely determined nodes ⌧0n, . . . , ⌧nn and weights �0n, . . . ,�nn such that
the quadrature formula

În(f ) =
nX

i=0

�inf (⌧in)

integrates exactly all polynomials of degree less than or equal to 2n + 1, i.e.,

În(P) =

Z b

a
!P , P 2 P2n+1 .

The nodes ⌧in are the roots of the n+ 1-st orthogonal polynomial Pn+1 with respect to
the weight function ! and the weights are

�in =
1

b � a

Z b

a
Lin(t)dt ,

with the Lagrange polynomials Lin(⌧jn) = �ij . Furthermore, the weights are all positive
�in > 0.
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Integration in higher dimensions
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Integration in higher dimensions

A separable integral can be integrated dimension-wise:

IL =

Z b

a

Z b

a
�(x , y)dxdy =

Z b

a
�(x)(x)dx

Z b

a
�(y)(y)dx ,

where
�(x , y) = �(x)(x)�(y)(y) (1)

Recall that one idea of numerical quadrature is to replace f with an easy-to-integrate f̂
I Choose a basis �1(x , y), . . . ,�n(x , y) and approximate

f (x , y) ⇡
nX

i=1

ci�i (x , y) ,

and choose �i (x , y) such that (1) holds.
I Then integrate

I (f ) ⇡
nX

i=1

ci Î (�
(x)
i )Î (�(y)i )
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One way to build such a basis is via tensor products of linear functions
(multi-dimensional analog to piecewise linear quadrature)

Define the “mother hat” function

�(x) = max(1� |x |, 0) , x 2 R
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If we want n = 2l + 1 basis functions, then translate and dilate it to center it on the
grid points

xi = i2�l , i = 0, . . . , n � 1

�i (x) = �

✓
x � xi
2�l

◆

Then take the tensor product

�i ,j(x , y) = �i (x)�j(y) , i , j = 0, . . . , n � 1

 lead to a basis of the piecewise bilinear functions in two dimensions
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[Figure: A. Donev]
12 / 54



What type of basis is this?

The basis {�ij} is a nodal point basis for piecewise bilinear
functions in [0, 1]2  

f̂ (x , y) =
X

i ,j

f (xi , yj)�ij(x , y)

interpolates f at the nodes {(xi , yj)}ni ,j=0

Integrate the bilinear basis functions {�ij} to obtain the weights �ij and then
approximate

Î (f ) =
X

i ,j

f (xi , yi )�ij ,

In multiple dimensions, adaptivity is essential to keep the computational costs
manageable
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Sparse grids
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Curse of dimensionality

I The curse of dimensionality is a term coined by Bellmann (1961) that refers to an
exponential increase of costs with the dimension of a problem

I For example, consider an approximation with a prescribed accuracy ✏ > 0, let the
costs of achieving this approximation scale as O(✏�d) in d dimensions  
exponential increase of the costs as we increase d

I Consider a simple uniform grid over the domain ⌦ = [0, 1]d . To have a mesh with
mesh width h = 1/9 in d = 1, we need N = 10 grid points. In d = 2 dimensions,
need N2 = 100 grid points. In d = 5 dimensions, need N5 = 105  exponential
growth of cost and storage requirements as we increase dimension d while keeping
mesh width h (“accuracy”) fixed

I The curse can be circumvented (to some extent) if? if we make stronger
assumptions on the functions to approximate  topic of today
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Sparse grids∗

∗
Follows lecture by H.-J. Bungartz. See also, Bungartz, Griebel, Sparse grids, Acta Numerica, 2004
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SG: Motivating example

Approximate the integral Z 1

0
4x(1� x)dx =

2

3

Board!
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SG: Hierarchical decomposition 1D

Archimedes Quadrature

Z 1

0
4x(1� x)dx =

2

3
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What do we observe with respect to depth t?

Contribution (e.g., “sum (of this t)”)
goes down with rate 2�2t
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SG: Approximation of functions

Analyze this approach in more general context.

Let �1, . . . ,�n be basis functions and represent

u(x) =
nX

i=1

↵i�i (x)

Obtain Z b

a
u(x)dx =

nX

i=1

↵i

Z b

a
�i (x)dx ,

i.e., a quadrature rule as a weighted sum of the coe�cients ↵1, . . . ,↵n

21 / 54



SG: Approximation of functions (cond’t)

Represent a continuous, piecewise linear u in nodal point basis

The coe�cient ↵1, . . . ,↵n are the function values of u at the nodal points

u(x) =
nX

i=1

↵i�i (x)

) instead of nodal point basis, consider a hierarchical basis

22 / 54



SG: Piecewise linear functions

Consider only functions u : [0, 1] ! R with u(0) = u(1) = 0 in the following.

Need the following quantities

I mesh width hl = 2�l

I grid points xl ,i = ihl = i2�l

I Basis function

�l ,i (x) = �

✓
x � xl ,i

hl

◆
, �(x) = max{1� |x |, 0}

I Nodal point basis �l = {�l ,i : 1  i < 2l}

Visualize these basis functions on the board!

The space Vl = span(�l) is the space of piecewise linear, continuous functions with
respect to the grid points xl ,i for i = 1, . . . , 2l � 1

23 / 54
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SG: Hierarchical basis

For the hierarchical representation, we consider the hierarchical increment Wl , spanned
by the basis functions �l ,i such that

Vl = Vl�1 �Wl

is a direct sum (each ul 2 Vl can be uniquely decomposed as ul = ul�1 + wl with
ul�1 2 Vl�1 and wl 2 Wl ! remember the triangles in approach by Archimedes)

Because dim(Vl) = 2l � 1 and dim(Vl) = dim(Vl�1) + dim(Wl) we need
dim(Wl) = 2l�1. These are given by �l ,i with

i 2 Il = {j : 1  j < 2l , j odd}

Then
Wl = span{�l ,i , i 2 Il}

Note that W1 = V1

24 / 54



SG: Hierarchical basis cont’d

The bases for spaces W1,W2 and W3

25 / 54
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SG: Hierarchical basis cont’d

Obtain

Vn =
nM

l=1

Wl ,

so that there is a unique representation for each u 2 Vn as

u =
nX

l=1

wl =
nX

l=1

X

i2Il

vl ,i�l ,i

Coe�cients vl ,i in case of interpolation  visualize on board

The coe�cients vl ,i are hierarchical di↵erences

vl ,i = u⇤(xl ,i )�
u(xl ,i�1) + u(xl ,i+1)

2

where u⇤ is the function to be interpolated
26 / 54
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SG: Analysis of hierarchical decomposition

We now analyze the hierarchical decomposition

un =
nX

l=1

wl =
nX

l=1

X

i2Il

vl ,i�l ,i

when interpolating a u. What would we like to obtain?

For our decomposition, we first calculate the norms of the basis functions

k�l ,ik1 = 1 , k�l ,ik2 =

r
2hl
3

27 / 54
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Courant Institute, NYU
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Today

Last time

I Quadrature in higher dimensions

I Sparse grids

Today

I Sparse grids

Announcements

I Homework 6 is due Mon, Dec 2 before class

I Wed, Nov 27 will be a Q&A session. No new material will be discussed. All notes
will be posted online. Send me questions via email by Tue, Nov 26, 4.55pm.
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Recap: Curse of dimensionality

I The curse of dimensionality is a term coined by Bellmann (1961) that refers to an
exponential increase of costs with the dimension of a problem

I For example, consider an approximation with a prescribed accuracy ✏ > 0, let the
costs of achieving this approximation scale as O(✏�d) in d dimensions  
exponential increase of the costs as we increase d

I Consider a simple uniform grid over the domain ⌦ = [0, 1]d . To have a mesh with
mesh width h = 1/9 in d = 1, we need N = 10 grid points. In d = 2 dimensions,
need N2 = 100 grid points. In d = 5 dimensions, need N5 = 105  exponential
growth of cost and storage requirements as we increase dimension d while keeping
mesh width h (“accuracy”) fixed

I The curse can be circumvented (to some extent) if? if we make stronger
assumptions on the functions to approximate  topic of today
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Recap: SG: Hierarchical decomposition 1D

Archimedes Quadrature

Z 1

0
4x(1� x)dx =

2

3
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SG: Hierarchical basis cont’d

The bases for spaces W1,W2 and W3
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SG: Hierarchical basis

For the hierarchical representation, we consider the hierarchical increment Wl , spanned
by the basis functions �l ,i such that

Vl = Vl�1 �Wl

is a direct sum (each ul 2 Vl can be uniquely decomposed as ul = ul�1 + wl with
ul�1 2 Vl�1 and wl 2 Wl ! remember the triangles in approach by Archimedes)

Because dim(Vl) = 2l � 1 and dim(Vl) = dim(Vl�1) + dim(Wl) we need
dim(Wl) = 2l�1. These are given by �l ,i with

i 2 Il = {j : 1  j < 2l , j odd}

Then
Wl = span{�l ,i , i 2 Il}

Note that W1 = V1
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SG: Hierarchical basis cont’d

Obtain

Vn =
nM

l=1

Wl ,

so that there is a unique representation for each u 2 Vn as

u =
nX

l=1

wl =
nX

l=1

X

i2Il

vl ,i�l ,i

Coe�cients vl ,i in case of interpolation  visualize on board

The coe�cients vl ,i are hierarchical di↵erences

vl ,i = u⇤(xl ,i )�
u(xl ,i�1) + u(xl ,i+1)

2

where u⇤ is the function to be interpolated
34 / 60
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SG: Analysis of hierarchical decomposition

We now analyze the hierarchical decomposition

un =
nX

l=1

wl =
nX

l=1

X

i2Il

vl ,i�l ,i

when interpolating a u. What would we like to obtain?

For our decomposition, we first calculate the norms of the basis functions

k�l ,ik1 = 1 , k�l ,ik2 =

r
2hl
3
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Recall

un =
nX

l=1

wl =
nX

l=1

X

i2Il

vl ,i�l ,i

If u is twice di↵erentiable, the k · k2 norm of the increments

wl =
X

i2Il

vl ,i�l ,i

decays as O(h2l ) board

This means, we can write a twice di↵erentiable u as a series

u =
1X

l=1

wl ,

that converges because kwlk2 2 O(h2l ). In particular, obtain

u � un =
1X

l=n+1

wl

 decay of kwlk2 helps us to understand error u � un
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In the 1-dimensional case, the benefit of the hierarchical basis is limited:

I We can leave out nodes and still get a reasonable approximation in contrast to a
nodal-point basis

I Adding a new level requires us to compute the coe�cients of the new level only
but keeps the coe�cients at the previous levels unchanged

What will “can remove nodes and still get reasonable results” amount to in higher
dimension? In the multi-dimensional case, we will now see that many of the
hierarchical increments have high costs and low benefit in terms of error ! we will
then remove those hierarchical increments and obtain sparse grids
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SG: Hierarchical basis in multivariate case

Let now x = [x1, . . . , xd ] with d 2 N and d > 1.

Again consider the domain ⌦ = [0, 1]d and functions u|@⌦ = 0

Multidimensional level l = [l1, . . . , ld ] 2 Nd

Multidimensional mesh width hl = [h1, . . . , hd ] = [2�l1 , . . . , 2�ld ]. Note that di↵erent
mesh width in di↵erent dimensions allowed

Define |l |1 = l1 + · · ·+ ld and |l |1 = max{l1, . . . , ld}

Grid points are x l ,i = [i1h1, . . . , idhd ]
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SG: Notation
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SG: Piecewise d -linear functions

Generalize continuous, piecewise
linear functions to continuous,
piecewise d-linear functions with
respect to hl :

�l ,i (x) =
dY

j=1

�lj ,ij (xj)

For d = 2, the functions �[1,1],[1,1]
and �[2,3],[3,5] are plotted on the
right

40 / 60



SG: Spaces

Consider
�l = {�l ,i : 1  i < 2l

} ,

where the  is to be read component-wise: each ij must be at least 1 and at most
2lj � 1

The space of piecewise d-linear functions is

Vl = span{�l}

with dimension
dim(Vl ) = (2l1 � 1) · · · (2ld � 1) 2 O(2|l |1)

Special case l1 = · · · = ld set Vn = V[n,...,n]

41 / 60



SG: Hierarchical increments

Define the hierarchical increment Wl as

Wl = span{�l ,i : i 2 Il} ,

where I l = {i : 1  i < 2l , all ij odd}

Contains just those functions from V l that vanish at all points of coarser grid

full grid hierarchical increments

42 / 60



SG: Hierarchical subspace decomposition

Obtain unique representation of ul 2 Vl for l 2 Nd as

ul =
X

l 0l

wl 0 ,

with wl 0 2 Wl 0

Now it will be worthwhile to estimate the norm of wl to understand which contribute
most to the accuracy of the representation

 board
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Details in [Bungartz et al., 2004]: Hierarchical coe�cient is now

vl ,i =

Z

[0,1]d
 l ,i@

2dudx ,

which now depends on mixed 2d-fold derivative

@2du =
@2d

@x21 · · · @x
2
d

and  l ,i = 2�|l |1�d�l ,i

It is very important to note that the following holds only for functions with
(L2-)bounded @2du ) strong assumption on function (smoothness)

Obtain
kwlk2  3�d2�2|l |1k@2duk2
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Now we select those subspaces from the subspace scheme that minimize cost and
maximize benefit for approximation function u : [0, 1]d ! R with su�cient smoothness

How should we measure costs?

We measure cost via the number of grid points

c(l ) = 2|l |1�d

How should we measure benefit? Measure benefit of subspace selection via introduced
error if left out. Let L ⇢ Nd of levels that are selected, then obtain

uL =
X

l2L
wl

and
u � uL =

X

l 62L
wl
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For each component wl have derived bounds of the form

kwlk  s(l )µ(u)

where µ(u) was typically k@2duk2. Then obtain

ku � uLk 

X

l 62L
kwlk2 

0

@
X

l 62L
s(l )

1

Aµ(u)

=

2

4

0

@
X

l2Nd

s(l )

1

A�

 
X

l2L
s(l )

!3

5µ(u)

Thus, if we select l with s(l ) big, then the error ku � uLk is reduced ! use s(l ) as the
benefit of subspace Wl
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SG: Quality of full-grid space

With this new tool in hand, let us analyze the cost/benefit of a “full grid”, i.e., a grid
corresponding to the selection

Ln = {l : |l |1  n}

In the L2 norm, we have bounds of the order

s(l ) = 2�2|l |1

Then, calculations show that
X

l2Ln

s(l ) �
✓
1

3

◆d

(1� d2�2n)

and for n ! 1 X

l2Nd

s(l ) =
✓
1

3

◆d

Thus
X

l2Nd

s(l )�
X

l2Ln

s(l ) 
✓
1

3

◆d

�

✓
1

3

◆d

(1� d2�2n) 
d

3d
2�2n
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SG: Approximation quality of full-grid space

Obtain

ku � uLnk2  C
X

l 62Ln

s(l ) 
Cd

3d
2�2n

2 O(h2n)

This is what we expect from a piecewise linear approximation

What additional insights have we obtained?

48 / 60
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SG: Approximation quality of full-grid space

Obtain

ku � uLnk2  C
X

l 62Ln

s(l ) 
Cd

3d
2�2n

2 O(h2n)

This is what we expect from a piecewise linear approximation

What additional insights have we obtained?

I The sum of local benefits
X

l2Ln

2�2|l |1 ,

means that subspace on diagonals
(i.e., with constant |l |1) have the
same benefit.

I Also, as we move further to the
bottom right, the benefit gets less and
less 48 / 60



If we now look at the costs c(l ) = 2|l |1�d

(which is the number of grid points), then
we see that the costs are constant on
diagonals as well

Thus, the cost/benefit ratio c(l )/s(l ) is constant on diagonals. In particular, for
lower-triangular diagonals, we add subspaces with worse and worse cost/benefit ratios
) what should we do with them? let’s truncate them
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Consider the diagonal cut L(1)n = {l : |l |1  n + d � 1} and the sparse grid space

V (1)
n =

M

|l |1n+d�1

Wl

Here is an example of a sparse grid
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SG: Properties of sparse grids

The number of grid points of a sparse grid grows as O(2nnd�1) in contrast to O(2nd)
of a full grid

If u has (L2-)bounded mixed derivatives up to order 2d , then

ku � u(1)n k2 2 O(2�2nnd�1) ,

whereas a full-grid space achieves

ku � unk2 2 O(2�2n)

Sparse-grid spaces achieve slightly worse error than full-grid space but drastically
reduced points in higher dimensions d
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Comparing the number of grid points corresponding to full-grid and sparse-grid spaces:

Dimension d = 2:

Dimension d = 3:
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Why does this work?

Exploit the additional smoothness given by the assumption on the mixed derivatives of
function u

The hierarchical basis is a key ingredient:

I Exploits smoothness by having “semi-global” support (i.e., function is smoother,
so we can reach far over the domain and know it won’t change too much),

I Introduced a hierarchy/multilevel and the coe�cients in this hierarchy/multilevel
basis decay fast (! multigrid, multilevel Monte Carlo)

(Logarithmic dependence can be avoided if measure error in energy norm)

Details: Bungartz, Griebel, Acta Numerica, 2004
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(Logarithmic dependence can be avoided if measure error in energy norm)

Details: Bungartz, Griebel, Acta Numerica, 2004
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SG: Combination technique

Formally, sparse grids are superpositions of coarser full grids
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Equidistantly spaced nodes

hi = h =
b � a

n
, ti = a+ ih , i = 0, . . . , n

then quadrature formulas are called the Newton-Cotes formulas with weights

�in =
1

b � a

Z b

a

Y

i 6=j

t � ti

ti � tj
dt =

1

n

Z n

0

Y

i 6=j

s � j

i � j
ds

These weights are independent of the interval boundaries a and b and can be
pre-computed once and for all:

9.2. Newton-Cotes Formulas 275 

the constructed quadrature formulas are called Newton-Cotes formulas. 
The term for the corresponding Newton-Cotes weights Ain simplifies via 
the substitution s := (t - a)/h: 

1 lb n t - tj 1 in n S - j 
Ain = -- II-- dt= - II-- ds. 

b - a a j=O ti - tj n 0 j=O i - j 
j#i j#i 

The weights Ain, which are independent of the interval boundaries, only 
have to be computed once, respectively, given once. In Table 9.1, we have 
listed them up to order n = 4. The weights, and therefore also the quadra-
ture formulas, are always positive for the orders n = 1, ... , 7. Higher orders 
are less attractive, since starting with n = 8, negative weights may occur. 
In this case, the Lebesgue constant is the characteristic quantity (9.3), up 
to the normalization factor (b - a)-I. Note that we have already encoun-
tered the Lebesgue constant in Section 7.1 as the condition number of the 
polynomial interpolation. 

Table 9.1. Newton-Cotes weights Ain for n = 1, ... ,4. 

n AOn , ... , Ann Error Name 

1 1 1 1" (,) Trapezoidal rule "2 "2 

2 1 4 1 Simpson's rule, Kepler's barrel rule (; (; (; 

3 1 3 3 1 3:05 f(4)(,) Newton's 3/8-rule 8 8 8 8 

4 7 32 12 32 7 f(6)(,) Milne's rule 90 90 90 90 90 

In Table 9.1, we have already assigned the respective approximation er-
rors to the Newton-Cotes formulas (for sufficiently smooth integrands), 
expressed as a power of the step size h and a derivative at an intermediate 
position, E [a, b]. Observe that for the even orders n = 2,4, the power 
of h and the degree of the derivative always jump by 2. In the following 
we shall verify these estimates for the first two formulas, by which one can 
already see the principle for odd n (see Exercise 9.3). 

Before starting, we recall a not so obvious variant of the mean value theo-
rem, which we shall encounter repeatedly in the proof of the approximation 
statements. 

Lemma 9.5 Let g, h E C[a, b] be continuous functions on [a, b], where g 
has only one sign, i.e., either g(t) 2: 0 or g(t) ::; 0 for all t E [a, b]. Then 

lb h(t)g(t) dt = h(,) lb g(t) dt 

for some, E [a, b]. 

2 / 110

c



Generic rule
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For n 1 pairwise distinct nodes to th
there exists one andonly one quadratus rule

f b a ri fail

which is exact for PEIP
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Newton-Cotes formulas continued

Given fixed nodes t0, . . . , tn, use polynomial approximation

f̂ = Pf (t|t0, . . . , tn) =
nX

i=0

f (ti )Lin(t)

with Lagrange polynomials L0n, . . . , Lnn

Thus:

Î (f ) = (b � a)
nX

i=0

�inf (ti ),

where

�in =
1

b � a

Z b

a
Lin(t) dt
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Gauss-Christo↵el quadrature (cont’d)
Can we say something about the nodes ⌧0n, . . . , ⌧nn?

Theorem: For n 2 N, consider nodes ⌧0n, . . . , ⌧nn. For an n, define Î as

În(f ) =
nX

i=0

�inf (⌧in)

and let it be exact for polynomials p 2 P2n+1

În(p) =

Z b

a
!(t)p(t)dt .

Then, the polynomials {Pn} given by

Pn+1(t) = (t � ⌧0n) · . . . · (t � ⌧nn) 2 Pn+1

are orthogonal with respect to the scalar product induced by !(t)
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Gauss-Christo↵el quadrature (cont’d)

Therefore, the nodes ⌧in have to be roots of pairwise orthogonal polynomials {Pj} of
degree deg(Pj) = j

For a given !, we already know that the set of orthogonal polynomials {Pj} is unique
(if leading coe�cient is 1)

We also know that the roots of these polynomials are real and have to lie in (a, b)
For each ! and n 2 N, this gives us a unique set of nodes, namely the roots of the
corresponding orthogonal polynomial Pn+1

We thus have fixed n + 1 degrees of freedom so far...
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What do we know about the weights for fixed t0, . . . , tn when we want to integrate
exactly polynomials up to degree n?

Because we want to be able to exactly integrate polynomials up to degree 2n + 1, we
already know that to even achieve exactness up to degree n, the weights are fixed for
given nodes t0, . . . , tn:

�in =
1

b � a

Z b

a
Lin(t)dt , Lagrange poly Lin(⌧jn) = �ij

(“For n+ 1 pairwise distinct nodes, the exists only one quadrature formula that exactly
integrate polynomials up to degree n.”)

Theorem: Let ⌧0n, . . . , ⌧nn be the roots of the (n + 1)st orthogonal polynomial for the
weight !. Then any quadrature formula Î is exact for polynomials up to order n if and
only if it is exact up to order 2n + 1.

Proof
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Recap: Polynomial interpolation in Newton basis

The Newton basis !0, . . . ,!n is given by

!i (x) :=
i�1Y

j=0

(x � xj) 2 Pi .

Would like to find coe�cients c0, c1, . . . , cn of interpolating polynomial in Newton basis

Pf (x |x0, . . . , xn) = c0!0(x) + c1!1(x) + · · ·+ cn!n(x)
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Today

Last time

I Function approximation in higher dimensions

I Quadrature in higher dimensions

Today

I Monte Carlo

Announcements

I Homework 7 is posted and due Mon, Dec 9 before class (1 week)

I Next week, Mon Dec 9, recap of important topics—highly recommended!

I Email me by Wed, Dec 4 if you need special accommodations for the final exam
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There are many opportunities for asking questions

Mon, Dec 2 o�ce hour

Wed, Dec 4 lecture (virtual) [not part of final exam]

Fri, Dec 6 o�ce hour (grader)

Mon, Dec 9 recap and Q&A

Mon, Dec 9 o�ce hour

Wed, Dec 11 extra o�ce hour, 6.10pm ET (WWH 421)
(all HWs graded; no HW re-grading after Thu, Dec 12)

Mon, Dec 16 final exam
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I Double check that all homeworks are entered correctly in Brightspace

I Will go through example final exam problems next week

I Expect to write some code in the final exam

I Be in the room 10min early on the day of the final exam (most likely room
changed to what is in Albert now)
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High-dimensional interpolation and quadrature
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SG: Hierarchical basis cont’d

The bases for spaces W1,W2 and W3
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SG: Hierarchical basis cont’d

Obtain

Vn =
nM

l=1

Wl ,

so that there is a unique representation for each u 2 Vn as

u =
nX

l=1

wl =
nX

l=1

X

i2Il

vl ,i�l ,i

Coe�cients vl ,i in case of interpolation  visualize on board

The coe�cients vl ,i are hierarchical di↵erences

vl ,i = u⇤(xl ,i )�
u(xl ,i�1) + u(xl ,i+1)

2

where u⇤ is the function to be interpolated
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Consider the diagonal cut L(1)n = {l : |l |1  n + d � 1} and the sparse grid space

V (1)

n =
M

|l |1n+d�1

Wl

Here is an example of a sparse grid
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SG: Properties of sparse grids

The number of grid points of a sparse grid grows as O(2nnd�1) in contrast to O(2nd)
of a full grid

If u has (L2-)bounded mixed derivatives up to order 2d , then

ku � u(1)n k2 2 O(2�2nnd�1) ,

whereas a full-grid space achieves

ku � unk2 2 O(2�2n)

Sparse-grid spaces achieve slightly worse error than full-grid space but drastically
reduced points in higher dimensions d
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Comparing the number of grid points corresponding to full-grid and sparse-grid spaces:

Dimension d = 2:

Dimension d = 3:
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Why does this work?

Exploit the additional smoothness given by the assumption on the mixed derivatives of
function u

The hierarchical basis is a key ingredient:

I Exploits smoothness by having “semi-global” support (i.e., function is smoother,
so we can reach far over the domain and know it won’t change too much),

I Introduced a hierarchy/multilevel and the coe�cients in this hierarchy/multilevel
basis decay fast (! multigrid, multilevel Monte Carlo)

(Logarithmic dependence can be avoided if measure error in energy norm)

Details: Bungartz, Griebel, Acta Numerica, 2004
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SG: Combination technique

Formally, sparse grids are superpositions of coarser full grids
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SG: Combination technique (cont’d)

This works for grids and also for functions (in certain situations)

I interpolation

I quadrature

I solutions of partial di↵erential equations ! limited

) we are interested in quadrature

For quadrature, Smolyak has developed a related approach already in 1963
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SG: Smolyak quadrature - 1D

Set D = [�1, 1] and consider a one-dimensional function f : D ! R and we are
interested in

If =

Z

D
f (x)dx

One-dimensional quadrature rule

Q1

l f =
nlX

i=1

wi f (xi )

with weights w1, . . . ,wnl and points x1, . . . , xnl and

Xl = {xi : 1  i  nl}

Quadrature rules are nested if Xl ⇢ Xl+1
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SG: Smolyak quadrature

Define the di↵erence formula

�k f = (Q1

k � Q1

k�1)f ,

with Q1
0
f = 0. What does the di↵erence formula remind you of?

hierarchical
coe�cients

Smolyak’s quadrature rule is

Qd
l f =

X

|k|1n+d�1

(�1

k1 ⌦ · · ·⌦�1

kd )f ,

where the tensor product of quadrature rules is

(�1

k1 ⌦ · · ·⌦�1

kd )f =

nk1X

i1=1

· · ·

nkdX

id=1

wk1,i1 · · ·wkd ,id f (xk1,i1 , . . . , xkd ,id )
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SG: Smolyak grid w.r.t. Clenshaw-Curtis rule

Left: sparse grid w.r.t. trapezoidal rule (piecewise constant), right: sparse grid
obtained with Clenshaw-Curtis rule
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SG: Alternative representations of Smolyak

A non-hierarchical representation is

Qd
l f =

X

n|l |1n+d�1

(�1)n+d�1�|l |1
✓

d � 1

|l |1 � n

◆
(Q1

l1 ⌦ · · ·⌦ Q1

ld )f

I Non-hierarchical: Can work on regular grids as with combination technique

I Simple to implement

I (Equivalence to hierarchical representation not obvious.)
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Conclusions

I Computations in higher dimensions are typically a↵ected by the curse of
dimensionality, which means that computational costs become exponentially more
expensive as the dimension is increased.

I We have two options in high dimension. The first option is using randomized
methods and Monte Carlo which can circumvent the curse

I The other option is exploiting additional structure in the problem that can help to
circumvent the curse to some extent.

I In case of sparse grids, we can circumvent the curse by assuming additional
smoothness of the function to be interpolated.

I Sparse grids are very useful for quadrature in moderately high dimensions (10 up
to few 100s of dimensions). Quadrature based on sparse grids is sometimes called
Smolyak quadrature.
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Monte Carlo methods and numerical methods
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Known unknowns

NOAA
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No hope to model physics exhaustively
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Rapidly changing dynamics

Kenway, G. K., Martins, J. R., & Kennedy, G. J. (2014). Aerostructural optimization of the Common Research Model configuration. Group

(ADODG), 6(7), 8-9.
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Uncertainties due to data

Figures: Petra, Ghattas, Isaac, Martin, Stadler, et al.
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Intro: Model

Model of system of interest
I Model describes response of system to inputs, parameters, configurations
I Response typically is a quantity of interest
I Evaluating a model means numerically simulating the model
I Many models given in form of partial di↵erential equations

model
input output

Mathematical formulation
f : D ! Y

I Input domain D and output domain Y

I Maps z 2 D input onto y 2 Y output (quantity of interest)
23 / 39



Intro: Model - Navier-Stokes equations

⇢

✓
@u

@t
+ u ·ru

◆
= �rp + µ�u + g

Examples of inputs
I Density ⇢
I Dynamic viscosity µ

Examples of outputs (quantities of interest)
I Velocity at monitoring point
I Average pressure

[Figure: MFIX, NETL, DOE]
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Intro: Model - Di↵usion-convection-reaction flow

@u

@t
= �u � vru + g(u,µ)

Examples of inputs
I Activation energy and pre-exponential factor (Arrhenius-type reaction)
I Temperature at boundary
I Ratio of fuel and oxidizer

Examples of outputs
I Average temperature in chamber
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Intro: Uncertain inputs

Inputs are uncertain

I Measurement errors in boundary conditions

I Manufacturing variations

I Model parameters determined by engineering judgment, etc.

Mathematically formulate uncertain inputs as random variables

Z : ⌦ ! D

Quantify e↵ect of uncertainties in inputs on model outputs

computational
model

input output
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Intro: General sampling-based approach

I Take many realizations of input random variable Z

z1, . . . , zn 2 D

I Evaluate model f at all z1, . . . , zn realizations

y1 = f (z1), . . . , yn = f (zn)

I Estimate statistics from outputs y1, . . . , yn

model
f : D ! Y

input z output y

.

.
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Monte Carlo methods

I Given X1, . . . ,Xn iid random variables that are distributed as X , the basic Monte
Carlo estimator of E[X ] is

X̄n =
1

n

nX

i=1

Xi

I Note that each of the n X1, . . . ,Xn is a random variable, and thus X̄n is a random
variable too

I Thus, it makes sense to consider E[X̄n] and Var[X̄n]

I Once the samples have been drawn/realized, the estimate X̄n is a real number
(here; clash of terminology)
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Monte Carlo estimators

I Unbiasedness of Monte Carlo estimator E[X̄n] = E[X ]

I Variance is Var[X̄n] = �2/n

I With unbiasedness follows

E
h�
X̄n � E[X ]

�2i
= Var

⇥
X̄n
⇤
=

�2

n

The mean-squared error rate is 1/n.
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VR: Control variates

The constant in the MC rate is the variance Var[X ] of the random variable from which
MC samples are being drawn. By designing an equivalent MC approximation with
lower variance, we can reduce the MSE

Auxiliary random variable
Let X be a random variable and Y be a another random variable that is correlated to
X , i.e.,

|⇢(X ,Y )| > 0 .

The (Pearson) correlation coe�cient ⇢(X ,Y ) is defined as

⇢(X ,Y ) =
Cov(X ,Y )p
Var[X ] Var[Y ]

with the covariance

Cov(X ,Y ) = E[(X � E[X ])(Y � E[Y ])]

Control variates exploit the correlation of X and Y to reduce the MSE
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Let X be a random variable and Y be an auxiliary random variable with known E[Y ]
and correlation coe�cient ⇢ = ⇢(X ,Y ). Consider the control variate estimator

✓ = X̄m + ↵(E[Y ]� Ȳm) .

For

↵⇤ = ⇢

s
Var[X ]

Var[Y ]
,

the MSE of the unbiased estimator ✓ of E[X ] is

e(✓) = (1� ⇢2)
Var[X ]

m
.

Proof  board
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What is missing?

Which important point for us (numerical analysis!) does this analysis completely miss?

costs per sample/realization

Need to connect this analysis of Monte Carlo methods to our setting where each
sample entails a numerical computation
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VR: Cost complexity

Let w1 = c(X ) be the costs of sampling X and let w2 = c(Y ) be the costs of sampling
the control variate.  board

Plain Monte Carlo achieves MSE  ✏ with costs

c(✓MC) 
Var[X ]

✏
w1 .

Control variates estimator

c(✓CV) 
Var[X ]

✏
(1� ⇢2)(w1 + w2)

The control variate estimator has lower costs than the plain Monte Carlo estimator if

1� ⇢2 <
w1

w1 + w2

The inequality combines ⇢ and the costs ! cost vs. accuracy trade-o↵ that we know
from numerical analysis
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Example: Control variates (cont’d)

I X ⇠ U(0, 1) and f (x) = 10 sin(x)
I Now consider g(x) = 10(x � x3/6) (Taylor approximation)
I Compute mean E[g(X )] = 10(1/2� 1/24) analytically
I Set

Fi = f (Xi ) , Gi = g(Xi ) , i = 1, . . . ,m

I Set synthetic costs
w1 = 3 , w2 = w1/100

I Measure ⇢(f (X ), g(X )) ⇡ 9.999861330445534e � 01 and Var[f (X )] and
Var[g(X )]

I Control variate estimator

✓ =
1

m

mX

i=1

Fi + ↵⇤

 
E[g(X )]�

1

m

mX

i=1

Gi

!

I Compare MSE of ✓ to plain vanilla Monte Carlo estimator
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Example: Numerical example

10 1 10 2 10 3

costs

10 -6

10 -4

10 -2

10 0
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tim

at
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rho = 0.99999

plain MC
control variates
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VR: Control variates with unknown expectation

Assumed we know E[g(X )], i.e., the mean of the control variate. Typically unavailable;
for example if g is an approximation of f . Instead, now E[g(X )] is unknown and needs
to be estimated. We obtain the control variate estimator

✓CV = F̄m1
+ ↵( Ḡm2|{z}

estimates E[G ]

�Ḡm1
)

I There are two m’s now: m1 plays the same role as m before; additionally have m2

which gives the number of samples used to estimate the mean E[G ] of the control
variate

I Is this an unbiased estimator of E[F ]?
I Optimal choice of ↵?

I Optimal choice of number of samples m1 and m2 to achieve MSE ✏ with minimal
costs?

 board
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VR: Properties of control variate estimator

Consider two functions f and g with evaluation costs w1 and w2, respectively. Assume w1 > w2. Consider the

random variable X and set ⇢ = ⇢(f (X ), g(X )) and let �F and �G be the standard deviation of f (X ) and g(X ),

respectively. Set

↵⇤
= ⇢

�F

�G
, r⇤ =

s
w1⇢2

w2(1� ⇢2)

The estimator

✓ =
1

m⇤
1

m⇤
1X

i=1

f (Xi ) + ↵⇤

0

@ 1

m⇤
2

m⇤
2X

i=1

g(Xi )�
1

m⇤
1

m⇤
1X

i=1

g(Xi )

1

A

is unbiased w.r.t. E[f (X )] if X1, . . . ,Xm1
,Xm1+1, . . . ,Xm2

⇠ X and achieves an MSE e(✓)  ✏ with costs

c✏(✓) 
�2

F

✏

✓
1�

✓
1�

1

r⇤

◆
⇢2

◆
(w1 + r⇤w2)

if

m⇤
1 =

�2

F

✏

✓
1�

✓
1�

1

r⇤

◆
⇢2

◆
,m⇤

2 = m⇤
1 r⇤ .

The m⇤
1
,m⇤

2
,↵⇤ are optimal in the sense that they minimize the costs c✏(✓).

Note that control variate reuses samples
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VR: Comparison

Plain vanilla Monte Carlo

c✏(✓) 
�2

F

✏
w1

Control variates if mean of control variate known

c✏(✓) 
�2

F

✏
(1� ⇢2)(w1 + w2)

Control variates if mean of control variate unknown

c✏(✓) 
�2

F

✏

✓
1�

✓
1�

1

r⇤

◆
⇢2
◆
(w1 + r⇤w2)

Notice that the rate with respect to ✏ is the same but the constants change

38 / 39



VR: Example (cont’d)

10 1 10 2 10 3

costs

10 -6

10 -4

10 -2

10 0
es

tim
at

ed
 M

SE
rho = 0.99999

plain MC
CV, known mean
CV, unknown mean
theory
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Today

Last time

I Monte Carlo

Today

I Multi-level Monte Carlo

Announcements

I Homework 7 is posted and due Mon, Dec 9 before class (1 week)

I Next week, Mon Dec 9, recap of important topics—highly recommended!
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What follows won’t be on the final exam

41 / 53



Monte Carlo + Numerical Analysis

statistical
properties

properties of
deterministic 

PDE solves

uncertainty
quantification

I Bounding costs instead of, e.g., number of samples

I Need to take into account numerical PDE solver costs
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Level

Instead of describing the discretization with the number of degrees of freedom N, we
describe it by the level ` 2 N

I Level ` 2 N, mesh width h = 2�`

I Number of degrees of freedom in
1-dimensional spatial domain
N = 2` + 1 2 O(2`)

I In 2-dimensional spatial domain
N = (2` + 1)2 2 O(4`)

I In 3-dimensional spatial domain
N = (2` + 1)3 2 O(8`)

I General N 2 O(s`) with s 2 N
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A first analysis of MC in the context of UQ

The following summary follows the analysis in [Cli↵e et al., 2011].

To estimate the expectation E[Q] of a (random) quantity of interest Q, assume only
approximations Q` ⇡ Q are computable, where ` 2 N is a discretization level such that

lim
`!1

E[Q`] = E[Q] .

More precisely, we assume the error converges in mean (in distribution) with a rate
↵ > 0

|E[Q � Q`]| . s�`↵ ,

where . means up to constants independent of ` and ↵.

With increasing `, the costs of solving the corresponding system may increase

c(Q`) . s`� , � > 0
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A first analysis of MC (cont’d)

I Let Q̄` be an unbiased estimator of E[Q`]
I Summary:

I Q is the QoI that is unavailable (“continuous solution of PDE solution”)
I Q` is the approximation of Q (“numerical approximation”)
I E[Q] is what we want to estimate (“no numerical error; no statistical error”)
I E[Q`] is mean of Q` (“no statistical error”)
I Q̄` is an unbiased estimator of E[Q`] (“Monte Carlo estimator of E[Q`]”)

I The mean-squared error (MSE) of Q̄` is

E[(Q̄` � E[Q])2] = Var[Q̄`]| {z }
variance

+E[Q` � Q]2| {z }
bias

I Measure bias w.r.t. E[Q]
I Bias w.r.t. E[Q`] is zero because Q̄` unbiased by assumption

I How can we control the variance and bias?

I Variance: Improve estimator Q̄` of E[Q`] ! statistics
I Bias: Improve accuracy of Q` w.r.t. Q ! deterministic solver
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Cost complexity of basic Monte Carlo

Assume that

I (A0) the variance Var[Q`] is constant w.r.t. `,

I (A1) |E[Q � Q`]| . s�`↵ , ↵ > 0,

I (A2) c(Q`) . s`� , � > 0 .

Consider the Monte Carlo estimator Q̄MC

`,m (=Q̄`,m) of E[Q`] with m 2 N iid copies

Q(1)

` , . . . ,Q(m)

` of Q`. For ✏ > 0, the Monte Carlo estimator Q̄MC

`,m achieves the
mean-squared error (MSE)

E[(Q̄MC

`,m � E[Q])2]  ✏

with costs
c✏(Q̄

MC

`,m ) . ✏�1��/(2↵) .

In terms of the root-mean-squared error (RMSE), the costs are bounded by ✏�2��/↵.
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Improving plain Monte Carlo: Variance reduction

Convergence of plain vanilla Monte Carlo

E[(Q̄MC

`,m � E[Q])2] =Var[Q̄MC

`,m ] + (E[Q̄MC

`,m � E[Q])2

=
Var[Q`]

m| {z }
sampling error (variance)

+ (E[Q` � Q])2| {z }
model error (bias)

I Convergence rate of plain vanilla
Monte Carlo is O(m�1) in MSE

I The constant Var[Q`] plays a critical
role

) it is worthwhile trying to reduce con-
stants ) variance reduction

10 0 10 5 10 10

m

10 -15

10 -10

10 -5

10 0

Va
r[Q

l] m
-1

Var[Q l] = 1e-05
Var[Q l] = 0.001
Var[Q l] = 0.1
Var[Q l] = 10
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MLMC: Multilevel Monte Carlo

I Multilevel Monte Carlo (MLMC) uses control variates in a judicious way
I First ideas for high-dimensional quadrature by Heinrich, 2000

Heinrich S. (2001) Multilevel Monte Carlo Methods. In: Margenov S.,
Waśniewski J., Yalamov P. (eds) Large-Scale Scientific Computing. LSSC
2001. Lecture Notes in Computer Science, vol 2179. Springer, Berlin, Heidel-
berg

I Independently discovered and popularized by Giles, 2007 in the context of
stochastic di↵er-
ential equations in mathematical finance (one of the most influential papers in UQ!)

Michael B. Giles, Multilevel Monte Carlo Path Simulation, Operations Research
2008 56:3, 607-617

I First papers in the context of UQ
I Cli↵e, K.A., Giles, M.B., Scheichl, R. et al. Comput. Visual Sci. (2011) 14: 3.

https://doi.org/10.1007/s00791-011-0160-x
I Barth, A., Schwab, C. & Zollinger, N. Numer. Math. (2011) 119: 123.

https://doi.org/10.1007/s00211-011-0377-0
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MLMC: Multilevel estimator

I Key idea: use realizations of Q` on a hierarchy of di↵erent levels, i.e., for di↵erent
values ` = 1, . . . , L of the discretization parameter (! recall sparse grids)

I Make the following decomposition (telescoping sum)

E[QNL ] = E[QN0
] +

LX

`=1

E[QN`
� QN`�1

] =
LX

`=0

E[Y`] ,

where N0 2 N and N` = sN`�1 for ` = 1, . . . , L and s 2 N \ {1} and

Y0 = QN0
, Y` = QN`

� QN`�1

I Given (unbiased) estimators Ȳ`,m`
for E[Y`], the estimator

Q̄ML

L,m =
LX

`=0

Ȳ`,m`

is a multilevel estimator of Q with m = [m0, . . . ,mL]
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MLMC: Multilevel Monte Carlo estimator

I All estimators Ȳ`,m`
sampled independently, then

Var[Q̄ML

L,m] =
LX

`=0

Var[Ȳ`,m`
]

I If each Ȳ` is a plain Monte Carlo estimator

Ȳ0,m0
=

1

m0

m0X

i=1

Q(i)
N0

, Q(i)
N0

⇠ QN0
,

and

Ȳ`,m`
=

1

m`

mX̀

i=1

Q(i)
N`

� Q(i)
N`�1

,

one obtains a multilevel Monte Carlo estimator
I The MSE of the multilevel Monte Carlo estimator is

E
⇣

Q̄MLMC

L,m � E[Q]
⌘2�

=
LX

`=0

Var[Y`]

m`
+ E[QL � Q]2
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MLMC: Variance reduction

E
⇣

Q̄MLMC

L,m � E[Q]
⌘2�

=
LX

`=0

Var[Y`]

m`
+ E[QL � Q]2

Why do we have hope for variance reduction (=lower cost for same variance)?

I As we coarsen the problem, the cost per sample decays rapidly from level to level
! observed this already in the control variates example ! sampling gets cheaper
and cheaper

I Since QN`
! Q, we have Var[Y`] = Var[QN`

� QN`�1
] ! 0 going to 0 fast for

` ! 1, allowing for smaller and smaller sample sizes m` to estimate the
di↵erence QN`

� QN`�1
on finer and finer (more and more expensive) levels.
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MLMC: Cost complexity

Theorem (Giles 2008; Cli↵e, Giles, Scheichl, Teckentrup 2011)

Let Ȳ` = ȲMC
`,m`

and suppose that there are positive constants ↵,�, � > 0 such that

↵ �
1

2
min(�, �) and

I (A1) |E[QN`
� Q]| . N�↵

`

I (A2) Var[Y`] . N��
`

I (A3) w` . N�
` .

Then, for any
p
✏ < e�1, there exist a value L 2 N and m = [m0, . . . ,mL] such that

E
h⇣

Q̄MLMC
L,m � E[Q]

⌘i
< ✏ ,

and

c✏(Q̄
MLMC
L,m ) .

8
><

>:

✏�1 if � > �, ,

✏�1(log ✏1/2)2 , if � = � ,

✏�1�(���)/(2↵) , if � < � .
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MLMC: Interpreting the cost complexity

For idealized flows through a porous medium (Darcy flow):
I Numerically observed deterministic error ) rate ↵ ⇡ 3/8
I Numerically observed cost/sample ) rate � ⇡ 1

Consideration generalization of the problem in d = 1, 2, 3 dimensional spatial domain.
It has been observed ↵ ⇡ 3/4d�1, � ⇡ 1,� ⇡ 2↵.

Using the complexity theorems of MC and MLMC and the costs per sample ✏��/(2↵)

obtain
d MC MLMC per sample on finest level
1 O(✏�5/3) O(✏�1) O(✏�2/3)
2 O(✏�7/3) O(✏�4/3) O(✏�4/3)
3 O(✏�3) O(✏�2) O(✏�2)

MLMC costs asymptotically the same as one deterministic solve to accuracy ✏ for
d > 1 ! “UQ is for free”
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Today

Today

↭ Review of some important topics

Announcements

↭ Be 10min earlier in the room for the final exam

↭ Mind that the room has been updated; check Albert

↭ Double check that all homeworks are entered correctly in brightspace
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There are many opportunities for asking questions

Mon, Dec 2 o!ce hour

Wed, Dec 4 lecture (virtual) [not part of final exam]

Fri, Dec 6 o!ce hour (grader)

Mon, Dec 9 recap and Q&A

Mon, Dec 9 o!ce hour

Wed, Dec 11 extra o!ce hour, 6.10pm ET (WWH 421)
(all HWs graded; no HW re-grading after Thu, Dec 12)

Mon, Dec 16 final exam
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↭ Condition and stability

↭ Linear systems and linear least-squares problems

↭ Eigenproblems

↭ Iterative methods for linear systems and nonlinear systems

↭ Interpolation

↭ Quadrature
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Condition of a problem

↭ Consider a generic problem: given F and data/input x , find output y such that

F (x , y) = 0

↭ Let’s assume there is a unique solution so that we can write

y = f (x) ,

for a function f in the following

↭ Well-posed: Unique solution + If we perturb the input x a little bit, the solution y

gets perturbed by a small amount.

↭ Otherwise, the problem is ill-posed; no numerical method can help with that.
(What should we do in such a situation?

↫ change the problem)
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Condition of a problem (cont’d)
↭ Absolute condition number at x is

ωabs = lim
ω→0

sup
↑x↓x̂↑↔ω

→f (x)↑ f (x̂)→

→x ↑ x̂→

↭ Relative condition number at x is

ωrel = lim
ω→0

sup
↑x↓x̂↑↔ω

→f (x)↑ f (x̂)→/→f (x)→

→x ↑ x̂→/→x→

↭ If f is di”erentiable in x , then

ωabs = →f
↗(x)→ ωrel =

→x→

→f (x)→
→f

↗(x)→ ,

where →f
↗(x)→ is the norm of the Jacobian f

↗(x) in the operator norm

→A→ = sup
x ↘=0

→Ax→

→x→
= sup

↑x↑=1
→Ax→
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Revisiting stability

An algorithm f̃ for a problem f is backward stable if for each x ↓ X we have
f̃ (x) = f (x̃) for an x̃ with

→x̃ ↑ x→

→x→
↓ O(u) ,

where u is the roundo” unit

↭ Recall that, loosely speaking, the symbol O(u) means “on the order of the
roundo” unit.”

↭ By allowing u ↔ 0 (which is implied here by the O), we consider an idealization
of a computer (in practice, u is fixed). So what we mean is that the error should
decrease in proportion to u or faster.
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Stability + condition

Suppose a backward stable algorithm is applied to solve a problem f : X ↔ Y with
relative condition number ω. Then, the relative errors satisfy

→f̃ (x)↑ f (x)→

→f (x)→
↓ O(ω(x)u) .
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Problem 1: Show that ε(A) ↗ →A→ for any induced matrix norm, where ε(A) is the
spectral radius of A (the largest absolute eigenvalue).
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Solving systems of linear equations
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↭ For any square (regular or singular) matrix A, partial (row) pivoting ensures
existance of

PA = LU

where P is a permutation matrix

↭ Furthermore, pivoting (w.r.t. max |aij |) leads to a backward stable algorithm.

↭ Once an LU factorization is available, solving a linear system is cheap:

Ax = LUx = L(Ux) = Ly = b

or
PAx = LUx = L(Ux) = Ly = Pb

↭ Solve for y using forward substitution

↭ Solve for x by using backward substitution Ux = y
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Recap: Costs
For forward [backward] substitution at step k there are ↘ k [(n ↑ k)] multiplications
and subtractions plus a few divisions. The total over all n steps is

n∑

k=1

k ↓ O(n2)

↫ the number of floating-point operations (FLOPs) scales as O(n2)

For Gaussian elimination, at step k , there are ↘ (n ↑ k)2 operations. Thus, the total
scales as

n∑

k=1

(n ↑ k)2 ↓ O(n3)

Summary:
↭ Directly applying Gaussian elimination (=LU + fwd/bwd) scales as O(n3)
↭ Computing LU decomposition scales as O(n3)
↭ Forward/backward substitution scales as O(n2)
↭ LU + forward/backward scales as O(n3) ↫ can reuse LU for other b
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Linear least-squares

Consider non-square matrices A ↓ Rm≃n with m ≃ n and rank(A) = n. Then the
system

Ax = b

does, in general, not have a solution (more equations than unknowns). We thus
instead solve a minimization problem

min
x

→Ax ↑ b→
2 = min

x
#(x)
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Linear least-squares problems

Now for the least-squares problem →Ax ↑ b→2. The relative condition number ω in the
Euclidean norm is bounded by

↭ With respect to perturbations in b:

ω ↗
ω2(A)

cos(ϑ)

↭ With respect to perturbations in A:

ω ↗ ω2(A) + ω2(A)
2 tan(ϑ)

Small residual problems, small angle ϑ cos(ϑ) ↘ 1, tan(ϑ) ↘ 0: behavior similar to
linear system.
Large residual problems, large angle ϑ cos(ϑ) ⇐ 1, tan(ϑ) ↘ 1: behavior very di”erent
from linear system because ω2(A)2 shows up
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One would like to avoid the multiplication A
T
A (normal equations) and use a suitable

factorization of A that avoids solving the normal equation directly:

A = QR =
[
Q1,Q2

] [R1

0

]
= Q1R1,

where Q ↓ Rm≃m is an orthonormal matrix (QQT = I ), and R ↓ Rm≃n consists of an
upper triangular matrix and a block of zeros.
How can the QR factorization be used to solve the least-squares problem?

min
x

→Ax ↑ b→
2 = min

x
→Q

T (Ax ↑ b)→2 = min
x

→

[
b1 ↑ R1x

b2

]
→
2,

= min
x

→b1 ↑ R1x→
2 + →b2→

2

where Q
T
b =

[
b1

b2

]
.

Thus, the least squares solution is x = R
↓1

b1 and the residual is →b2→.
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factorization of A that avoids solving the normal equation directly:

A = QR =
[
Q1,Q2

] [R1

0

]
= Q1R1,

where Q ↓ Rm≃m is an orthonormal matrix (QQT = I ), and R ↓ Rm≃n consists of an
upper triangular matrix and a block of zeros.
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Problem 2: What is the following algorithm doing when applied to an m ⇒ n matrix A

and is it a good idea to use it?

for j = 1, . . . , n

↭ vj = A:,j

↭ R1:j↓1,j = Q
T
:,1:j↓1A:,j

↭ vj = vj ↑ Q:,1:j↓1R1:j↓1,j

↭ Rjj = →vj→2

↭ Q:,j = vj/Rjj
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↭ Rjj = →vj→2

↭ Q:,j = vj/Rjj

Computes the reduced QR decomposition with Gram-Schmidt. This is not modified
Gram-Schmidt, so the columns in Q can be far from orthogonal.
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Instead of directly computing

v j = aj ↑ (qT
1 aj)q1 ↑ (qT

2 aj)q2 ↑ · · ·↑ (qT
j↓1aj)q j↓1

based on aj , the modified Gram-Schmidt procedure computes v j iteratively

v (1)
j =aj ,

v (2)
j =v (1)

j ↑ q1qT
1 v (1)

j , ”subtract from v (1)
j what is already in q1”

v (3)
j =v (2)

j ↑ q2qT
2 v (2)

j , ”subtract from v (2)
j what is already in q2”

...

v j =v (j)
j = v (j↓1)

j ↑ q j↓1qT
j↓1v

(j↓1)
j

Computing a QR factorization with the modified Gram-Schmidt procedure is stabler
than with the classical Gram-Schmidt procedure. However, even the modified
Gram-Schmidt procedure can lead to vectors q1, . . . ,qn that are far from orthogonal if
the condition number of A is large (see, Golub et al., Matrix Computations, Section
5.2.9)
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Eigenproblems
For a matrix A ↓ Cn≃n (potentially real), we want to find ϖ ↓ C and x ⇑= 0 such that

Ax = ϖx .

Let A ↓ Cn≃n be diagonalizable matrix and ϖ1 be a simple eigenvalue with

|ϖ1| > |ϖ2| ≃ · · · ≃ |ϖn|

Let x0 be an initial guess that is not orthogonal to the eigenspace of ϖ1, then xk

obtained via the iterations

zk+1 = Axk (1)

xk+1 = zk+1/→zk+1→2 (2)

will converge to the normalized eigenvector of A corresponding to ϖ1 for k ↔ ⇓.

This process is called the power method. How did we proof convergence?
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Problem 3: Computing eigenvectors

Problem 3: Starting with p0 = q0 = 1, define the iteration

pn+1 =pn + qn

qn+1 =pn+1 + pn

for n = 0, 1, 2, . . . . The ratio qn/pn converges to
⇔
2 as n ↔ ⇓.

Prove convergence of this algorithm using the power method. I.e., write the problem
as an eigenvalue problem and show that the power method for this eigenvalue problem
converges to an eigenvector and deduce from this eigenvector that qn/pn ↔

⇔
2.

(Hint: det(A) = ad ↑ bc for a 2⇒ 2 matrix with A =

[
a b

c d

]
.)
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Iterative methods for linear systems
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Iterative solution of linear systems
Target problems: very large (n = 105, 106, . . .), A is usually sparse and has specific
properties.

To solve
Ax = b

we construct a sequence
x1, x2, . . .

of iterates that converges fast to the solution x , where xk+1 can be cheaply computed
from {x1, . . . , xk} (e.g., one matrix-vector multiplication).

Thought experiment: If we can compute one iteration with cost O(n) (e.g., one
matrix-vector multiplication with a sparse matrix) and need a constant O(1) number
of iterations to reach desired precision, then we solve Ax = b with costs O(n).
Intuitively, we cannot do better than that because we solve for n quantities and thus
need to touch each at least once.
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Let Q be invertible, then

Ax = b ↖ Q
↓1(b ↑ Ax) = 0

↖ (I ↑ Q
↓1

A)x + Q
↓1b = x

↖ Gx + c = x

Leads to fixed-point iteration
xk+1 = Gxk + c

and with G invertible obtain that x = A↓1b is a stationary point
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Extreme cases for selecting Q
What are two extreme cases for selecting Q (need it to be invertible)?

Choose Q = A
↓1, then our iteration becomes

Ax = b ↖ A
↓1(b ↑ Ax) = 0

↖ (I ↑ A
↓1

A)x + A
↓1b = x

↖ 0+ x = x

and we are done in just a single step

xk+1 = x

Thus, if we “know the solution” (in form of having the inverse A
↓1) then no further

work is needed here because we already did all the work when finding A
↓1
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The other extreme is setting Q = I , this leads to the Richardson method

xk+1 = (I ↑ A)xk + b

We have invested zero costs in finding Q and so we intuitively expect that Q = I will
require high costs in terms of number of iterations to converge in general, if it
converges at all
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Problem 3: Answer the following questions with 1-2 sentence explanations:

↭ What is the problem with the Richardson method and what can we do
about it?

Converges only for limited set of matrices. Use linear combination between new
and previous iterate:

xk+1 = ϱ (Gxk + c)︸ ︷︷ ︸
x →
k+1

+(1↑ ϱ)xk = Gεxk + ϱc ,

where ϱ > 0 is a damping/relaxation parameter. Goal is to choose ϱ such that
ε(Gε) is minimal.

↭ What are other reasonable choices for Q?

Jacobi uses Q = D and Gauss-Seidel uses Q = L+ D, which both can be
computed quickly from A.

↭ What property of A critically influences how quickly these relaxation
methods converge?The spectral radius ε(A) of A
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In the following A is symmetric positive definite.

Formulate solving Ax = b as an optimization problem: Define

f (x) =
1

2
x
T
Ax ↑ b

T
x ,

and minimize
min
x⇐Rn

f (x)

Because A is positive definite, we have f (x) = 0 ↙∝ Ax = b. It is su!cient to look
at the gradient

′f (x) =
1

2
A
T
x +

1

2
Ax ↑ b = Ax ↑ b = ↑r(x) = 0 ↙∝ Ax = b
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[Figure: Kuusela et al., 2009]

The convergence behavior of steepest descent in this context can be poor: we
eventually get arbitrarily close to the minimum but we can always destroy something of
the already achieved when applying the update ↫ can we find better search directions?
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Conjugate gradient method
↭ All methods so far (relaxation, steepest descent) use information about xk↓1 to

get xk . All information about earlier iterations is ignored.

↭ The conjugate gradient (CG) method is a variation of steepest descent that has a
memory.

↭ Let p1, . . . , pk be the directions up to step k , then CG uses the space

x0 + span{p1, . . . , pk} , x0 starting point

to find the next iterate xk and thus

xk = x0 +
k∑

i=1

ςipi

↭ (Recall that steepest descent uses only the search direction
pk = rk↓1 = ↑′f (xk↓1) to find the iterate xk)

30 / 47



Conjugate gradient method
↭ All methods so far (relaxation, steepest descent) use information about xk↓1 to

get xk . All information about earlier iterations is ignored.

↭ The conjugate gradient (CG) method is a variation of steepest descent that has a
memory.

↭ Let p1, . . . , pk be the directions up to step k , then CG uses the space

x0 + span{p1, . . . , pk} , x0 starting point

to find the next iterate xk and thus

xk = x0 +
k∑

i=1

ςipi

↭ (Recall that steepest descent uses only the search direction
pk = rk↓1 = ↑′f (xk↓1) to find the iterate xk)

30 / 47



We want the following

a The search directions p1, . . . , pk should be linearly independent (”we don’t destroy
what we have achieved”)

b We have (”we do the best we can at each step”)

f (xk) = min
x⇐x0+span(p1,...,pk )

f (x)

c The step xk can be calculated easily from xk↓1

We then worked hard to derive the CG algorithm based on these three conditions

What was a critical step in CG?

↫ Gram-Schmidt orthogonalization to find the search
direction
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It can be shown that for k ≃ 1 and ej ⇑= 0, j < k it holds

→ek→A ↗ 2

(√
ω2(A)↑ 1√
ω2(A) + 1

)k

→e0→A

for spd matrices A. ↫ Trefethen & Bau

For steepest descent, if A is spd, we obtained

→x
⇒
↑ xk→A ↗

(
ω2(A)↑ 1

ω2(A) + 1

)k

→x
⇒
↑ x0→A ,

where ∞x , y∈A = x
T
Ay and → · →A =

√
∞·, ·∈A.

We keep finding we are limited by the condition number of A. What can be done
about it (in Numerical Methods II)?

Multigrid, multi-level
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Solving systems of nonlinear equations
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Solving nonlinear equations (“root finding”)
We want to solve the nonlinear equation

f (x) = 0, x ↓ R.

We could also have n < ⇓ equations in n unknowns with f : Rn
↔ Rn

f (x) = 0

In general, we will need an iterative approach that constructs x1, x2, x3, . . . such that

lim
k→⇑

xk = x
⇒ ,

with f (x⇒) = 0.

Reformulation as fixed point method so that x⇒ is fixed point

x
⇒ = #(x⇒)
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Let F : Rn
↔ Rn, n ≃ 1 and solve

F (x) = 0.

Truncated Taylor expansion of F about starting point x0:

F (x) ↘ F (x0) + F
↗(x0)(x ↑ x0).

Hence:
x1 = x0

↑ F
↗(x0)↓1

F (x0)

Newton iteration: Start with x0
↓ Rn, and for k = 0, 1, . . . compute

F
↗(xk)$xk = ↑F (xk), xk+1 = xk +$xk

Requires that F ↗(xk) ↓ Rn≃n is invertible.
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Problem 4: Answer the following questions with explanations of 1-2 sentences and/or proofs

↭ Describe two key requirements for Newton to converge quadratically.

Need F
→(x) invertible and starting point x0 close to solution x

↑

↭ You have implemented Newton in Matlab and tried it on two starting points x0 and y0 for
your problem. Newton converges for both but to a di”erent solution. Does this mean
there something wrong with your implementation?

No, can converge to local optima

↭ You want to solve F (x) = 0 but you have access only to a scrambled F through
(Gk ∋ F ) = Gk(F (x)), where k is the Newton iteration, and thus you solve a di”erent
problem Gk(F (x)) = 0 in each iteration. Derive another condition on Gk than Gk being
the identity so that Newton converges to x

↑ with F (x↑) = 0 in a neighborhood of x↑.
Provide a proof.

Newton is a!ne invariant. So as long as Gk is linear and the corresponding matrix is
regular, it does not influence the Newton iterations. Proof is the same as for the a!ne
invariance that we did in class.
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Problem 4: Answer the following questions with explanations of 1-2 sentences and/or proofs

↭ Describe two key requirements for Newton to converge quadratically.
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↑
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↭ You want to solve F (x) = 0 but you have access only to a scrambled F through
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problem Gk(F (x)) = 0 in each iteration. Derive another condition on Gk than Gk being
the identity so that Newton converges to x

↑ with F (x↑) = 0 in a neighborhood of x↑.
Provide a proof.
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Interpolation
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Polynomial interpolation
Consider n + 1 pairs (xi , yi ), i = 0, . . . , n of a function f with

yi = f (xi )

Let now Pn be the set of all polynomials up to degree n over R so that we have for all
P ↓ Pn

P(x) = anx
n + an↓1x

n↓1 + · · ·+ a1x + a0 , an, . . . , a0 ↓ R

We would like to find a P ↓ Pn such that

P(xi ) = yi , i = 0, . . . , n

Theorem: Given n + 1 points (xi , yi ) with pairwise distinct x0, . . . , xn, there exists a
unique polynomial P ↓ Pn such that

P(xi ) = yi , i = 0, . . . , n
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Lagrange basis
The Lagrange polynomials L0, . . . , Ln ↓ Pn are uniquely defined for distinct x0, . . . , xn

Li (xj) = φij , Li ↓ Pn .

Lagrange polynomials up to order n = 4 for equidistant x0, . . . , x4. [Figure: Deuflhard]
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The corresponding explicit formula is

Li (x) =
n∏

j=0
j ↘=i

x ↑ xj

xi ↑ xj
, i = 0, . . . , n

What are the coe!cients an, . . . , a0 so that P(xi ) = yi for i = 0, . . . , n?

P(x) =
n∑

i=0

yiLi (x)

because

P(xj) =
n∑

i=0

yiLi (xj) =
n∑

i=0

yiφij = yj

If we have the basis L0, . . . , Ln, we obtain the polynomial P for free but the cost of
evaluating the polynomial is too high for practical computations
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Polynomial interpolation in Newton basis

The Newton basis ϱ0, . . . ,ϱn is given by

ϱi (x) :=
i↓1∏

j=0

(x ↑ xj) ↓ Pi .

Would like to find coe!cients c0, c1, . . . , cn of interpolating polynomial in Newton basis

Pf (x |x0, . . . , xn) = c0ϱ0(x) + c1ϱ1(x) + · · ·+ cnϱn(x)

The leading coe!cient an of the interpolation polynomial

Pf (x |x0, . . . , xn) = anx
n + · · ·+ a0

is called the n-th divided di!erence, [x0, . . . , xn]f := an.
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The divided di”erences are the coe!cients c0, . . . , cn: The interpolation polynomial
Pf (·|x0, . . . , xn) for x0 ↗ x1 ↗ · · · ↗ xn is given by

P(x) =
∑n

i=0
[x0, . . . , xi ]f ϱi (x).

The following recurrence relation holds for xi ⇑= xj :

[x0, . . . , xn]f =
([x0, . . . , x̂i , . . . , xn]f ↑ [x0, . . . , x̂j , . . . , xn]f )

xj ↑ xi

which is helpful to compute the divided di”erences
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Problem 5: Compute the polynomial p with p(0) = 2, p(1) = 3, p(3) = 0 in the
Newton basis
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Newton-Cotes formulas for quadrature
Given fixed nodes t0, . . . , tn, use polynomial approximation

f̂ = Pf (t|t0, . . . , tn) =
n∑

i=0

f (ti )Lin(t)

with Lagrange polynomials L0n, . . . , Lnn

Thus:

Î (f ) = (b ↑ a)
n∑

i=0

ϖinf (ti ),

where ϖin = 1
b↓a

 b
a Lin(t) dt ↫ weights are unique

Quadrature formulas defined in this way are exact for polynomials P ↓ Pn of degree
less than or equal to n

Î (P) = I (Pn(P)) = I (P) , for all P ↓ Pn
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Trapezoidal sums
To avoid poorly conditioned problems, let us split the integration interval [a, b] into n

sub-intervals [ti↓1, ti ] , i = 1, . . . , n. Then consider the rule

Î (f ) =
n∑

i=1

Î
ti
ti↑1

(f ) ,

where Î
ti
ti↑1

is a quadrature formula on the interval [ti↓1, ti ].
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We have seen already the trapezoidal sum with h = (b ↑ a)/n

T (h) =
n∑

i=1

Ti = h

(
1

2
(f (a) + f (b)) +

n↓1∑

i=1

f (a+ ih)

)

that has error

T (h)↑

 b

a
f =

(b ↑ a)h2

12
f
↗↗(↼) , ↼ ↓ [a, b]

↫ we can increase n (and thus decrease h) to reduce the error without increasing the
degree of the underlying polynomial

46 / 47



Conclusions

↭ This was a very selective review of the topics that we covered!

↭ Be prepared to answer True/False questions to show your basic understand of
topics that we discussed.

↭ Be prepared to answer questions that require 1-2 sentence explanations or short
proofs.

↭ You should be able to do quick calculations such as, e.g., approximating an
integral with the trapezoidal rule and computing the LU decomposition of small
matrices and computing eigenvalues of a 2⇒ 2 matrix etc.

↭ Recapping basic linear algebra topics will be beneficial (e.g., computing
determinant of a 2⇒ 2 matrix)
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