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Chapter 1 Basic knowledge

1.1 Calaulation of sets

1.1.1 Intersecton and union

Let € be the universe.

Definition 1.1
If a set contains all elements of A, B, - - -, it is called the union of A, B, - - -, denotedas AUBU - - - . &

The operation of union is commutative and associative.

Definition 1.2

Let A, B, --- be a set sequence. The set, which consists of elements common to A, B, - - - is called the

intersection of A, B - - -, denotedas ANB---(or AB---). &
Definition 1.3

The set which consists of elements in §) but not in A, is called the complement of A, denoted as A°. &

For every element in €2, either it belongs to A or it belongs to A, i.e. x ¢ A < x € A°. Of course,
(A°)¢ = A.
One can verify that
(AUB)=A°NB°, (ANB)°=A°UB°".
Similarly,
(U4 =N4s (1AM =1J4:.
In fact, suppose that z € | J A, then x € A,, for some n. x € (U An)C implies that for all n, = ¢ A,

ie.,x € A%. Thus z € () AS. Hence | A,, is the complement of (] AS,. One can obtain the second equality by
substituting Af, with A,,.

Definition 1.4
The set consists of elements that belong to A but not belong to B is denoted as A — B. &

One can see that

A—B=A—AB = AB® = B° - A", (1.1)

B—A=B—AB=BA® = A° - B,



1.1 Calaulation of sets

AUB=(A-B)+(B—A)+ AB.

Note that the three sets in the right hand side of the last equality are disjoint.

Let A, B and C be three sets. Then one has the commutative law
AUB=BUA, ANB=BnNA; (1.2)
the associative law

(1.3)

and the distributive law

(1.4)
(ANB)UC =(AuC)Nn(BUCQC)
Similarly, for set sequence, one has
By _ (1) (2 3)
U4 =U M5 na; nai’n--),
( J
(Y _ (1) (2) 3)
U(OAJ' )= (45 vag ual o),
i ]
where ji, j2, - is a permutation of 1,2, - - -.
One can use intersection and union to obtain the product of sets, i.e.,
() 4n=41- | (41 - 4,). (1.5)

n>1 n>2

& Exercise 1.1
1. Let A, B be two subsets of the whole set X. If for any £ C X, one has EN A = E U B, prove that
A=X B=2.
2. Let A, B be two sets. Prove that A = B <= there is set C such that
ANC=BnC, AuC=BUC.

Proof. 1. Take £ = X,we get A = X. Take £ = A%, we get B = @.
2. =>. Take C' = A.

<—. From
A=AN(CUCY) =(ANC)U(ANCO),

we know AUC = (AN C) UC. Similarly, BUC = (BN C°)UC. Notethat CN(ANC®) =0 =
CN(BNC°,hence AN C® = BNC¢ implying
A=(ANC)U(ANC) =(BNC)U(BNC°) =B.



1.1 Calaulation of sets

1.1.2 Limit of Set Sequences

Definition 1.5

For a set sequence { A, }, let

BJZUA/C(j:1727"')’ Cj:ﬂAk(j:172a"')v
k=j k=j

then B; O Bj11,C; C Cji1,(j = 1,2,---). We define its lime superior lim A, and its lime inferior
lim A,, as

HAn:kli_{gloBk: ﬁBj: ﬂ (UA1>7

7j=1 n>1 “i>n

- (1.6)
lim A, = lim Cy = chz U (ﬂA)
7=1 n>1 “i>n
When lim A,, = lim A,,, this result is defined as lim A,,. &

In convention, one usually uses “A,, occurs infinitely often” to read lim A,, and “A,, occurs almost always”

to read lim A,,. Condider the following statements:
x € infinitely A,’s <= Vp € N,dn > p, suchthatx € A,
— WeNuze ],

nzp
< x € ﬂ U A,
peEN \n>p

and

x is in all but a finite number of the A,,’s <= dm, € N,Vn > m,,xz € A,
o0
— x € U ( m An> .
mz=>1 \n=mg+1
One can see that lim, lim have nothing to do with the arrangement of A,,. Actually, lim A,, is the collection
of elements that are common to infinitely A,, and lim A,, is the collection of elements that are common to a

‘deleted’” A, (i.e. finite Aj’s are deleted from the original { A, }). Hence, we have lim inf 4,, C limsup A,,.
When {4, } is increasing, i.e., Ay C Ay C--- C A, C---,

lim A, = | ] 4n. (1.7)
n>1
When {A,,} is decreasing, i.e., Ay D Ay D--- DA, D,
lim A,, = ﬂ A,. (1.8)
n>1
Generally, we have
lim A, = Tim U A, lim A, = lim ﬂ A;. (1.9)
>n >n
For the complement, we have
(lim 4,)° = lim 45, (lim 4,)° = lim A5, (1.10)



1.2 Mappings and cardinality

Example 1.1 Let E, F' be two sets. Consider the set sequence

E, kisodd,
AF: k:(1525)5
F, kiseven

then we have
lim A ——E| |F lim A ——E| |F
k1m k ) klm k

Example 1.2 Let {f,(z)} and f(x) be real-valued functions defined on R. Then D, the set of points where

fn(x) dose not converge to f(z) can be described as

oo o 0

p=U N Ule: ) - f@) >

k=1 N=1n=N
Indeed, if f,(z) does not converge to f(z) on xo, for a fixed €9 > 0, for any natural number k, there is
n 2 k such that

}.

| =

|fn($) - f($)| 2 €0,
i.e., T, is in infinitely many FE),’s, where

En(e0) :={z : [fn(z) = f(2)] = €0},
namely, x,, is in the lime superior of { E,(¢¢) }. Moreover, taking union of ¢, the discontinuous points are given
by the union of these lime superiors. Finally, we use a decreasing sequence {¢;, = 1/k} to supersede ¢ and
reach our desired D.
Example 1.3 Let { f,,(x)} and f(x) be real-valued functions defined on R with

lim fu(x) = f(z), zER.
Then for t € R,
{z eR: f(x) <t}

oo 0 0

-NUY ﬂ{xeR:fn(x)<t+%}.

k=1m=1n=m

1.1.3 Direct product of sets

Definition 1.6

Let X,Y be two sets. The collection of all ordered “element pair” (x,y) (where x € X,y € Y) is called
the direct product of X and Y, denoted by X X Y, ie.,

XxY=A{(z,y):x€ X,y e Y},

where (z,y) = (2',y') referstox = ',y = y'. X x X is also denoted by X>.

1.2 Mappings and cardinality

Definition 1.7

Let XY be two non-empty sets. If for every x € X, there is a unique y € Y corresponding to it, we call

this corresponding relation a mapping. If we use f to denote this relationship, we write

f: X—=Y,



1.2 Mappings and cardinality

and f is called a mapping from X to'Y. Now the unique y € Y corresponding to a certain x € X is
called the image of x under f whereas x is called a pre-image of y, denoted by f(x) = y. If for any
y €Y, thereis x € X such that f(x) =y, f is called a surjection of f from X to'Y.

[
For f: X — Y and A C X, we write
flA)={yeY z e Ay=f(z)}
with stipulation f(@) = @. Clearly,
Q) f (U Aa> = J f(4a);
ael acl
i) f (ﬂ Aa> c | rda).
acl acl
For f: X — Y and B C Y, we write
fi(B)={zeX: f(z) e B}
Similarly,
() for By C By, we have f~1(B;) C f~'(By);
(i) f (U Ba> = J ' Ba)(Ba cY,a € );
acl acl
(iif) ! (ﬂ Ba) =) f " (Ba)(Ba CY,a € 1);
ael acl
(v) fH(B) = (f1(B)(BCY).
Definition 1.8
Let f : X — Y. If f satisfies that for x1,x9 € X and x1 # x3,
f(xl) ?é f(:l"?)?
f is called an injection from X to Y. If f is both injective and surjective, f is called a bijection from X
to'Y. Take f bijective from X to 'Y, then for everyy € Y, there is a unique x € X such that f(x) =y,
i.e., there is a mapping
9:Y =X, g(y) ==,
where x is determined by y = f(x). g is then called the inverse of f, denoted as f~1. &
Definition 1.9
The indicator mapping of set A, denoted as 1 4, is defined as
1, ifre A
1a(z):= / (1.11)
0, ife ¢ A.
&

Example 1.4 Show that
Liimsup 4, = limsup 1 4,,, and Lyim inf 4, = liminf 1 4,.
Proof. Observe that both mappings Ly sup 4,, and limsup 1 4,, only take values in {0,1}.
For an arbitrary = € ), consider the following statements:

Limsup4, =1 < z €lim4,
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< VpeN,In >p, suchthatx € A,
<= VpeN,3n >p, suchthat 14, (z) =1

<= limsuply,(z) = 1.

Definition 1.10

Let X be a non-empty set. The collection of all subsets of X (including & and X ) is called the power set

of X, denoted as P(X). Iy

For example, there are 2" elements in the power set of an n-element set £.
Example 1.5(Fixed points of monotonous mappings) Let X be a non-empty set. Let f : P(X) — P(X)
satisfying f(A) C f(B) forany A C B € P(X), then there is T C P(X) such that f(T') = T.

Proof. Consider sets S and T', where
S={A:AeP(X)and A C f(A)},

T = |J A(e P(X)).
AesS
I claim that f(T) =T.
Indeed, from A € S we know that A C f(A). Moreover, A C T, implying that f(A) C f(T), hence we
deduce f(A) C f(T') from A € S, following
UJAcrT), Tcr).
AeS
On the other hand, based on T' C f(T), we know f(T') C f(f(T)), implying f(T') € S thus f(T) C
T. O



Chapter 2 Measure theory and probability spaces

2.1 Algebras and o-algebras

Let E be a set and let A be a set of subsets of E. We say that A is an algebra if for all B, A € A,
e A A c A, andAUB €A
We say that A is a m-system if for all B, A € A,
g e A, andAﬂB e A.

We say that A is a A-system if
e A and B\ A€ Agiven A,Be A, AC B, and
Ae Agiven A, T A, A, € A.
We say that A is a o-algebra if for all A € A, and all sequences { Ay, } nen,
e A A€ A, and UAneA.
neN &

Immediately, we have the following lemmas:

Every o-algebra is an algebra. © ’
Every algebra is a m-system. © ’

Example 2.1 A = {@, E'} is a(n) (0-)algebra, ususally called the trivial (c-)algebra.
Example 2.2 The power set P(E) := {A: A C E} is a(n) (o-)algebra.

The intersection of any collection of (o-)algebras is a(n) (o-)algebra, i.e., if Ay and Ay are both

(o-)algebras, then their intersection A1 N As is also a(n) (o-)algebra.

Definition 2.2

Note that the intersection of any collection of o-algebras is a o-algebra. Thus for any set of subsets C the

Q©

intersection of all the o-algebras (there is at least one) containing C is itself a o-algebra. We call this the
o-algebra generated by C, and we denote it by o(C). Similarly, the intersection of all the algebras (there
is at least one) containing C is itself an algebra. We call this the algebra generated by C, and we denote
it by a(C). To be more precise,

o(C) = ﬂ A;

A is a o-algebra
CCA

aC)= () A
Ais an algebra
CCA




2.1 Algebras and o-algebras

Based on definition 2.2, we know

Proposition 2.1

o (C) is the smallest o-algebra containing C whereas a(C) is the smallest algebra containing C. N
Proposition 2.2
Let C be a set of subsets. Then
a(C) Ca(C), a(a(C))=0(C) N

Proof. The first assertion is trivial since every o-algebra is an algebra. For the second one, first note that
C C a(C) thus o(a(C)) is actually a o-algebra containing C, implying o(C) C o(a(C)). Conversely, since
a(C) C o(C), we know that o(C) is a o-algebra containing a(C). Hence o(a(C)) C o(C). O

Example 2.3 For A C E, letC = {@, A}. Then a(C) = {2, A, A°, E'}.

Proof. We use the shorthand F = {@, A, A¢, E'}. It is easy to observe that F is an algebra containing C. Then
a(C) C F according to the “smallest”, implying a(C) C F.
On the other hand, for every member in F, they are in a(C), implying F C a(C). O

m
Example 2.4 Let m = { Ay, Ay, --- , A, } be a partition of F, i.e., A; N A; = & and U A; = E. Then
i=1
a(m) = {finite disjoint unions of {A;}",}
= {U A; forsome I C {1,2,--- ,m}}.
iel
Example 2.5 Let A be an algebra of R and X : E — R be a set function. Then {X1(4) : A € A} is an
algebra where X 1(A) := {w € F: X(w) € A}.
Example 2.6 Let &, a set of subset of R be £ = {(a,b] : —00 < a < b < 400, (a,+0) : a € R}. Then
al&)={LULU---Ul, I €& ;NI =2,1<1i,jk<n}
Example 2.7(7-systems generating 3(IR)) The followings are four methods to generate B(R):
1. & ={(a,b] : —00 < a < b < 400} is a w-system.
& :={(a,b) : —oo < a < b < 400} is aw-system.
E3:={A CR: Aisopen} is am-system.
. & ={ACR: Aisclosed} is a m-system.

e

Proof. Only for 3. It suffices to show o (&) = 0(&3). (&) C o(&3) is trivial since £y C 3. Conversely, let
A C R be open, and then

o0
A= U(x, — &, Ti + 81')
i=1
implying & C o(&2) and thus 0(&3) C o(&2) according to the “smallest”. O

Exercise 2.1 Let A be an algebraon E. If A ¢ Aand B ¢ A, is it the same for AU B and AN B?
Solution. Let E = {0,1}, A={2,E},A={1},B={0}. ThenANB=@c Aand AUB=FEc A O

Exercise 2.2 Provide a counterexample in which A U B is not an algebra whereas .A and B are both algebras,

seperately.



2.2 Measurable spaces

Solution. Set Q = {0,1,2},A = {0}, B = {0,1}. Then a(4) = {2,Q,A4,A,a(B) = {2,9Q, B, B}.
Note that a(A) Ua(B) = {@,{0},{0, 1}, {2}, {1, 2}, Q} whereas {0,1} N {1,2} = {1} ¢ a(A)Ua(B). O

Exercise 2.3 Let E be an infinite set (countable or not). Let A be the set of subsets of E that are either finite or

with finite complement in E. Prove that A is an algebra but not a o-algebra.

Proof. Take a subset A of E where A € A. If A is finite, its complement must also be in A since (A°)¢ = A.
If A€ is finite, it is the same. This has already implied &, E € A.

Now take another B C E with B € A. If A and B are both finite, A U B is also finite thus in .A. We
finished the proof. Otherwise, assume A is not finite. Note that (AU B)¢ = A°N B¢ s finite since A° is finite.
Hence A U B is indeed in A.

Now assume that N C E. Consider the even number set 2N = {2n,n € N}. If A is a o-algebra, since

each {n} is in A, their countable union 2N must also be in .A. However, neither 2N nor E'\ 2N is finite. U

Exercise 2.4 Let Q = N. Forn > 0, let 7,, = o({{0},---,{n}}), the smallest o-algebra containing all of
{0},--- ,{n}. Show that U F, is not a o-algebra.

n=0
Proof. Let us write down several F,,’s.
Fo={2,N, {0}, N\ {0} };
F1={2,N,{0}, {1}, N\ {0}, N\ {1}, N\ {0, 1} };

We can obsrve that for each natural even number 2k, {2k} € U Fn, whereas 2N does not belong to U Fn. O

n=0 n>0

2.2 Measurable spaces

Definition 2.3

A pair (E,E), where E is a set and £ is a o-algebra on E, is called a measurable space. Given a

measurable space (E,E) each A € & is called a measurable set (or an E-measurable set).

[ )

Recall the set £ in Example 2.6. We have had an understanding of a(£). Now let’s take a look at o(E).

First, one can observe that any single point {a},a € R is in o(&) since {a} = U (a — —,a]. Thus every
n
n>1
countable set (for example, Q and transcendental numbers) is also in o (£). Moreover, every open interval (a, b)

1 1
is in o(€) since (a,b) = | J(a,b — —). Finally, [a,b) is in o/(€) since [a,b) = | J[a,b — =). Thus, o()
n n
n>1 n>1
actually basically contains the “nice subsets of R”, usually it is called the Borel set of R, denoted as B(R).

We will keep using the notation £ to represent the set mentioned in Example 2.6 in this section if not

specifically stated.

Definition 2.4

Let E be a set, and let A be an algebra on E. A set function is any function p : A — [0, 00| with
u(@) = 0. &




2.2 Measurable spaces

Let 11 be a set function. We say that 4 is increasing if, for all A, B € A with A C B,
pu(A) < u(B).
We say that x4 is additive if, for all disjoint sets A, B € A,
u(AU B) = p(A) + p(B).

We say that y is countably additive if, for all sequences of disjoint sets { Ay, }nen C A, with U A, € A, we

neN
have

n((J A) = 3 ulAn).

neN neN

Definition 2.5

Let A be an algebra (of subsets of E). A set function j : A — [0, +00) is called a content if
1. u(@)=0;
2. w is finitely additive. &

Let i : A — [0, +00) be a content. Then for any A, B € A,

- (AU B) 4+ (AN B) = u(A) + u(B);

. IfAC Band p(A) < +oo then u(B\ A) = pu(B) — u(A);
. If A C B, then u(A) < u(B).

. (Subadditivity) If A1, As, -+ , A, € A, then

AN W N~

n

p(l 4) <D (4.
=1

=1

W

. (o-superadditivity) If { A;};. is a sequence of disjoint elements and U A; € A, then
i>1

p(lJA) =D (4.

i>1 i>1

Proof. Only prove 5. By 4, we have for any N € N
N N
p(Uar) < Lt
i=1 i=1
Thus the superadditivity holds by nature since by 3,

) N N
M( U Ai) > M( U Ai> > u(Ay).

i=1 i=1 i—

O
: . [AN(, )]
Example 2.8(Density of R) Let E =R and A = a(£). Forany A € a(&), define u(A) = Lhm e
—00

Then  is finitely additive but not countably additive. In fact, note that

1= p((Jli+1) > > p(li,i+1)) =0.

i>0 i>0

Definition 2.6

Let (E, £) be a measurable space. A countably additive set function p : E — [0, 00| is called a measure;

the triple (E, €, ) is called a measure space. Iy




2.2 Measurable spaces

Example 2.9 Let E = R. Define a set function m : a(£) — [0, 4+o00]. Let m((a, b)) = b — a,m((a,+0)) =

+oo and extend for every A € a(€),i.e., m(A) = Z m(1;) where A = U I; and I;’s are two by two disjoint.
j=1 j=1
Then m is actually a content.

The set function m defined in Example 2.9 is countably additive, i.e., for {A}}72 C a(&) such that Ay’s

are two by two disjoint and A = U Ag C a(E), one has m(A) = Z m(Ag).
k>1 k>1 O

n
Proof. We introduce a new partition of A, i.e., set A = U I;, where every I; € £ is disjoint with each other.

i=1
mg

Moreover, let Ay, = U J; k> where where every J; ;. € £ is disjoint with respect to j with each other. Then

j=1
n n  Mmg
m(A) =Y mL)=> > mI;NJj)
i=1 i=1 j=1 k>1
m +o00
= Z Zm([z N Jj,k) = Z m(Ak)
j=1k>1 k=1
O
Definition 2.7
If W(E) = 1 then p is called a probability measure and (E,E, 1) is called a probability space. The
notation (2, F, P) is often used to denote a probability space. &
Let (E, F, 1) be a measure space. Then if Ay, Ay, --- € F, one has
p(l4) <D pu(4).
i1 i>1 @
n—1
Proof. Define By = A1, By = A3\ A1, , By, = A, \ U Aj;, -+ -. Then the sequence { B;} satisfies:
i=1
o each B;(i =1,2,--- ,n,---) is disjoint with each other;
9 U Bi = A;
i>1
o p(Bi) < pu(A;)
Thus
w(4) = u(J B = 3 (B < 3 (A,
i>1 i>1 i>1
O

Theorem 2.1 (Continuity of measures)

Let 14 be a measure and Ay, As, . .. be an increasing sequence of events, so that A1 C As C A3 C -+,

and write A for their limit:

A=

s

1—00

=1
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Then u(A) = Zlgglo w(A;). Similarly, if By, Ba, ... is a decreasing sequence of events, so that By 2O

BgQBgQ---,then
Bi: lim Bi

1—00

B =

g

1

-
I

satisfies p(B) = lim p (B;).

1—>00

Proof. A= A1 U (A2\A1)U (A3\Az) U--- is the union of a disjoint family of events. Thus, by definition,

pA) = 1 (A) + D i (Aipa \ A)

=1
n—1
= p(Ar) + lim Y [u (A1) — (A7)
=1

n—oo
To show the result for decreasing families of events, take complements and use the first part. O

Definition 2.8

Given a measure space (E,E, 1), p is said to be finite if
u(E) < oo

and p is said to be o-finite if there exist sets { Ey, }nen C E such that p(E,) < oo and U E,=FE.
neN
&

Definition 2.9
An element F' € £ is called p-null if u(F) = 0. A statement @ about points s € E is said to hold almost

everywhere if

F:={se€ E:y(s)isfalse} € E, and p(F) = 0. Iy

#:  Exercise 2.5 Recall the definition of limit of a set sequence {4, }. Prove that u(A4,) — wu(A), where

A = limsup A, = liminf A,.
o0
ﬂ A;. Then { B, } and {C,, } are set sequences decreasing

i=n

oo
Proof. We use the shorthand B,, = U A;and C), =

=n
and increasing, respectively. Moreover,
B :=limsup A, = ﬂ U A, = ﬂ B, = lim B,
n— o0

n=lm>n n=>1
C = liminf 4,, = U ﬂ A = U C, = lim C,,.
n—oo
n=1lm>n n>1

We have that
oo D
Cn=[)4i €Ay C|JA =By,
i=n i=n

and therefore 1 (Cy,) < p(A,) < pu(By). By the continuity of measures, if C, 1 C then p (Cy,) T p(C), and

if B, | Bthen yu(By,) | u(B). If B=C = Athen
p(A) = p(C) < lim p(An) < p(B) = p(A).
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#:  Exercise 2.6 Let m be Lebesgue measure on [0,1],and 0 < a < b<c<d < 1lsuchthata+d > b+ ec.
Give an example of a sequence of sets Ay, Ag, - -+ in [0, 1], such that m(liminf,, A,,) = a,liminf, m(4,) =

b, lim sup,, m(A,) = c and m(limsup,, A,) = d.

2.3 Extension Theorem

Theorem 2.2 (Caratheodory Extension Theorem)

Let F be an algebra on §) and i be a coutabley additive content on (2, F). If u is o-finite, i.e., there is

[e.9]

{A;}2,A; C F such that j1(A;) < +o0 and U A; = Q, then  extend to a measure on (Q,0(F)).
i=1
Q©

Example 2.10(Lebesgue-Stieltjes measure) Let mp : a(€) — R be a set function such that mz((a,b]) =
F(b) — F(a), where F' : R — [0,1] is a right-continuous increasing function with convention F'(+o00) =
sup{F(z),z € R}, F(—o0) = inf{F(z),z € R}. Extend mp to a(€) by finite subadditivity, m r is countable
additive. Hence by the Extension Theorem, mp extends to a measure on (R, o(€)). That is the Lebesgue-
Stieltjes measure.

2.4 Inclusion and exclusion principle

Proposition 2.3 (Inclusion and Exclusion)

P( Aj)ZZP(Aj)— Y P4y NAR) -+ (FD"T YD P(4, 00N 4). QD)

1<j<n J1<j2 J1<<Jjn Py

Proof. Apply induction on n. For the case n = 2, it is trivial that the formula is true. Let m > 2 and suppose

that the result is true for n < m. Then it is true for pair of events, so that

P (n[jl Az) =P (G Az) +P(Am+1) — P{ (0 Az> N Am+1}
=P (G AZ> +P(Am+1) - P{O(Az N Am+1)} .

i=1 i=1
Using the induction hypothesis, we may expand the two relevant terms on the right-hand side to obtain the
result. O

Remarlk If we truncate (2.1), we may obtain several inequalities:
n
I P(EyUE,U---UE,) > > P(E) - Y P(ENE));
i=1 i<y

n
2. P(EyUEU---UE,) <) P(E) - ) P(E;NE;)+ Y P(E:NE;NE).
i=1 i<j i<j<k
Example 2.11(Birthday problem) Consider a group of n people. What is the probability that at least two of
them have the same birthday?

Solution. We start by considering the complement, i.e., working with the condition where no one has the same

13
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birthday. Indeed,
365 x 364 x --- x (366 —n+1)
(365)"
1 1 n—1

:1.(1_%).(1_%).....(1_ 56

If we consider the approximation e™* =~ 1 — z, the final result becomes
o~ 1/365  ,—1/365 o~ (n=1)/365 _ ,—n(n—1)/730_

P(no one has the same birthday) =

).

O

Example 2.12(Matching problem) n people are to pick n hats. What is the probability that no one picks

his/her own hat?

Solution. Still consider complement. Define E; as E; = {the i-th people gets his/her own hat}. We see that

—1)! 1 —7r)!
pEy ="' 1 e agn.nE) < 02D
n! n n!
)" ) P(EINE,N---NE,)
J1<j2<-<jr
I N
From (2.1),
“ 1
_ _1\yr—1 -~
P(EyUEyU---UE,) _;( Dl
If we send n — oo, the result will converge to e~ 'and what we wantis 1 — e L. O

Example 2.13(Texas Holder) In a poker game, what is the probability that you have
1. a straight?
2. afull house?

The numebr you can use are from Ace to 10.

Solution. 1. To get a straight, there will be 10 choices of your starting number. For the five card position,
there will be 4° — 4 choices in total for seperate unit. Thus the probability is
10 - (45 — 4)
Ch

2. The probability is
13-12-C3-C?
G

O]

Exercise 2.7 Six cups and saucers come in pairs: there are two cups and saucers which are red, two white, and
two with stars. If the cups are placed randomly onto the saucers (one each), find the probability that no cup is

upon a saucer of the same pattern.

Solution. We first place the saucers in a certain order, for example, put it as “RRWWSS”. Note that there are
6!

2!-20. 2!
first consider three different cups. That is, for the cup tuple (S, R, W), its position must be either S()R() W ()

= 90 methods to put on the cups. Now to fulfill the reequirement of the problem, a basic idea is to
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or W()S()R(), where () denotes an empty seat. By enumeration or a little calculation, there are 10 ways in
total fulfilling the reequirement. Hence the probability is 10/90 = 1/9. O

Exercise 2.8 You are given that at least one of the events A,., 1 < r < n, is certain to occur, but certainly no
more than two occur. If P(A,) = pand P(A, N As) = ¢, # s, show thatp > 1/n and ¢ < 2/n.

Proof. Since at least one of the A, occurs,

=P(|J 4,) =) P(4) = P(A N A)
r=1 r

r<s
n(n—1)

q.
Hence p > 1/n and n(n—l)q—np—l n—1. O
Exercise 2.9 You are given that at least one, but no more than three, of the events A,,1 < r < n, is certain to

occur, where n > 3. The probability of at least two occuring is 1/2. If P(A4,) = pand P(A, N A5) = q,r # s,
and P(A, N As N A;) = x,7 < s <t. Show thatp > 3/(2n) and ¢ < 4/n.

Proof. Similarly first we have

= IP’(O A) = P(A) = > P(A,NA)+ > P(A,NANA)
r=1 r

= r<s rs<t
n n
=np— 9 q+ 3 x

Since at least two of the event occur with probability —,

%:P (U(AmAs)> :ZIP’(ATHAS)—% S P40 AN AN A).

r<s r<s r<s
t<u

(r,8)#(t,u)
Since no more than three events can occur, in the item A, N A; N Ay N A, there must be a repetition in index

and there are four choices for the repeated one. Hence one deduces that

P(A, N As N AN Ay) = 4P(A, N AN Ay).

= ()2

3 )
Hence o = np — C3x sothatp > 3/(2n). Also C2q = 2np — 5 Whence g < 4/n. O

Substitute back,

2.5 Conditional probability

2.5.1 Definitons

Definition 2.10

Consider an expriemnt carried out many times. For two event A and B, we use N (-) to represent the
number of times that event - occurs. If the event of interest is A and the event B is known or assumed to

have occurred, “the conditional probability of A given B”, or “the probability of A under the condition
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B?”, is usually written as P(A | B) and
N(AnB) N(AnB)/N P(ANB)

P(A | B) = NB)  NP[B)/N  P(B)

Example 2.14(Two kids) Assume that a family has two kids. What is the probability that
1. both kids are boys given at least one of them is a boy?

2. both kids are boys given at least one of them is a boy born on Wedenesday?

Solution. We use the notation
A := {both kids are boys}, C' := {at least one of them is a boy},
D := {at least one of them is a boy born on Wedenesday }
and letter B and G to represent boy and girl, respectively.
1. The full sample space is 2 = {BB,GB, BG, GG} together with A = {BB},C = {BB, BG,GB}.
Thus the result is 1/3.
2. The full sample now becomes €2 = {B;B;,G;B;, B;G;,G;G; : i,j € {1,2,---,7}}, where ¢ and j
denote the birth date (for example, B 51 denote the event that both boys are born on Monday). Now
|A N D| = |{two boys at least one is born on Wedenesday } |
= |{B;Bs, B3B;}| =13
and
|D| = |{at least one of the two boys is born on Wedenesday} |
= |{B3Bj, B;Bs, BsG;,G;Bs}| = 27.
Thus the final is 13/27.

O

2.5.2 Multiplication formula

For events Ay, A, ..., A, satisfying P (AN Ay NN Ap—1) > 0, prove that
]P)(AlﬂAgﬁ---ﬁAn) :]P)(Al)]P)(A2 | AI)P(A?) ‘ Ay ﬂAQ)]P)(An | AlﬂAgﬂ--'ﬂAnfl).
Proof. Check by direct calculation:
P(Al N AQ) P(Al NAsN Ag) P(Al NAsN---N An)
RHS = P(4;) - St e - VAN
(A1) P(A;) P(A; N Ay) P(A NN Ay_y)
=P(A1NAN---NA,).

O

Example 2.15(Can model) There are b black balls and r red balls in a can. Every time a man randomly picks
one ball from the can and then put it back, together with ¢ balls with the same color and d balls with the other
color. We use B; to denote the event “the i-th picked ball is black™ whereas R; denote the event “the j-th picked
ball is red”.
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Consider the scenario where two red and one black appear in three consecutive selected balls. Then by

Multiplication formula,

P(B,RyR3) = P(B1)P(R; | B1)P(Rs | By N Ry)
b r—+d r+d+c
T b4r b+r+ct+d b+r+2e+2d
P<R1B2R3) = P(Rl)P(BQ ’ Rl)P(Rg ‘ RN BQ)
T b+d r+d-+c
Tb4r btr+ctd b+r+2e+2d
P(R1R9B3) = P(R1)P(R2 | R1)P(B3 | R1 N R2)
r r+c b+ 2d

Tbtr btrtcetd birt2+2d
When ¢ > 0,d = 0, the can model becomes the pandemic model, i.e., every time you pick a red (black)

ball, the probability that the next time you still pick a red (blcak) will increase. Under this restriction,
br(r + c)
b+r)b+r+c)b+r+2c)

P(B1RaR3) = P(R1Ba2R3) = P(R1R2B3) =

2.5.3 Total probability formula

For any events A and B such that 0 < P < 1,
P(A) =P(A | B)P(B) +P(A | B°)P(B°).
More generally, let By, By, - - - By, be a partition of Q) such that P(B;) > 0 for all i. Then

P(A) = ZP(A | B;)P(B;).
i=1

Proof. A= (AN B)U (AN B°). This is a disjoint union and so
P(A) =P(ANB) +P(AN B°)
=P(A| B)P(B)+P(A| B°)P(B°).
For the second part, recall the definiton of partition,
A=(ANBy)U(ANBY)
=(ANB)U{AN(BsUB3U---UBy)}
=(ANB)U(ANBy)U---U(ANBy).

Note that A N B;(1 < i < n) is disjoint two by two hence we have the desired. 0

Example 2.16(Lottery) Assume that there will be one “win” in n lotteries. What is the probability that the

second person wins the lottery?

Solution. Let A; denote the event that “the i-th person wins the lottey”, i = 1,2, - - - , n. The desired is P(As).
Note that A; occurs or not will influence Ao, i.e.,
1
Moreover, note that
1 n—1

P(A1) =, PB(45) =

n
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and hence by the total probability formula,

1 n—1 1 1
P(As) =P(A1)P(As | A P(A))P(As | A) = — - =—.
(Az) = B(A1P(4z | A1) +P(ADP(A; | A = -0+ ———— =
O
Similarly, one deduces
1
P(Ag) = P(As) =+ = P(Ay) =
implying that the lottery is fair.
If k(< n) among n lotteries have the reward,
k
P(A1) =P(Ag) =--- =P(4,) = o
2.5.4 Bayes formula
Let By, Bs,--- , B, be a partition of the sample space Q). Assume that P(A) > 0,P(B;) > 0,1 =
1,2,--- . n, then
P(B;)P(A | B;) ,
P(B; | A) = =5 , i=1,2,--- n. (2.2)
Zj:l P(Bj)P(A | Bj)
Proof. Note that
_ P(ANB;)
BB A) =~
P(A) =) P(B)P(A]| By),
j=1
and hence P(B)P(A | Bi)
P(B; | A) = <= — v
Zj:l P(Bj)]?(A | Bj)
O

Exercise 2.10 Prove that P(A | B) = P(B | A)P(A)/P(B) whenever P(A)P(B) # 0. Show that, if
P(A| B) >P(A),then P(B | A) > P(B).

Proof. Check by definition. O

Exercise 2.11 A man possesses five coins, two of which are double-headed, one is double-tailed, and two are
normal. He shuts his eyes, picks a coin at random, and tosses it.
1. What is the probability that the lower face of the coin is a head?
2. He opens his eyes and sees that the coin is showing heads; what is the probability that the lower face is a
head?
3. He shuts his eyes again, and tosses the coin again. What is the probability that the lower face is a head?
4. He opens his eyes and sees that the coin is showing heads; what is the probability that the lower face is a
head?

5. He discards this coin, picks another at random, and tosses it. What is the probability that it shows heads?
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Solution. 1. Let HH be the event the selected coin is double headed, TT be the event that it is doubletailed
and N that it is normal. Let H; denote the event that the lower face of the coin is a head. Then,

P(H) =P (H, | HH)P(HH) + P (H, | TT)P(TT) + P (H, | N) P(N)

_1 2 40 1 . 12 3
-5 5 25 5
2. Let H, be the event that the upper face of the coin is a head. Then,
P(HH)
P(H | Hy) = .

Since P (H,) = g (the calculation is the same as for P (H;) ), therefore
2/5 2
IP)<];Il ’Hu)zizf'
3/5 3
3. Let H 12 be the event that the coin’s lower in the second toss is a head. Then,
P(H} | H,) =P(H} | HH H,)P(HH | H,) + P (H} | N,H,)P(N | H,)
1
:1~IP’(HH\Hu)+§‘(1—P(HH|Hu)).

Since HH = H; N H,, we can write this probability as

1 2 1 1 5
P(H? |H,) =1-P(H |H)+=--1-PH, |H,))==+=-==—.
(H7 | H.) (Hi | H)+ 5 (1=P(H | Hy) =5+ 5 5 =¢
4.
P(HH) P(HH) 2y
B (H7 | 3 HL) = _ I
P(H2NnH, P(H?|H,P(H,) 2.3 5
where we used results of (1) and (3). (The probabilities P (HS | Hu) and P (H,) are the same as

P (H? | Hy) and P (H;), respectively).
4
5. The probability that he discards a double-headed coin is B by the previous part, the probability that he

1
discards a normal coin is 5 In the first case we have 1 double-headed coin, 1 double-tailed, and 2 normal
coins. In the second case, we have 2 double-headed coins, 1 double-tailed and 1 normal. Hence, by
conditioning on the discard we have:

4 1 1 2 1 2 11 21
P(HN==-(1--4+2.2 Z(1.242.2) =22
(H.) 5< 4+2 4>+5< 4+2 4> 40

O]

#: Exercise 2.12 There are n urns of which the rth contains » — 1 red balls and n — r magenta balls. You pick an
urn at random and remove two balls without replacement. Find the probability that:
1. the second ball is magenta;

2. the probability that the second ball is magenta given the first is red.

Solution. 1. Note that we have n — 1 balls for each urn. First we pick an random urn with equal probability

1
—. We need to sum up all the possibility that the second removed ball is magenta. For the rth urn, there

n
are (r —1)(n —7r)+ (n —r)(n —r — 1) ways of removal (the first is red and the second is magenta or
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both are magenta). Hence what we want is

le/n—-rr—1 n—-r—1n-—r
P(By=M)=—
(B ) n;<n—2n—1+ n—2 n—l)

1 - r—1l4+n—-r—1
_n(n—l)z(n_r)' n—2

r=1

DN |

2. For this question, we first calculate the probability that both removals are magenta:

IP’(Bl—M,BQ—M)_;i(n—r)(n—r—l)

— (n—1)(n—2)
= ! ” n—r?—(n-r
nn—1)(n-2) ;( )= )
_ 1 [(n—l)n(2n—1)_ 5 n(n—1)
n(n—1)(n—2) 6 2
1
=3

1
The probability that the first removal is magenta is 3 since there are n(n — 1) balls in total and half of

.2
them are magenta. Hence the result is 3
O

Exercise 2.13 There is one ball with unknown color (either black or white) in a bag. Now put another white
ball into the bag and pick one of the two balls randomly, obtating a white one. What is the probability that the
original ball is white?

Solution. We use A to denote the event that the original one is white, B to denote the event that the original

one is black and C' to denote the event that the picked ball is white. By the condition,
1
2 9y
1
P(C|A) =1, P(C\B)zi.

P(A) = P(B) =

2
=3

Exercise 2.14 There are 2n vertices among n ropes. Now connecting one vertice with exactly one another

Solving this, we get P(A | C) O

vertice, what is the probability that n circles occur?

Solution. We treat the head and tail of a certain rope as different vertices. We first put all 2n vertices in a line.
Then one connection corresponds to one permutation of 2n (for example, 1234 can be regarded as we connect
vertices 1 and 2, 3 and 4). Thus the total number of connection method is (2n)!.

The only way to form n circles is that we connect each rope’s head with their tail. To be more specific, we
must place every rope’s head and tail in position 2k — 1 and 2k for 1 < k < n. Since we can switch the head

20
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and tail, there are 2" - n! ways in total. Thus the result is

2"-n! (2n)!! 1
(2n)! — (2n)!  (2n -1V
where (2n)!! =2n-(2n —1)----- 4-2,2n - =2n—-1)-2n—3)----- 31 O

Exercise 2.15 m students are passing ball to each other starting from Tsubaki. Every time each student (except
the one who is passing) has a equal probability to receive the ball. What is the probability that the n-th pass is
still finished by Tsubaki?

Solution. We use py, to denote the probability of the event that the k-th pass is finished by Tsubaki. Then p; =1
by condition. Note that if pg 1 happens, Tsubaki can not finish the k-th pass and thus

1
= — 1—
1 1 1

Pr+1 = 0 = (1 _ m)(pk - E)

O

Exercise 2.16 There are b black balls and r red balls in a can at first. Every time we pick a ball from it,
adding c(c > 0) balls with the same color as the picked one and finally put back the picked one. Show that the
probability that we pick a black ball at k-th time is b/(b+r),k =1,2,---.

Proof. We use A;(b,r) to denote the event that “there are b black balls and r red balls in the can and the i-th

b
ball taken out is black”. Consider applying induction on 7. By condition, P(A;(b,r)) = b Now assume
r

P(Ax_1(b,7)) = bf—r By total probability formula, one has
P(Ak(b, 7)) = P(A1(b, 7)) - P(A(b,7) | Ar(b,7)) + P(A7(b, 7)) - P(Ak(b, 1) | AT(b,7))-
Note that
]P)(Ak(b7 T) | Al(bv T‘)) = P(Ak—l(b +c T))
P(Ak(b, 7“) ‘ Ai(b, 7“)) = P(Ak,1<b, r+ C))

To see this, for the first equation, given the event A (b, ), ¢ black balls are added. Now (k — 1) picks are

required in the new can (b + ¢, 7). The second equation is the same. Substituting back and from the induction

assumption,
b b+c r b
P(AL(b = . .
(Ax(b:7)) b+r b+c+r+b+r b+c+r
b
b+r

O

Exercise 2.17 A bag contains a white balls, b black balls and n red balls. The balls are taken out one by one

without returning. Show that the probability that white balls appear earlier than black balls is always j_ 2 and

a

has nothing to do with n.

Proof. Let A denote the event that “the first ball taken out is white”, B denote the event that “the first ball taken
out is black” and C' denote the event that “the first ball taken out is red”. It is easy to see that A, B and C
contradicts with each other whereas A U B U C = ). Let E}, denote the event that “when there are k red balls,
the white balls appear earlier than the black balls”. Apply induction on k. If £ = 0, Ey means the first ball
taken out must be white, i.e., P(Ey) = a/(a + b).

21
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Now assume P(Ej_1) = %. By the total probability formula,
a

P(Ey) = P(A)P(Ey | A) + P(B)P(Ey | B) + P(C)P(Ey | C)

a b n
“avoan MTareran T aven P
a
Ca+b
O
#: Exercise 2.18 Given P(A | B) > P(A | B®), prove that P(B | A) > P(B | A°).
Proof. Since
P(AN B) - P(ANB¢) P(A)-P(BNA)
P(B) P(B¢) 1-P(B) '
we know P(AN B) > P(A)P(B). Thus
o P(BNA°) P(B)-P(BNA)
P(B| A% = P(A¢) 1 —P(A)
P(B) —P(B)P(A) _ P(B)(1-P(A))
1-P(A) 1-P(A)
=P(B)
whereas
_P(BNnA) PAPDB)
P(B|A) = P(A) > P(A) P(B).
O
#1 Exercise 2.19 Let P(A) = p,P(B) = 1 — ¢, prove that:
P=C cpa| B < 2.
1-e¢ 1-¢
Proof. On one hand,
P(ANB) _P(A) D
P4 B) P(B) T PB) 1-¢
On the other hand,
_P(AnB) P(A)+P(B)—-PANDB)
P(A]B) = P(B) P(B
P(A)+P(B)—-1 p—e¢
- P(B) C1l-¢
O
#1 Exercise 2.20 Prove P(B¢ | A°) = 1 provided P(A | B) = 1.
Proof. Apply the formula P(AU B) = P(A) +P(B) — P(AN B). O

# Exercise 2.21 The ’'ménages’ problem poses the following question. Some consider it to be desirable that men
and women alternate when seated at a circular table. If n heterosexual couples are seated randomly according
to this rule, show that the probability that nobody sits next to his or her partner is

- Z k2n22 ( an—k ) (n— k!

22
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Proof. Label the seats 1,2, ...,2n clockwise. For the sake of definiteness, we dictate that seat 1 be occupied
by a woman; this determines the sex of the occupant of every other seat. For 1 < k < 2n, let Ay, be the event
that seats k, k + 1 are occupied by one of the couples (we identify seat 2n 4+ 1 with seat 1 ). The required
probability is

2n 2n
P (ﬂAf-) =1-P (UA,) =1-) P(A4)+ > P(ANA) -
1 1 i i<j
Now, P (A;) = n(n — 1)!?/n!2, since there are n couples who may occupy seats 7 and i + 1, (n — 1) !
ways of distributing the remaining n — 1 women, and (n — 1) ! ways of distributing the remaining n — 1 men.
Similarly, if 1 <17 < j < 2n, then
—2)12
B2 g 21
n!?

0 if[i—j|=1

]P)(AZQAJ) = n(n_ 1)

subject to P (A1 N Ay,) = 0. In general,
n' (n—k)2 (n—k)!
P(AilmAizm"'ﬂAik): (n—k)' n!2 = n!

ifi; <19 <---<igandijpq —i; > 2forl < j <k, and 2n + i1 — i > 2; otherwise this probability is O .

2n n
P (ﬂ A§> = Z(—Uk (n ;|k)!Sk,n
1 .

k=0

Hence

where S, ,, is the number of ways of choosing k non-overlapping pairs of adjacent seats. Finally, we calculate
Skn- Consider first the number Ny, ,,, of ways of picking k£ non-overlapping pairs of adjacent seats from a line
(rather than a circle) of m seats labelled 1,2, ..., m. There is a oneone correspondence between the set of
such arrangements and the set of (m — k)-vectors containing k1 s and (m — 2k)0 ’s. To see this, take such an
arrangement of seats, and count O for an unchosen seat and 1 for a chosen pair of seats; the result is such a vector.
Conversely take such a vector, read its elements in order, and construct the arrangement of seats in which each 0
m—k
k
Turning to Sy, ,,, either the pair 2n, 1 is chosen or it is not. If it is chosen, we require another k& — 1 pairs

corresponds to an unchosen seat and each 1 corresponds to a chosen pair. It follows that Ny, ,,, =
out of a line of 2n — 2 seats. If it is not chosen, we require k pairs out of a line of 2n seats. Therefore

2n—k—1 2n — k 2n —k 2n
Sn:N_ n— N n — =
k, k—1,2n—2 T Vg2 ( b1 )+< i ) ( i >2n—k:

Exercise 2.22 Each member of a group of n players rolls a die.

1. For any pair of players who throw the same number, the group scores 1 point. Find the mean and variance
of the total score of the group.
2. Find the mean and variance of the total score if any pair of players who throw the same number scores

that number.

Solution. 1. Let I;; be the indicator function of the event that players 7 and j throw the same number. Then
AR
B(Ly) =Py =)= (5) =g i#i
i=1
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2.5 Conditional probability

The total score of the groupis S =, _ ;i Lijs 80
1{n
E(S) =) E(I;) = 6 ( 5 >
1<j

We claim that the family {/;; : 4 < j} is pairwise independent. The crucial calculation for this is as
follows: if i < j < k then

1\’ 1
E (I;j1;) = P(4, j, and k throw same number ) = Z ( > = — =E(;)E ).

6 36
r=1
Hence
n
var(S) = var le’j = ZVaF (Lij) = < 9 ) var (I12)
1< 1<)
1 1

by symmetry. But var (I12) = g 1-— )

. Let X;; be the common score of players ¢ and j, so that X;; = 0 if their scores are different. This time
the total score is S = 7, . X;j, and

w5 ) ()i 55 (3)

The X;; are not pairwise independent, and you have to slog it out thus:
2

var(S) = Eq [ > Xy —E(S)?
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Chapter 3 Random variables and their distribution

3.1 Random variables; Distribution function

Definition 3.1

Let (E,€) and (G, G) be measurable spaces and let ;i be a measure on (E,E). A function f : E — G
is said to be measurable if

fYA) :={x € E: f(x) € A} € £ whenever A € G.

)
Note that f~! maps subsets to subsets.
Definition 3.2
Let (2, F,P) be a probability space, let (G,G) be a measure space. Then a measurable function
X : Q — G is called a random variable. &
Definition 3.3
Let (2, F,P) be a probability space, together with the special measure space (R,B(R)). Then a
measurable function X : Q) — R is called a real random variable and
Fx(z) := Px((—00,2]) = PH{X < x})
(where {X < z} = {w € Q: X(w) < x}) is called the distribution function of X. Y
Proposition 3.1
The map =" preserves all set operations, i.e. f~! (U Ai> = U F7YH(Ay) and £71(A°) = [f1(A)]-
i i o
Indeed, to vertify measuribility, we only need to check the preimage on a smaller set:
Let (Q1, F1), (Q2, F2) be measurable spaces. Suppose there is £ C Fo such that 0(E) = Fa. Then
X : Q1 — Qo is measurable if and only if for any A € £, X1 (A) € Fi. O

Proof. —>. Trivial.
<. Define G := {B € Q : X"1(B) € F;}. Then follow Proposition 3.1 one can deduce that G is a
o-algebra. By condition, £ C G. Therefore F» = o(€) C G, implying that X is measurable. O

Example 3.1 Consider (€2, F) and (R, B(R)). For any A € F, the function X := 1 4 is measurable.
Indeed, take any B € B(R),

(

Q, iif0eBandleB
Ac, if0c Bandl¢ B
A, if0¢BandleB
& if0¢ Band1 ¢ B

Xfl(B) ={zxeQ:14(x) € B} =

Since F is a o-algebra, all possibilities of X ~!(B) must lie in F.



3.1 Random variables; Distribution function

Definition 3.4

Consider measure spaces (2, F) and (R, B(R)). A measurable function f : Q — R is called a Borel
Jfunction. &

Let (2, F) be a measurable space. The followings are equivalent:
1. X : Q — Ris a Borel function;
2. {X <a}eF,VaeR;
3. {X >a} e F,VaeR;
4. {X <a} e F,VaeR;
5 {X>a}leF,VaeR

Proof. We prove 2 —> 1 and the remainings are similar. The statement in 2 is equivalent to Va €
R, X !((—00,a)) € F. By Lemma 3.1, it suffices to show that & = {(—o00,a) : a € R} satisfies
o(&) = B(R). We have know that B(R) = o(&) where & = {(a,b] : —oo < a < b < +oo}. Note

1
& C o(&2) since (—o0,b] = ﬂ(—oo,b + —), (a,b] = (—o0,b] \ (—o0,a]. Conversely, &2 C o(&) since

n

n>1
1

(—o0,a) = U (—o0,a — —]. O

n
n=1

Let X be a random variable on some probability space. Then the distribution function of X, i.e. Fx,
has the following properties:

I. Fx : R — [0, 1], and Fx is monotonically increasing;

2 zgr—ll-loo Fx (.’E) =1 mgr_noo Fx (x) =0

3. Fx is right-continuous (i.e., Fx(y) | Fx(z)asy | z).

Proof. 1. Note that {X < z} C {X < y} and hence Fx(z) < Fx(y) by the monotonicity of probability.

2. First we show lim F'(n) = 0. By “continuity from above”,
n——oo

lim F(n)= lim PH{X <n})=P( lim {X <n})

=P (ﬂ{x < n}> = P(2)
nez
=0.

Symmetrically, by continuity from below,

lim F(n)= lim PH{X >n})=P( lim {X >n})

n—+o00 n—+4o00 n—+00
=P (U{X > n}> = P(R)
nez
=1
. . 1 o
3. First we show lim F'(z + —) = F(x). By continuity from above,
n—o00 n
1 1 1
. v < 1 . < 1
Jm F(z+-) = lim PUX <o+ —}) =P(lim {X <o+ —})
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3.1 Random variables; Distribution function

O]

Indeed, we can also prove that functions satisfying the three properties in Lemma 3.2 are distribution
functions of certain random variables. Hence these three properties are necessary and sufficient judgements
to determine whether a function is a distribution function (of a certain random variable) or not:

If F satisfies 1, 2, and 3 in Lemma 3.2, then it is the distribution function of some random variable.

Proof. Let Q = (0, 1), F = the Borel sets, and P = probability (or, Lebesgue) measure. If w € (0, 1), let
X(w) =sup{y : F(y) <w}

Once we show that
{w: X(w) <z} ={w:w < F(z)} (%)

the desired result follows immediately since P(w : w < F'(x)) = F(z). (Recall P is probability measure.)
To check (x), we observe that if w < F(z) then X (w) < z, since x ¢ {y : F(y) < w}. On the other hand if
w > F(x), then since F is right continuous, there is an € > O sothat F'(z+¢€) < wand X (w) > x+€e>z. O

Let X be a random variable and F be its distribution function. Then for x,y € R,
1. P(x < X <y)=F(y) — F(x);
2. P(X =2)=F(x) — lim F(y).
Yy—x =

1 1
Proof. Statement 1 is trivial. Tosee 2,let B, = {r — — < X < z}. By I, P(B,) = F(z) — F(x — —). Now
n n

send n — oo, one gets lim B, = ﬂ B,, = {z}. By continuity of measure,
nz

P(X = 2) = lim P(B,) = F(z) — lim F(z — ) = F(z) — lim F(y).

n—00 n—00 n y—z~
O
#;  Exercise 3.1 Let (€2, 1) and (§22, F2) be measurable spaces with f : Q; — Qo.
I. Show that F := {f~1(A) : A € F»} is a o-algebra on Q.
2. Show that if G is a o-algebra on €)1 such that f is G-measurable, then G O F.
Proof. 1. Trivial.
2. Take B € F then B = f~1(A) for some A € F,. Since f is G-measurable, B = f~1(A) € G, and thus
g2oF.

O

#: Exercise 3.2 Let (1, F1) and (§22, F2) be measurable spaces with f : 0 — (.
I. Show that F := {ACQy: f~Y(A) € F1}is ao-algebra on €.
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3.2 Properties of Borel functions

2. Show that if G is a o-algebra on €25 such that f is G-measurable, then G C F.

Proof. 1. Trivial.
2. Take B € G then since f is G-measurable, f~1(B) € Fy,ie., B € F and thus G C F.

3.2 Properties of Borel functions

For random variable X and Y, we use the shorthand {X <Y} :={w:w € Q: X(w) < Y(w)}.

Let (2, F) be a measurable space and X,Y be Borel functions. Then
L AX <Y} { X2V} {X=Y}{X#Y}eF
2.¢cX:ceRX+Y, X —Y and XY are Borel functions.

Proof. Recall Corollary 3.1, X is a Borel functions if and only if {X < a} € F for any a € R.

1. Using Qisdensein R, onegets {X <Y} = U {X < ¢}n{¢g <Y} € F. For the remaining terms, note

that {X <Y} ={X <Y} {X=VY}= {q;((@g Y}IN{X >Y}andthat {X # Y} ={X =Y}°.

2. Fort e R,ifc¢ > 0,
(X >t} ={X >c 1}

If c <0,
(X <t} ={X <c 't}

and thus c¢X is Borel. If ¢ = 0, it is trivial.
For ¢ € R, note that

o0

{(X+y>ty =X >r}n{y >t-r}
i=1
where 7; are all the rational numbers. Thus X + Y is Borel (same as X — Y). Also note that X? is
Borel since {X? > a} = {X > y/a} U{X < —/a}. Combine all these and by the transformation
1
XY = Z((X +Y)? — (X —Y)?), one deduces that XY is Borel.
O]

Let {X,,} be a sequence of Borel function. Then sup X,,inf X, limsup X, liminf X,, are Borel
n n n—00 n—oo
Junctions.

Proof. We claim that
{sup X,, < a} = ﬂ {X, <a}
n n>1

and thus sup X, is Borel. The infinum inf X, is Borel since inf X,, = — sup(—X,,). The remaining terms are
Borel since

limsup X,, = inf sup X,,

n—o00 m=1 n>m

liminf X,, = sup inf X,,.

n—00 m>1 n>m
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3.3 o-algebra generated by a random variable

O]

Corollary 3.2

If lim X, exists, then lim X, is Borel.
n—oo n—o0

Let (1, F1), (D2, F2), (23, F3) be three measurable spaces. X : Q1 — Qo and Y : Qo — Q3 are

measurable functions. Then'Y o X : Q1 — Q3 is also measurable. O

Proof. Forany B € F3,note that (Y o X)"}(B) = XloY}B)= XYY YB)) € F. O

3.3 o-algebra generated by a random variable

Definition 3.5

Let X be a random variable. Then
o(X):={XYB): B eBR)}
is called the o-algebra generated by X . &

Similarly, given measurable X, o(X) is the smallest o-algebra containing X .

Definition 3.6

Given { X, }ier to be a family of random variables,

o(Xy,iel):=0 (U U(Xi)>

il

is called the o-algebra generated by { X, }c1. Iy

Example 3.2 Let ), F be measurable space and A1, A, - - - , A, € F are two-by-two disjoint. Define
X :=bilg +blg,+---+b14,
with distinct coefficients by, - - - , b,. Show that o(X) = 0({A41, A2, -, An}).

Before starting the proof, we first verify a lemma:

o(X)=0c{{X <a}:aeR}). 9

Proof of the lemma. Recall that B(R) = o(&) where £ = {[a,b) : —00 < a < b < 4o00}. Now for any
S € o(X), there is [a, b) such that S = X 1([a, b)) = X }((—00,a)°N(—00,b)) = {X <a}N{X < b} €
RHS, implying LHS C RHS.

Conversely, fora fixed a, {X < a} = X ((—o0,a)) € o(X). Hence by the “smallest’, RHS C LHS. [

Proof of Example 3.2. For any i, note that A; = X ~!({b;}) € ¢(X) and thus RHS C LHS.
n c
Conversely, for any a € R, {X < a} = disjoint union of {4;};, <U Ai) € 0({A1,A2, -, An}).
i=1

Hence by the lemma, 0(X) = o({X < a}) Co({A1,As, -+, Ap}). O
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3.4 Independence

3.4 Independence

Definition 3.7

Let I be a countable set. We say that the events {A; € F : i € I} are independent if, for all finite subsets

J el
P([) 4i) = [ P(4).

iceJ icJ *

Definition 3.8

Intuitively, two random variables X andY are said to be independent if for any A, B € B(R),
P(Xe€AYeB)=P(XecAP(Y € B).

Definition 3.9

Let (0, F, P) be a probability space.
1. A sequence of G1,Go, - - , Gy C F is called independent if
P(Al NAsN ---ﬂAn) = P(Al)P(AQ)P(An),
forall A; € Gi,i=1,2,--- ,n.
2. A sequence of random variable X1, Xs,--- , X, are independent if o(X1),--- ,0(X,,) are inde-
pendent, where o(X;) = {X; '(B) : B € B(R)}.

&

Remark
o Statement2 <= VBj,Bs, -, B, € B(R),

n n
P(X1 € By, ,Xn € By) = [[ P(Xi € B) = [[ P(X; " (By)).
=1 =1

o Events A;,---, A, are independent <= 14,,---, 14, are independent random variables.

Definition 3.10

The random variables X, ,n € N, are called independent identically distributed (i.i.d.) if they are

independent and, moreover, all of them have the same distribution (i.e. the distribution functions x,

are equal, for all n € N). &

Theorem 3.2 (Dynkin 7 — )\)
If C is a w-system and L is a \-system such that C C L, then o(C) C L

@
Theorem 3.3
Suppose A1, Aa, - -+, A, are independent wt-systems. Then (A1), - -+ ,0(Ay,) are independent. o
Proof. We prove if Aj, As,--- , A, are independent, then o(.A1), As, - - - , A, are independent and iterate.

Take Ay € Ag,--- A, € A,. Set B := AN Ag---NA,. Define L ={AecQ:P(ANB) =
P(A)P(B)}. If A € Ay, then P(ANB) = P(A)P(B), implying that £ D A;. We claim that £ is a A-system.
Clearly 2 € Lsince P(QN B) = P(Q)P(B). If A1, Ay € L: A; C Ay, then

P((AQ\Al)mB) :P(AQQB)—P(AlﬂB)
= P(A2)P(B) — P(A1)P(B)
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3.4 Independence

— P(A;\ 4))P(B).
If A, € £ and A T A, then
P(ANB) = kh_fgo P(Ar N B)
= klingo P(A;)P(B)
= P(A)P(B).
By Dynkin m — A Theorem, £ C o (.A;), implying for any A € o(A,),
P(AN(AanAsn---NA,))=PA)P(A2NAsN---NA,)

n
= P(4)).
i=1
O
X1, Xa, -+, Xy, are independent random variables if and only if for any x1,x2,--- ,xp € R,
n
P[Xy < a1, X < 2] = [[ P(Xs < ). 3.1)

=1

Proof. Let A; = {{X; < z} : x € R}, theneach A; is aw-systemsince { X; < z}N{X; < y} = {X; < xAy}.
Furthermore, o(A;) = o(X;) by Lemma 3.7. Now (3.1) implies A;,--- , .4, are independent and thus by
Theorem 3.3, 0(X1),--- ,0(X,) are independent. O

Exercise 3.3 Let Q := [0,1] x [0,1], F = B(R?) N [0,1]? and m denote the Lebesgue measure. Define
A ={[0,1] x A: A€ B(R)n[0,1]} and A2 = {A x [0,1] : A € B(R) N[0, 1]}. Show that .A; and .A; are
o-algebra and they are independent with respect to m.

Proof. O

Let G be a m-system. Let 1, 2 be two o-finite measure on (2,0(G)) such that p11(Q) = p2(Q) and
p1 = p2onG. Then py = pg on o(G).

Proof. Let D := {A € 0(G) : p1(A) = p2(A)}. Then we have D O G. We claim that D is a A-system.
Indeed,

o 2 € Dsince (11(2) = p2(9);

o If A, B€D: A C B,note that

p2(B\ A) = pa(B) — p2(A) = p1(B) — pa(A) = pa(B\ A)
o If A, A, € D: A, 1 A, note thta
p2(A) = lim po(A,) = lim p1(An) = pm(A).

Hence by Dynkin’s Theorem, D 2O ¢(G) and thus p; = p2 on o(G). O
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3.4 Independence

Constructing independent random variables

Let I, Fy, - -- , F, be distribution functions. How to construct independent variables Xy, Xo,--- , X,
such that P(X; < z) = F;(x)?
Let @ = R™ and F = B(R") and X, be the projection mapping:
X;:R" —R
W — W
n
Let P, be the measure on (R™, B(R)) such that P, (a1, b1] X [ag,b2] X « -+ X [an, by]) = H(Fz(bz) — Fi(a;)).

i=1
Since {[a1,b1] X - - - X [an, by} is a w-system that produces B(R™), by extension theorem, P,, extends uniquely to

a measure on (R™, B(R")). Indeed, P, = mp, ® mp, ® - - - ® mp, where mp,,--- , mp, are one-dimensional
Lebesgue Stieljes measures.

Constructing infinite random variables

We try a similar construction: € := RN = {(wy,ws,--+) : w; € R}. Our goal is to define a o-algebra and

a probability measure based on approximation on finite dimension. Define the cylinder set A as

(e 9]
A= U{BlXB2><-.-xBnxRxRx---:Bl,Bz,-"BnGB(R)}-

n=1

Note that A is an algebra but not a o-algebra: Let A,, = Rx---x[0,1] x Rx---. Then ﬂ A, =1[0,1]N ¢ A
n=1
It is natural to define a content (but countably-additive) on A: for any A € A, there is n € N such that

A=B; x--+x B, xRx---xR. Set
P(ByxBy X+ XBy XxRxRx--+)=P,(By X By X+ X By)

Can we extend P to o(.A)?

Suppose the probability measure (R", B(R™), P,))n>1 are consistent:
Poii((a1,b1] X -+ X (an,bp] X R) = Py((a1,b1] X -+ X (an,bp]), n>1
Then there is a unique probability measure P on (R",0(.A)) such that
P((a1,b1] X -+ X (an,bp] X R x ) = P((a1,b1] X -+ X (an, by)).

Example 3.3 If { X; };en is a random walk or a Markov chain, the joint distribution
(th,"',th), nzl

uniquely determines the law of { X };en.
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Chapter 4 Discrete and continuous random variables

4.1 Definitions

Definition 4.1

A random variable X is said to be discrete if it takes value in countable set {x1,xo,---}, where

{1,229, -} are called the atoms of X. Its probability mass function f(x) is defined by
f(z) :=P(X = z). 4.1) &

Definition 4.2

A random variable X is (absolutely) continuous if

Fy(z) = /_ " f(u)du “2)

for some integrable function f : R — [0, +00). Then f is called the probability density function.

&

There is random variable such that its distribution function is not absolutely continuous:
Example 4.1 Singular variable X whose distribution F'x is the Cantor function.

The probability density function has two properties:
L. f(z) = 0;
o0
2. / f(z)dx = 1.
—00
The distribution and mass function are related by

Fx(@)=P(X <a)= 3 f@). [(@)=Fla)~lmFQ)

Based on (4.2), the relation of probability density function and distribution function is also given by
F'(x) = f(x). (4.3)
For a discrete random variable, its distribution is always a right-continuous step function. However, for a

continunous random variable, its distribution function is always a continuous one since
z+Azx
F(x—l—A@—F(a:)z/ f(z)de — 0 (Az — 0).
x
a
Note that for an absolutely continuous random variable, P(X = a) = / f(x)dz = 0 for any a € R and thus
a

Pla<X<b)=Pla<X<b=Pla<X<b)=Pla<X<b).

4.2 Expectation and variance

Definition 4.3

The mean/expectation/expected value of a discrete random variable X with probability mass function f

E(X):= Y af()= > PX=ax). (4.4)

z:f(x)>0 z:f(x)>0

&




4.2 Expectation and variance

Example 4.2 Let X denote the number of heads occuring in two coin flips. Then according to (4.4),

X)=> aP(X =

=0 PX=0)+1-PX=1)+2-P(X =2)

1 1
—04+1-=42-=
+ 2+ 4

Let g : R — R and X be a random variable with probability mass function f. Then

Eg(X)= ), g@f(x).
z:f(x)>0 v

Proof. Note that for a fixed y,
P(g(X) =y) =Plw: g(X(w) =y} = > PX =uz)

z:g(w)=y
and thus
=D PX)=y) =) > yPX =2
Y Y aig(z)=y
=Y g@P(X =2) = g(x)f(x).
O
@ Lemmad2 |
Let X be a random variable taking values in N, then
=) P(X >
- neN
2. ) KP(X > k) = %[]E(X2) —E(X)).
k=0 Q
Proof. 1.
EX)=1-PX=1)42-P(X=2)+3-P(X =3)+
=P(X=1)+ (X 2)+- )+ PX=2)+P(X=3)+--)+
—P(X>1)+ < >2)+
= Z (X >
2. "
00 oo i—1
SRP(X >k) =)k Y. P( > ) kP(X =)
k=0 k=0 i=k+1 i=1 k=0
= P(Xzz)2_21)2=%ZzQP(X=z)—%ZzP(X=z)
i=1 i=1 i=1
= %E (X?) - E(X)
O
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4.2 Expectation and variance

Example 4.3 Let X; be i.i.d random variable denoting the offer you receive and define 7 as
T := the first time you see an offer better than X .

Compute E(T).

Solution. By Lemma 4.2,
E(T) =Y P(T>n)=Y P(X;=max{Xy,Xs, -, Xp})

n=1 n=1

Definition 4.4

Let X be a continuous random variable with probability density function p(x). If
/ |z|p(x)de < oo,
the value
[e.e]
E(X) = / zp(z)der < oo, 4.5)

—00

is called the mean/expectation/expected value of X. &

Similarly, one has

Lemma 4.3 (Change of variable)

Let g : R — R and X be a random variable with probability mass function f. Then

[e.e]

Elg(X)] = g(x)p(z)dz.
/. :

For a non-negative continuous random variable X, one has

B(X) = /0 T P(X > 2)da.

Proof. It suffices to prove that
o.9]
E(X)= / [1— F(x)dz.
0

Note that

/Oooﬂff(ﬂf)dﬂﬁ = /Ooo (/Omdy) f(z)dx = /000 (/yoo f(x)dx) dy = /000[1 ~ F(y)]dy.

Exercise 4.1 Let X > 0 be a random variable. Show that

E(X"™) :/ nz" 'P(X > x)da.
0

Proof. Use the conclusion above, we see

B(X") = /0 T PX™ > y)dy.
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4.2 Expectation and variance

Now set y = =, we get

E(X") :/ P(X" > z")na" 1dx :/ P(X > z)nz" 'da.
0 0

O
Definition 4.5
The k-th moment of a random variable X is defined as my, := E(X") whereas the the k-th central
moment of X is defined as oy, == E[(X — E(X))*]. Iy
Definition 4.6
The second central moment, i.e., E[(X — E(X))?] is defined to be the variance of X, denoted by o* or
var(X). &
Remark Note that
var(X) = E[(X — E(X))?] = E[X? — 2X - E(X) + E(X)?]
= E(X?) - 2E(X)? + E(X)?
=E(X?) - E(X)%
Expectation has the following properties:
1. Forany a,b € R,E(aX +bY) = aE(X) + bE(Y);
2. E(XY) =E(X)E(Y) given X and Y independent;
3. var(X +Y) = var(X) + var(Y') given X and Y independent. o
Proof. 1. Trivial.
2. Note that
E(XY) =) ziyP(X =z;,Y =y;)
= Z .’L‘Z]P’(X = LIJZ) Z yjIF’(Y = yj)
=E(X)E(Y).
3.
var(X) +var(Y) =E((X + Y —E(X +Y))?)
—E((X — E(X))?) + E((Y —E(Y))?) + 2E((X — E(X))(Y — E(Y)))
=var(X) + var(Y).
The last equality holds since by 2, E(XY) = E(X)E(Y') and
E(X —EX))(Y —E(Y))) =E(XY - XE(Y) - YE(X) + E(X)E(Y))
=E(XY) - 2E(X)E(Y) + E(X)E(Y)
=0
0
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4.2 Expectation and variance

#)  Exercise 4.2 Let X be a random variable with distribution function

s

(

0, x <0,
1/4, 0<z <1,

F(r)=41/3, 1<xz<3,
1/2, 3<z <6,
1, T 2 6.

\
Try to compute P(X < 3), P(X < 3).

Solution. We first observe that X is discrete and thus

1 1
P(X=0)=F(0)— lim F(y)=-, PX=1)=F(1)- lim F(y) = —,
y—0~ 4 y—1- 12
1 1
P(X=3)=F3)— lim F(y)=-, P(X=6)=F(6)— lim F(y) = -.
y—3~ 6 y—6— 2
Thus ) .
P(X<3):P(X:())+P(X:1):§, P(X<3):1—P(X:6):§.
]
Exercise 4.3 Let X be a random variable with distribution function
xX
5 z <0,
1
F(z) = 3 0<z <1,
1-— efé(xfl) z>1
Compute Var(X).
Solution. The probability density function of X is given by
X
%, x <0,
p(z) = F'(z) = {0, 0<z<1,
1
Ze_%(fc_l) z>1
]

Exercise 4.4 Let g : R — R be a non-decreasing function such that E(g(X)) exists. Show that for every ¢ > 0,

E(9(X))
P(X >¢) < 0

Proof. Let p(x) denote the probability density function of X. Then
h - x 1o E(g(X
P> = [ pwar= [T 8y < [T 8D pwan = [T glopplerar < HIED.
3 £ e c

9(x) g(e) g(€) 9(€)
O
Exercise 4.5 Let X be a non-negative continuous random variable. Prove that for x > 0,
E(X
P(X <z)>1-— E(X).
x
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4.3 Lebesgue integration

Proof. Let p(x) denote the probability density function of X. Then

x [e.9] o0 t
P(X < z) = / p(t)dt =1 — / p(B)dt > 1— / Loyt
0 T T
1 [ E(X
21——/ tp(t)dt =1 — ( )
T Jo xT
O
Exercise 4.6 Let X be a random variable taking values in N. If var(X) exists, show that
e¢]
var(X) =2)  nP(X > n) - E(X)[E(X) + 1].
n=1
Proof. By the existence of variance, we know that the series Z n2IP’(X = n) is absolutely convergent and thus
n=1
var(X) = E(X?) - E*(X) = E(X?) + E(X) — E(X)[E(X) + 1],
where
E(X?)+EX) =) nn+)P(X =n)=2) (Z z> P(X =n)
n=1 n=1 “i=1
o0 e} oo
= QZi[ZP(X = n)} =2) iP(X >1)
i=1 ‘“n=i =1
O

4.3 Lebesgue integration

Let (E, &, 1) be a measure space.
We want to define, where possible, for measurable functions f : E — [—o00, 00|, the integral of f with

M(f)Z/EfdMZ/xEEf(x)u(dx).

For random variables on a probability space (€2, F,[P), the integral will be called the expectation of X, and
written E(X).

Definition 4.7 (Simple functions)

A simple function is a function of the form

respect to the measure u:

m
=Y arla,
k=1

where 0 < ai, < oo, and each Ay, € & is disjoint with each other.

Definition 4.8 (Integration of simple functions)

We define the integral of a simple function f to be

p(f) =" arp(A),
k=1

with the convention that 0 - oo = 0. &

Example 4.4 p(14) = / 1dz = u(A), for any measurable A € &.
A
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4.3 Lebesgue integration

Example 4.5 On probability space we have E(1 4) = / 1dP = P(A).
Moreover for simple functions f, g and constants «, 5 > 0 the following set of properties, (P), holds:
I plaf + Bg) = palf) + Bu(g);

2. f<g= u(f) < pul9);
3. f=0ae. <= u(f)=0.

Definition 4.9 (Integration of general measurable functions)

For general non-negative measurable functions f, we define the integral by

u(f) == sup{ulg) : g is simple, g < f}. .

Note that property (P)(2) implies that this definition is consistent with the definition of p for simple
functions. Also the properties (P) hold for f, g non-negative measurable functions. Let

fri=fvoOand f~:=—fVO0.
Then
f=f"=fand|f|=f"+[".
We say that a measurable function f is integrable if (| f|) < oo, and define
p(f) = pu(f7) = u(f7).
Remark Combining with property (P)(2), we know f is integrable if and only if / |fldp < +o0.

Example 4.6 sin x is not integrable with respect to Lebesgue measure since

/ | sin z|dz — oo.
R

is not integrable with respect to Lebesgue measure since

| sin z| / )
dx > sin z|dx
/ Z/n Hr L Znﬂ- (n— 1)7!" |
> —_—
oy -
n=1

#: Exercise 4.7 Prove that p(A) = 0 implies / fdu = 0 for a Borel function f.
A

Example 4.7 e
x

sinx

Proof. Following the standard machine. O

Proposition 4.1

Let A be a measurable subset of E, then

/f(x)dx:/ f(x)La(x)de.
A E ‘
Proof. Note that
= g { ey
€A

= sup {/ h(a:)da:} :/ f@)1g(z)dx
h(w)]lA(w)éé(x)]lA(x) A E
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4.3 Lebesgue integration

O]

Proposition 4.2

f(z) = 0 a.e. if and only lf/ f(z)de =0 (Ifm(E) =0, then/ f(z)dx = 0).
E E
[ )

Proof. The “=" is trivial. Conversely, we define

Ey,:={x € E: f(z)>1/k}.

—m(Ek)sz %dxé : f(a:)dxé/Ef(x)dxz

we have m(Ey) =0 (k =1,2,---). Note that

Since

{zeE: f(z >0}—UEk,

and thus m({f > 0}) = 0. O

Theorem 4.1 (Monotone Convergence Theorem(M.C.T))

Let { f } nen be a non-decreasing sequence of measurable functions with f, > 0 and li_)m fn=1Ff. Then
n—od

kli}n;o Efk(x)dx — /Ef(x)dx. (4.6)@

Proof. 1t is easy to see that f is measurable and / f(x)dz is well-defined. Since

/Efk(as /fkﬂ Jr (k=1,2,- ),

and thus klim fr(x)dz is well-defined. From the non-decreasing property, we see
—o0 J B

kli_}rf)lo/Efk(x)dxé/Ef(x)dx

Now let 0 < ¢ < 1 and h(x) be any non-negative simple function on R" such that h(z) < f(x),x € E. Define

then E is measurable and increasing with klim FEy = E. By Theorem ??,
— 00

Jim ¢ /E ey = /E h(z)da.

/E s> [ gty > /E chir)dr = /E e
Jim /E Fu(z)da > /E h(z)da.
Tim /E Fu(z)da > /E h(z)da.

From inequality

we get

Send ¢ — 1, obtaining
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4.4 Absoulte continuity and Radon-Nikodym derivative

By the “sup” in the definition of integral, we get

kli_}n;o/Efk(x)de/Ef(x)dx

O
4.4 Absoulte continuity and Radon-Nikodym derivative
Definition 4.10
Let (0, F, u) be a measure space. If forany A € F, one has v(A) = / fdu for a certain Borel function
A
f: Q — [0, +00), then f is called the Radon-Nikodym derivative of v with respect to y, denoted by
f —
d
w &
Proposition 4.3
Let (0, F, ) be a measure space and f : Q@ — [0, +00) be a Borel function. Then
/ fdp
defines a measure. o

Proof. o From Exercise 4.7 we know if A = @ then v(A) = 0.
» Now we continue to prove the countable additivity. Let { A;} be a countable disjoint set sequence. Then

U(JQAJ>=/U y fdp= /f Ly, du

5=
=/Qf lim ]lUn A;dp = lim /f‘]lu’?_lAde

n—o0 n—oo

n

:nh—{{)lo/f Z]lA dp = hm Z (A)
*i=
=> u(4)).

i>1

Definition 4.11

We say v is absolutely continuous with respect to i, denoted by v < p if and only if v(A) = 0 given
any A € F such that u(A) = 0. In particular, if v < pand p < v, we say they are equivalent, denoted

by u ~ v. &

Example 4.8 If v(A) = / fdu for a Borel f, then v < p.

A
Example 4.9 Define measure M to be M := 2m, where m is the Lebesgue measure. Then M < m and
m << M.

Example 4.10 Let m be the Lebesgue measure whereas ¢ denote the counting measure, i.e.,
Al, Al < 400,
oy A A
+oo, |A[=

for any set A. Then m < ¢ whereas the inversed direction is not true.
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4.4 Absoulte continuity and Radon-Nikodym derivative

Theorem 4.2 (Radon-Nikodym)

If w is o-finite on €, i.e., ) can be written as U A, for Aj € F and p(A;) < oo, and p < v, then there
i>1
is a measurable function f such that

1. v(A) :/fduforanyAe]:;
A

2. / fdp = 1;

3. f = 0 a.e. with respect to measure p. v

Proposition 4.4 (Equivalent character of absolute continuity)

UL p <= Ve > 0,30 > 0 such that for any A such that u(A) < 0, we have v(A) < e.

[ )

Proof. =—>. Assume the contrary: Jeo > 0,V > 0, there exists A with u(A) < § but v(A) > £9. Now for
any n € N, take A,, such that 1(A4,) < 1/2" and v(A,) > €¢. Defining

-Bn:= LJ44b

k>n
B =limsup 4,, = ﬂ U A = ﬂ B,
n=1lk>n nz1
we have . .
) < ) < Y g = 5
k>n k>n
and

By continuity of measure, ;(B) = lim u(B,) = 0 whereas v(B) = lim v(B,) = 0 > ¢¢, contradicting

n—o0 n—oo

with v < p. O

Remark Absolutely random variable <= its distribution Px is absolutely continuous with respect to Lebesgue

measure.

Proposition 4.5 (Chain rule)

d
v K pand f is integrable with respect to v <= f £ is integrable with respect to p and / fdv =
dv
a &

Remark Write in probabilitic way: if () < P, then

dQ
EQX] = EP[X - ).
X) = BP(X - )
Proof. Only the “=" direction.
o If f =14, where A € F, then
dv dv
Tadp =v(A) = —-d,u:/]lA—-d,u
/ ) A du dp
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4.5 Common discrete distribution

n
o By linearity, if p = Z a;la,,a; 2 0,4;NA; =@, then

i=1
d
/gpdvz/gpv'du.
dp

o Let f > 0be anon-negative Borel function, then there is increasing measurable simple function sequence
{¢x} such that o, — f. Then

dv dov dv
dv =1 dv= 1 — -du 1 du = — - du.
/fv kgzz/%v kzﬂo/%du /lm%du a /fdu H

o Let f be a general Borel function. Then write f as f = f© — f~.
O

Example 4.11 Let (€2, F, P) be a probability space. Suppose a random variable X is X ~ N (0,1). Forf € R,
there is a new probability mesaure @ such that under @, X + 6 ~ N (0, 1).

d
Proof. Take — Q_ ¢~0X=3%° Then

dpP
d
EQ(et(X+9)) — EP |:et(X+9)deD:| — EP[etXe—QXe—%OQEQt]
= EPe (t—e)x]eet—%w — o3(t=0)? 0t—50°
= 62t2.
Thus X + 6 2 A7(0,1). O

4.5 Common discrete distribution

Example 4.12(Bernoulli) Let X be a random variable such that P(X = 1) = pand P(z =0) =g =1 —p.
Then

EX)=0-P(X=0)+1-P(X =1)=p, var(X)=E(X?) -EX)*=p—p*=pq.
Example 4.13(Binomial(n, p)) Consider an unfair coin with probability p to be a head and probability ¢ = 1—p
to be a tail after tossing up. Let X denote the number of heads in n coin flips. Then

1) =px =) = (),
Zk( ) kg=k = np.

In fact, consider the Bonomial expression

(14 2)"

Il
ol
I 3
()
Ry
> 3
~__
8
.??‘

Taking derivative with respect to x, obtaining

Thus §
n(l+a)" e =Y <Z> kat

Now set x = p/q and multiply ¢" on both sides, we get E(X) = np.
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4.5 Common discrete distribution

Alternatively, set X = Y1 4+ Yo +-- -+ Y, where Y] takes value 1 if a head occurs in toss ¢ and takes value
0 if a tail occurs in toss ¢. Then Y; are i.i.d random variable obeying Bernoulli distribution and thus

EX) =EY V) = S E() = np;
=1 =1

n

var(X) = E((X —E(X))?) =E (Z(Yi - E(Yi))>

=1

= Y E[(Y; —E(Y)’] + 2D E[(Y; — E(Y))(Y; — E(Y;))]
i=1 i#]

n
= Zvar(Yi) = npq.
i=1

Example 4.14 A random variable X taking value in N is said to be a Poisson random variable with parameter
Aif .
Ay
f@)=P(X =1i) = e, E(X) =\
1.

In fact, Poisson arises from Bionomial in the limit n — oo but np = A:

== (s () ) (1)

et 2 (1)

n—00 by )
ol
Exercise 4.8 Find the expectation of X (X — 1)--- (X — k + 1), where X is a random variable obeying the
Poisson distribution.

Solution. To evaluate the moments of the Poisson random variable, we use a little inspiration to observe that
fork > 1,

E(X(X—1)~~-(X—k+1)):ij(j—l)---(j—k—kl)e_’\;j
j=k '
N YT
SR RN

where the equalities follow from (i) the facts that j(j — 1) ---(j — k + 1) = 0 when j < k, (ii) cancelling part
of the factorial, and (iii) the fact that Poisson distribution has total mass 1. Using the last formula, it follows
that £X = A\ while

var(X) = EX? — (EX)?=FE(X(X - 1)+ EX - X2 =\

Example 4.15 A random variable X is said to be Geometric(p) if
P(X =k =(1-p)*"-p keN,

i.e., denoting the first success in independent trials with success probability p. Show that a geometric random

variable X has expectation E(X) = 1/p and variance var(X) = 1 — p/p?.
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4.5 Common discrete distribution

Proof. Letq:=1— p. Then

_ k—1 __ k—1 __
= kp" ' =p> ke" ' =p> aa
k=1 k=1 k=1
d 2 4 d ( 1 ) P 1
=p— () a)=pr = =-.
dq(; =P \1=g) " a7 T p
Note that
[o¢] o0 o0
X2) — ZkQqu—l =p [Z k?(k _ 1)qk—1 + quk—ll
k=1 k=1 k=1
=pqik(k— 1)g" % + 1 ZPqidiq’“ il
— p —~ d¢*" p
> 1 d? ( 1 ) 1
k
pq q =pq—— +
21 y Ll
(1-¢3 p p* »p
and thus 5 ) . .
var(X) = B(X2) - FB2(X) =4 4 - — =P
(X) = E(X7) (X) 2t T T e

O]

Example 4.16 Consider tossing an unfair coin with probability p(0 < p < 1) to get a head. What is the
expectation of tossing times such that a head and a tail have both occurred?

Solution. We use X to denote the number of tossing times when a head and a tail have both occurred. Then X
take values from 2, 3, - - -, and

P(X:k;):(17p)k_1p+pk_1(17p)7 k:2537
Thus

=> k(1-p*p+p(1—p)
k=2

Example 4.17(Coupon collector) Suppose there are N types of coupons. Define X to be

X := the first time to get a complete set {1,2,--- , N}.
Try to compute E(X).

Solution. Define Y}, := first time to get k distinct coupons and thus X = Yy = > (Y — Yi—1) + Y1. Note
N—-(k—-1
that Y, — Y1 ~ Geo (H) and thus

N
N N
E(Y; gEYk—Ykl—kEYl Z;N ) +1
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4.5 Common discrete distribution

1 1
= S 4.4 ——)~NInN+N —
LN+ 5+t ) nN + v +O<N>

where v ~ 0.5772156649 is the Euler-Mascheroni constant. O

Example 4.18(Exponential) Let X be a random variable on measure space (R, B3(IR), m) with probability
density function f(x) = )\e*’\x]l[oﬂroo)(:c) and distribution function F(z) = 1 — e~**. Then

PAB) = [ (o)
defines a probability measure with
m&yz/ e Mdr = 1.
0

X is then called obeying an exponential(\) distribution, denoted by X ~ Exp(\).
#: Exercise 4.9 Show that if X ~ Exp(\), then E(X) = 1/) and var(X) = 1/A2.

Solution.

00 A 0
E(X) = zhe Mdz = == [ zde™
0 -

oo
o
/ zde M = g~
0

oo [e'e]
- / e Mdx
0 0

1
A
Recall Lemma 4.3,

0o 00 S 00 2
E(X?) = / e Mdx = / 2?d(—e M) = —22e M|+ 2/ ze Mdr = -
0 0 0 0 A
Thus
2) _ 2 2 1 1
var(X) = E(X*) — (X)_)\z_ﬁ_ﬁ'

#: Exercise 4.10 Let X ~ Exp(A).
1. (Lack of memory) Show that for any s,t > 0,P[X >t+s| X > s] =P[X > t].
2. Find all continunous random variable such that P[X >t + s | X > s] = P[X > ¢].

Solution. . Note that ~
P(X >t)= / e Mdy = e M
t

and

P(X >t nNXxX > P(X >t
PX>t+s|X>s]= ( s S): ( +9)

P(X > s) P(X > s)
Lofs Ae Mdr e Atts)
N fsoo e Mdy e

= e M,

2. By condition we have
P(X X P(X >t
(X >t+snN >s): (X > +S):P(X>t)
P(X > s) P(X > s)

and thus H (z) := 1 — F(x), where F'(z) denote the distribution function of X, satisfies
H(t+s)=H(x)-H(s), s,t>0.
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4.5 Common discrete distribution

Define G = In H and then
G(t+s)=G(t)+G(s) s,t>0,

implying that G is indeed a linear function, i.e., G(z) = cx for some ¢ € R. It follows that F'(x) =

1-H(zx)=1—e".
O

Example 4.19 Let [0, t] be a given time period and N (¢) denote the number of times that a breakdown occurs
in the period [0, t]. If N (¢) obeys Poisson distribution with parameter A¢, show that 7', the interval between two

different breakdowns, obeys the exponential distribution.

Proof. By condition, N (t) ~ Poisson(\t), i.e.,

Atk
P(N(t)=k) = (A) e k=01,
Note that {T" > t} = {N(t) = 0}, and thus
o fort <0, Fp(t)=P(T <t)=0;

o fort >0,
Frt)=P(T<t)=1-P(T>t)=1-P(N(t)=0)=1—e,
implying 7" ~ exp(\). O
1
Example 4.20(Gamma distribution) Consider the probability mass function Py ;(A) := / m)\txt_le_’\xdx
A

for \,t > 0, where I'(t) := / - 2 e ®dzx is called the Gamma function. The Gamma function has the
following properties: ’

o I'(1)=1,T (;) = ymand fy1 = Ae ™

o I'(t+1)=1tI'(¢t) fort > 0;

oI'n)=n—-1I'(n—1)=(n—1)land fy, = (ninl)!e_’\w;

Exercise 4.11 Compute F(X) and var(X) for a Gamma distributed random variable X.

Solution. Using properties of a Gamma function,

DU rE+1)1 ¢
E(X)= <~ bem Ay = 2= = _,
(X) P(t)/o e (S HS W
Furthermore,
DU _ Lt+2) tt+1)
X =15 /0 TN 2
Thus

2
var(X) = B(X?) — E2(X) = t(’f;l) - (i) -t

Let X andY be two independent random variable with density function fx(x) and fy (y), respectively.
Then Z := X +Y has a density function

120 = [ ixG-niwdy= [ fx@)r(c -, @47
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4.5 Common discrete distribution

Proof. Note that by independence

Fu(z) = P(X +Y < / / L x@)fraady

:/Z [/oo fx (@ )dx] fr(y )dy—/Z/;fx(t—y)fy(y)dtdy
-/ (/_Z fx(t - y)fy(y)dy) .

Hence the density function of Z is

oo
— [ G- iy
—00
Now set z — y = x, we get

= /_OO fx (@) fy(z — z)dx

Proposition 4.6

Let X1, Xo,- -+, X, be independent random variables obeying the exponential(\) distribution. Then

X1+ Xy + -+ X, is a random variable with Gamma (\, n) distribution. .

Proof. First consider the case of discrete. Note that for a fixed z € R,

P(X—i—Y:z):ZP(X:x,Y:z—x):ZP(sz)P(Yzz—x)

= Z fx(@)fy(z — )
Furthermore under the condition of continunous,

Ixv(z /fX Vfy (z — x)dx

Definition 4.12

A Poisson process (N )s>o with rate \ satisfies
1. No =0;
2. Ny — N ~ Poisson(A(t — s)) forany 0 < s < t;
3. Negy Nyy — Nyyy -+, Ny, — Ny, are independent for any 0 < t1 <t < -+ < iy,

Alternative construction We will see an alternative construction to generate a Poisson process:

Proposition 4.7

Let 1, 7o, - , Ty be independent random variables with exponential(\) distribution. Define T,, = Z T
i=1

and Ny = max{n : T,, < s}. Then (N;)s>0 is a Poisson process with rate \.

[ )

Example 4.21 In figure ??, N; is equal to 2.

Proof of Proposition 4.7. o Ny = 0is trivial;

48



4.5 Common discrete distribution

o Now assume s = 0. Then

t
P(Nt=n)=P(T, <t,Tht1 >1) = / 1, (s)P(Tyy1 >t | T, = s)ds
0

t
- / J1,(5)P(rus1 > £ — s)ds
0
t )\n

_ n—1_—Xs_—A(t—s)
_/0 (= 1)!3 e e ds

)\n t
:( 1)'e_>‘t/ s ds
n — ! 0
A
= e

n!
o Finally we show N4 — Ng ~ Poisson(\, t). Assume Ny = n and by lack of memory,

P(Tyi1 > s+t —=Tn|Thy1 >5—Tn) = P(tpy1 >t) = P(ry > t) = e M.

O
Exercise 4.12 For X ~ Poisson(\), show that
E(X™) = AE[(X +1)"1].
Proof.
o )\k N N > L )\k—l
ny\ __ n’- - — - n—
B(X") =Yk e = e >k (]
k=0 k=1
o0 k./
K=k—1 _x 1A
k=0
= \E[(X +1)"7 1.
O
Example 4.22(Uniform distribution) A random variable X is uniformly distributed if
1, z€]0,1]
fx(z) = .
0, otherwise.
Then P(a < X <b) =b—a.
Example 4.23 Let X ~ unif]0, 1] and Y ~ unif]0, 1] be independent. What is fx .y (a)?
Solution.
a
+oo /1d:z::a, 0<a<l,
fxiv(a) = / fx (@) fy(a—z)dz =< 7%
—o0 / lde=2—-a, 1<a<?2.
a—1
O
Example 4.24 Let X1, Xo, -+ , X, be independent uniformly zero-one distributed.

n
1. Show that P(X; +---+ X, < z) = I—'forogxg 1;
n!
2. Let N :={n: X1+ --+ X, > 1}. Compute E(N).
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4.5 Common discrete distribution

n—1

o for z € [0,1]. Then
n—1)!

Proof. 1. By induction, assume F,,_1(z) =

5 — m)n—l

1 1
_ _ (
Fn(Z) = /(; an (.’ﬂ)Fn_l(Z — a:)dx = /0 1- Wﬂ{xgz}dx
z (Z _

_ /0 T _x)ln);ldx -Z.

2. Note that P(N > n) = P(X; + -+ X,, < 1) = F,(1). Then

o o 1
Ex=) P(N>n)=) —=e
n=0 nzOn'

Example 4.25(Normal distribution)
o We say a random variable X satisfies the normal zero-one distribution, denoted by X ~ N (0, 1) if its
1 oo
probability density function f(z) = ——¢~7*/2, Note that / e 2dy = /27
V2 —o
o We say arandom variable X satisfies the normal distribution, denoted by X ~ A (y, o2) if its probability

1 —(z—p)?

e 22 . We now have E(X) = p and var(X) = 0. In fact,

density function f(x) =

V2mo?
o0 1 20 2
E(X)= x e~ (@E—m)/20% 4,
)= [ o
y=xr—H /OO( + ) 1 e—y2/202d
—c0 v V2mo? Y
1

6_y2/20—2dy + /J“

oo
Y
/—oo V2mo?
U

Proposition 4.8

If X ~ N(u,02), thenY = Xa—,u ~ N(0,1).

[
Proof. Note that
PY<a)=P(X<ao+pu) = o _1 —(z—p)?/20° 4
S h w = V 27r02€ !
—0o0
y:% /a 1 _y2/2
= —e dy
oo VT
O
Proposition 4.9

IfX ~ N(0,1), then E(e!X) = et*/2. .

Proof. Note that

0o tx,—x2/2
E(eX) = / 4
() e W
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4.5 Common discrete distribution

1 o0 1 2 t2
_ —Lz-t)2 L
— e 2 e2dx
V2T /oo

2
=

#: Exercise 4.13 Given X7 ~ Exp(\1), X2 ~ Exp(\2) being independent. Compute:
1. the distribution and density function of min{ X7, Xs};
2. ]P)(X 1 < XQ).

Proof. 1. From the independence, for ¢ > 0,
P(min(Xl, Xg) Z t) =P

Thus

Fin{x,, x5} () =

frnin X1,X (t) =
{ 1 2} ()\1 T Az)ef()\lJrAQ)t, t 2 0.

2. Only a sketch solution:

P(Xl < XQ) = /OOO le(t)P[XQ >t | X = t]dt

_ /OO (t)P(X2 ;(21' E:”(;'l =1

/ le X2 > t)dt

= / A Mlem Ml dt
0

DY

Example 4.26 Let X ~ N(0,1) and Y ~ N(0, 1) be independent. Show that X + Y ~ N(0, 2).

Proof.

f / Fx(@)fr(z — 2)de / L g 1 =ty
z — X T
X+Y X\T)Jy 271‘ \/%

1,2
= 76_22
V2T —oo V2T
1

1,2
1%,

e_(x_%)Qda:

Nk
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4.6 Inequalities

#: Exercise 4.14 Let X ~ N(u1,07) and Y ~ N (uz2, 0%) be independent. Show that X +Y ~ N (u1 + pa, 03 +
2
03).

Proof. O

Let (Q, F, j1) be a measure space such that ;1(Q2) < oo. Then if f, — f a.e. and sup,,» |fn| < 00, then
[ = [

lim
n—oo

#: Exercise 4.15 Let (2, F,P) be a probability space and X :  — [0,00) is a random variable such that
E(X™) < M for some M and for any n € N.
1. Prove that P(X > 1) =0and P(X =1) < M,
2. Compute lim E(X™);
n—oo
3. If E(X™) = M for any n € N, show that P(X € {0,1}) = 1.

Solution. 1. For any £ > 0, note that
M}E(X”):/ X"dIP’)/ X"dP>(1+5)”/ dP=(1+4¢)"P(X >1+¢)
{0<X} {X>1+¢} {X>1+e}
Send n — oo, we get P(X > 1+ ¢) = 0. By continuity of measure,

1
PX>1)=limPX>1+-)=0.
k—o0 k
Furthermore,

M>E(X)>/ dP = P(X =1).
{x=1)

2. Note that for 0 < X < 1, X" | 0. By M.C.T,
lim XdP = / lim X*dP =0
{0<X <1} {

Follow the same process as 1, for a fixed € > 0 and any n, m € N, we have
M= EX"™™) > (1+¢)"P(X">1+¢)
By choosing sufficiently large m, we obtain
P(X">1)=0 foranyn.
Thus

lim E(X") = lim / X"dIP’+/ X”dIP’+/ X"dP | = P(X" =1).
n—roo n=o0 \ J{o<X<1} {1=X} {1<X}

3. Tt suffices to show that P(0 < X < 1) = 0. We claim that P(e < X < 1—¢) = 0 for any ¢ > 0.
Indeed, note that

B(X") > / X"dP + / X"dP
{X=1} {e<X<1—¢}

ZPX=1)+c"Pe<X<1—e).
Since EX™ is a a constant, but by 2, lim,, ,oc EX"™ = P(X = 1) and thus EX" = P(X = 1). Hence

we conclude P(e < X < 1 —¢) = 0. By continuity of measure,

1 1
P<0<X<1):khmP(E<X<1_E):O'
—00
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4.6 Inequalities

4.6 Inequalities

4.6.1 Chebychev

We use the shorthand
{f>2A={zeE: f(x) >}

Since
Aoy < f,

it follows that

M({f = A}) < ulf)

which is known as Chebychev’s inequality.
Example 4.27 Given a random variable X with finite expectation and variance. Then for every real number ¢

and integer k,
E(IX]5)

P(X] > 1) < =

Proof. Note that
EXF = /Xde > / xkap > tk/ dP =t*P(|X| > t).
{IX]>t} {IX]>t}

O

Example 4.28 Given a random variable X with finite expectation and variance. Then for every real number a,
var(X)
2

P(X —E(X)| = a) <
Proof. Note that

P(|X — E(X)| > a) = P((X — E(X))* > a”)

IA
Il

Example 4.29 If E(e!) < oo forany ¢t € R. Then P(X > a) = P(e!* > ') < e F(e!X).

n
Exercise 4.16 Let X, - - - , X, are independent variables such that X; ~ Bernoulli(p). Let X = Z X p=
i=1

np. Show that for any § > 0,

66 .
PO (ko) < (55

e 0 .
P(X <(1-6)p) < <(1—5)15> .

Proof. By Example 4.29, for any ¢ € R,
P(X > (14 8)p) = P(eX > t(149m) < =114 p(otX)
and
E(etX) = BletX1 ... etXn] = [EetXa]n
=(1—-p+e-p"< ep(e!=1)m

— ket =1)

N
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4.6 Inequalities

Hence
eu(et_l)
P(X > (140 < sy
Note that to minimize (e’ — 1 — ¢(1 + §)), the optimized ¢ is ¢ = In(1 + §). O
Corollary 4.1
In the same setting,
2
P(IX — | > 6p) < e 5* .
4.6.2 Cauchy-Schwarz
Theorem 4.5
Let X, Y be random variables and then
E [ XY] < E(X?)E(Y?). 48)
Proof. Note that
E[(aX —bY)?] = a*B(X?) — 2abE(XY) + b*E(Y?) >0, Va,b
Thus its discriminant 4(E*[X Y] — E?(X)E?(Y)) < 0. O

Remark The equality holds if and only if X = cY for some ¢ € R.
Example 4.30 Let Y > 0 with F(Y?) < co. Apply the Cauchy-Schwarz inequality to Y1y-oy and conclude

P(Y >0) > (EY)?/E(Y?).

Solution. Following the hint and by Cauchy-Schwarz,
E(Y?)E(1{y.q)) = E(Y*)E(Liysoy) = E(Y*)P(Y > 0)

Y20
> B (Ylysq) = EX(Y).
O
Corollary 4.2
| Cov(X,Y)| < v/var(X) var(Y). (4.9) O
Proof. Note that
Cov(X,Y) = E(X — E(X))E(Y — E(Y))
< VE[(X — E(X))E[(Y - E(Y))?]
O
Example 4.31 Let X > 0 be a random variable with E(X) = 1. Show that for a fixed t € (0,1), P(X > ¢) >
(1—t)?
E(X?) "

Proof. Define Y := 1y~ Note that E(Y?) = E(]lfbt}) =E(L{x>n) =P({X >1t}). Then
P(X >1)-E(X?) = E(Y?) E(X?) > (E[XY])? = EX(X1(x>4)
= (EX —E(X1xpy))? = (1-1)%
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4.6 Inequalities

Corollary 4.3 (Payley-Zygmund)

Let Z > 0 be a random variable and t € (0,1). Then

P[Z > tE(Z)] > (1 — t)2g%. (4.10)
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Chapter 5 Multi-dimensional random variables

5.1 Joint distribution function

The joint distribution function of random variables X and Y are defined to be
F:R? —0,1]
(z,y) — P(X <2,V <y).

Definition 5.1

[0, +00) satisfies
z oy
Faw = [ [ s o)

and thus

Moreover,
b
P(X € [a,B,Y € [cd]) =/ /df(u,v)dudv

= F(b,d) — F(b,c) — F(a,d) + F(a,c).

If X and Y are absolutely continunous random variables, then the joint density function f :

RZ —

By the extension theorem, for A, B € B(R),

P(X € A)Y € B) :/ / f(u,v)dudwv.
AJB
Note that the event {Y < oo} and {X < oo} are of probability one, thus
li_)rn F(z,y) = P(X <z,Y <0) = P(X < x);
Y—00
lim F(z,y) = P(X <o00,Y <y)=P(Y <y),

T—r00

that is
Fx(z) = F(z,0),
Fy(y) = F(00,y).

Then from the definiton of joint distribution, for discrete cases,
P(X=2)=) P(X =Y =y)
y
P(Y =y) =) P(X==zY =y);
x

whereas for continuous cases,

Fx(z) = F(a, ([ o )au= [ g

Pz, 00) = /
) = Floe) = [ ([~ swon)ao= [ o

—0o0 —0o0




5.1 Joint distribution function

and

fx(z) = / 7 fay)dy:
Fr(y) = / " e, y)de.

These results are called the marginal density functions.

X and Y are independent <= F(z,y) = Fx(z) - Fy(y) < f(z,y) = fx(z) - fy(y).

Example 5.1 If X, Y have joint mass function
flz,y) =

a®pY

eiaiﬁ? x? y 6 N7
x!ly!

then X and Y are independent:
o’ _ By _ o®
fx(@) =) fluy) = e azae f= e,
yeN yeN
implying X ~ Poisson(«) and Y ~ Poisson(/3).

Definition 5.2

Cov(X,Y) = E[(X — E(X))(Y — E(Y))].
Especially, Cov(X, X) = Var(X).

For a two-dimensional random variable (X,Y), the covariance between X andY is defined to be

(5.1

Definition 5.3

We say X andY are uncorrelated if Cov(X,Y) = 0.

From these definitions, we know
o X and Y are positively-related if Cov(X,Y") > 0;
o X and Y are negatively-related if Cov(X,Y") > 0;
o X and Y are uncorrelated (distinguish this with independent!) if Cov(X,Y) = 0.
Property Cov(X,Y) = E(XY)—- E(X)E(Y).

Proof. Note that
Cov(X,Y)=E[XY -XE(Y)-YEX)+ E(X)E(Y)]
= FE(XY)-EX)E(Y).

Indeed, “uncorrelated” is weaker than “independence’:
Property X andY are independent —> Cov(X,Y) = 0 whereas the inverse is not true.
Example 5.2 Let X ~ N(0,02) and Y = X2, Then X and Y are dependent but

Cov(X,Y) = Cov(X, X% = B(X - X?) - E(X)E(X*) =0

The equality holds since E(X?™ 1) =0,m =1,2,--- (we will verify this later) provided X ~ N(0,0?).

Property
var(X £Y) = var(X) + var(Y) £ 2Cov(X,Y).

Proof. Note that
var(X £ Y) = E[(X +Y) - B(X £Y)]?
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5.1 Joint distribution function

= B{[X — E(X)] £ [Y — E(Y)])}?
= E{[X ~ EQOP + [Y ~ E(Y)]}" £2[X — EQO)][Y ~ E(Y)]
= Var(X) + Var(Y) +2 COV(X, Y)~

O
@ Given X and 'Y being uncorrelated, we have
var(X £Y) = var(X) + var(Y).
A generalization is: for n random variables X1, Xo, - - - , X, one has
n n n i—1
var (ZX1> = Zvar(Xi) —l—QZZCOV(Xi,Xj). (5.3)
i=1 i=1 i=1 j=1
Property Cov(X,Y) = Cov(Y, X).
Property Cov(X,a) = 0 for any constant a.
Property Cov(aX,bY) = abCov(X,Y) for constants a, b.
Property Cov(X +Y,Z) = Cov(X, Z) + Cov(Y, Z).
Proof. This is because
Cov(X+Y,Z2)=FE[(X+Y)Z]|-E(X+Y)E(Z)
= E(XZ)+E(YZ) - E(X)E(Z) - E(Y)E(Z)
= [E(XZ) - E(X)E(Z2)]+ [E(YZ) - E(Y)E(Z)]
= Cov(X,Z)+ Cov(Y, Z).
]
Definition 5.4
For an n-dimensional rv X = (X1, Xo, -+, Xy), its expectation is given by
E(X) = (B(X1), E(Xy), -, E(Xn)).
Its covariance matrix cov(X) is given by
E[(X - B(X))(X — BE(X))']
var(X7) cov(Xy,Xo) -+ cov(Xy, Xp)
cov(X1, X2) var(Xa2) <o cov(Xe, Xy)
cov(Xp, X1) cov(Xp,Xo) -+  var(X,) s
cov(X) is symmetrically positive semi-definite.
Proof. Symmetricity is trivial since cov(X;, X;) = cov(X;, X;). Now pick any real vector ¢ = (c1,¢2,- -, ¢p)’
note that
var(X7) cov(Xq,X3) -+ cov(Xy, Xy) o
cov(X1, Xo var(Xs <o cov(Xg, X
C/COV(X)CZ (61,62,--' )Cn) ( . ) ( ) ( . n) “
cov(Xp, X1) cov(X,,X2) -+ var(X,) Cn
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5.1 Joint distribution function

n o n
= Z Z C;Cj COV (Xi7 Xj)

i=1 j=1
=3 "N E{lei (Xi — B (X)) e (X; — B (X)))]}
i=1 j=1
=E{Y Y e (X — E(X)] e (X — E(X)))]
i=1 j=1

=1 7j=1
2
= E[Zc (X; — E(XZ))] >0
i=1
O
Definition 5.5
The correlation coefficient of X andY is definde to be
XY
Corr(X,Y) = CovX,¥) (5.4)
\/Var(X)4/Var(Y) s
Let X and Y have expectation u x, iy respectively, considering the normalization:
X — Y —
X* — l’l’X’ Y* — /‘I’Y7
ox oy
one has x v Cov(X.T
Corr(X*,Y") = Cov( — 'MX, — MY) = ov(X,Y) = Corr(X,Y).
ox oy OXO0y

Example 5.3(Multi-dimensional uniform distribution) Let D be a bounded region in R™ with volume (area)

Sp. If the random variable (X1, Xo,-- -, X},) has a joint density function
1
a0 (.’,El,.’BQ,"',.CIfn)GD,
f(m17$27“' 73771) = SD (55)
0, otherwise,

it is called (multi-dimensionally) uniformly-distributed.

Now for a sub-region G C D, one has

P(X,Y) € G) = //G F(z,y)dady //G SlDd:cdy _ gi

Example 5.4(Multi-dimensional normal distribution) Letan n-dimensionalr.v. vector X = (X3, Xo, -, X,,)
have covariance matrix V' = cov(X) and expectation vector @ = (a1, as, - - ,a,)". Then the distribution with
density function
1 1
flxr,ze, - yxn) = f(x :exp{— z—a)Vix—a }
( )= @) = e @ -V e - a)
is called a n-deimensional normal distribution. If we set V! = (ri;), then we also have

n

1 1
T1,L2," * ,&Tp) = ———=¢€X —— E rii(r; —ai)(z; — a;
f( 1,2 ) (277)”detV p 2”:1 J( )( J J)

Example 5.5(Buffon’s needle) A bunch of parallel straight lines are placed on the ground with a gap of length 1

and one throws a needle with length 1 on the groumd. Try to compute P(the needle intersects with some lines).
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5.1 Joint distribution function

Solution. We use Z to denote the distance from the midpoint of the needle to the nearest line whereas © to
denote the angle formed by the needle and the lines. Then Z ~ unif]0,1/2] and © ~ unif[0, 7]. The joint
density function of (Z, ©) is
2 1
— (279) € [07 7] X [O,TI‘]
f(z0)=4qT 2
0, otherwise

Note that the event “intersection” is given by

1
B:={(2,0):0<z< §sin9}

) T %sin@ ) T 2
P(Intersecton) = f(z,0)dzdg = — [ dé dz = — —sinfdf = —.
B m™Jo 0 m™Jo 2 7T

and thus

0 I (2)sin O

Example 5.6(Standard bivariate normal distribution) Two random variables X and Y are said to have the
standard bivariate normal distribution with correlation coefficient p (verified in later sections) if their joint
probability density function is given by

1 _ a2 —2pzy+y?

fxy(z,y) = ———=e 2000 | —1<p<l.
(.9) 2my/1 — p?
Then

l. //f(a;,y)dxdy: 1;

2+y2

1 _a
2. Forp=0, f(x,y) = ge_ 2 ,and X and Y are independent normally zero-one distributed;

3. The covariance of X and Y satisfies:
Cov(X.Y) = B(XY) ~ ECOEY) = [ 2y fla,)dody =

Proof. Only verify 3. Indeed,

_ (z—py)? 1
e 2(1-p2)

LHSZ//CW\/%\Z*2 Jon

- vz
/

2
e_y?dxdy

_(z—py)?
e 200-p2) dp

dy/mﬁ

_2dy

_2dy
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5.1 Joint distribution function

O]

Example 5.7(General bivariate normal distribution) Two random variables X and Y are said to have the
general bivariate normal distribution if their joint probability density function is given by
1 e_ %Q('I 7y) ,

fxv(x,y) =
(@) 2wo1094/1 — p?
where
1 v —m\ L w—pmy—pe, (y—p2\’
—p o1 01 02 02
Then
|. Their marginal density: X ~ A (u1,0?) and Y ~ N (uz, 03);
2.
Cov(X,Y
p(X,Y) = ov(X, ¥) =p (p=0 <= X,Y are independent)
var(X) var(Y')

1. If X and Y are Gaussian, then X and Y are independent <= X and Y are uncorrelated.
0 2k
1t
2. For X ~ N(0,1), we know E(etX) = e2t* = g ook Note that
k=0

[e o] oo

EeX) =B} tnjn) -y %t”E(X”).
n=0 ’ n=1

Observing the coefficients:

E(X*#t) =0, E(X*)=(2k—-1)!! = (2k —1)(2k —3) - - - 1 = number of pairs of {1,2,--- ,2k}.

Let X1, Xo,- -+, Xy, be normal distributed r.v.s such that E(X;) = 0. Then

BElXi1 X X,) = > II BXxix;).
pairings w of {1,2,--- ,2n} (i,j)€m

Example 5.8 Follow Wick’s Theorem, E(X1X2X3X4) = E(XlXQ)E(X3X4) + E(Xng)E(X2X4) +
E(X1X4)E(X2X3).
Exercise 5.1 Randomly pick two numbers from 0,1, --- ,n. Try to compute the expectation of the absolute

value of their difference.

Solution. We use X and Y to denote the first number and the second number, then

P(X:z‘,Y:j):(nJrll)n, i, =0,1,---,n, i#j.
Therefore, '
B(X — V) = (njl)n; { ;Ou ) +j§;1<j i)
‘<nfl>n§{i(i§”+(n_i)([7§_ﬂ+l)}
= (n+11)n Z; {’2 * n(n; 2 - m}



5.2 Conditional distribution

6 2 2 3

_2n+1+n+1 n n+ 2

O

#: Exercise 5.2 Randomly pick n points from the interval (0, 1). What is the expectation of their farthest distance?

Solution. n points will segerate the interval (0, 1) into n 4+ 1 segments. We use Y7,Y3, -+, Y, 41 to denote
their length. Then Y7, Yo, --- | Y, are i.i.d., with the same expectation. That is
1
EY) =EY;)=---=E(, = —.
(Y1) = E(Y?) (Yni1) i
-1
Note that the farthest distance is precisely Ys + Y3 + - - - + Y),, thus the result is i ) O
n
5.2 Conditional distribution
5.2.1 Discrete cases
Let X and Y be two discrete random variables.
Definition 5.6
The conditional distribution function of Y given X = x is
Fyix(ylo)=PY <y|X=2)=) PY =y |X=ug), (5.6)
Yi<Yy
for every x € R, such that P(X = x) > 0. The conditional mass function is
frix(ylz) =P =y | X =x). (5'7)*

L flzy) = fx(@) - fyix(y | 2);

2. if X and Y are independent, then fy|x(y | ) = fy (y) for all z.
Example 5.9 Let X and Y be independent r.v.s such that X ~ Poisson()\;), Y ~ Poisson(A2). Find the
conditional distribution of X given X +Y = n.

Solution. Note that X + Y ~ Poisson(A; + A2) and thus
PX=kX+Y =n)
P(X+Y =n)
 PX=k)PY =n—k)
N P(X+Y =n)
L]fe—h . Agik
k! (n—k)!
(A"
n!
ol AEAG R
N k'(n — k‘)' ()\1 + )\2)”

= ) k:0717"'7 .
( k ) <)\1+>\2> <>\1+/\2> "

That is, given X +Y = n, one has X ~ Bionomial(n, p), where p = A1 /(A1 + \2). O

P(X=k|X+Y =n)=

— o

[§]

e*()\1+)\2)
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5.2 Conditional distribution

5.2.2 Continuous cases

Let X and Y be continuous r.v.s. Like previously, set Ax — 0, considering
P(Y y,x < X <z + Azx)Ax
Plx < X <z+ Azx)Ax

x—i—Ax
/ / f(u,v)dudv

PY<y|lz< X <z+ Az =

(x)Ax
/ flz,v)dvAz
~ — 00
fx(x)Ax
and we define
Definition 5.7
The conditional distribution function of Y given X = x is
Y fz,v)
F z) = ~Zdwv, (5.8)
for every x € R, such that P(X = xz) > 0. The conditional mass function is
f(z,y
fyix(y|z) = ( )- (5.9)
Ix (l‘) &
Example 5.10 Suppose the joint density function of X, Y is
1
—e /ey, z,y >0,
fla,y) =Y
0, otherwise.
Try to compute P(X > 1|Y =y).
Solution.
‘,1:7 ‘,1:7 y
fX\Y(x7y) - fy(y) - oo ( )
/ f@,y)dw
0
e * e~ /Ydy e¥
¥ Jo
— lefﬂﬂ/y.
Yy
Thus 0 q 00
PX>1|Y=y) :/ e Ydx = —e Y| = e MY,
1Y 1
O

Exercise 5.3 Given compound random variables X (U, V), Y (U, V') and their joint density function fx y, try
to compute the joint density function of U, V.

Solution. Let R := (—o0,x] x (—o0,y]. Let T be the C* transformation whose Jacobian is nonzero and that

maps region .S in the uwv-plane onto a region R in the zy-plane. Then

//RfX,Y(x,y)dﬂfdy:/SfX,Y(w(u,v),y(u,v))‘8EZ:Z;‘dudv

o)
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5.2 Conditional distribution

and thus J
fov (u,v) = fxy(z(u,v),y(u,v)) ‘(98: i%

O

#: Exercise 5.4 Let X ~ Unif(1,2)and Y ~ exp(z) given X = z. Try to compute the joint distribution function
of XY.

Solution. By condition, Y | X = x ~ Exp(x) and thus
flzyy) = fx@)f(y|z)=ze™, 1<zx<2,y>0.

T =0,
Consider the transformation w  with Jacobian
y= ;7
0
L
g ou Jv| 1
ay oyl (L T
ou v v v?
u = zy,
Note that we also have and thus
v=ux,
1 1
fov(u,v) = fxy (v, E) ‘— —pe S = 1<u<2,u>0.
v v v

Then by marginal density,
2
Jo(u) = / e "dv=e"" u>0.
1
O

#,  Exercise 5.5 Show that the correlation coefficient of the bivariate normal distribution N (p1, 2, a%, a%, p) is

precisely p.
Proof. Start with Cov(X,Y).
Cov(X,Y) =E[(X — E(X))(Y — E(Y))]

1 oo
_2ﬁ0102ﬂ/_m/_00 (z = 1) (y — p2)-
2
exP{_Q( 1 [@—m) o) = )

+
1_p2) 2

o1 0102
2
@/5@1 }dx 0.
03

The terms inside the square brackets are exactly
2 2
(ac MY u2> +< 1_p2yuz> ’
o1 09 02
Consider the transformation
1 (x N u2>
U = -p 9
1—p? o1 02

_Y—H2
v = )
02
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5.3 Conditional expectation

then
{ T — Q=01 (u\/l—pQ—l—pv)
Y — p2 =02V

dz dy = |J|du dv = 61092/ 1 — p? du dv.

i.e.,

Cov(X,Y) = 0;12 / / (uv\/ 1—p%+ pv2) exp {—; (u? + v2)} du dv.

Note that
/ / uvexp{ (u —i—v)}dudv:O
/ / v? exp ! (u2 + vz) du dv =27
—00 J —00 2

0102
o
Cov(X,Y)
ooy

and thus

Cov(X,Y) = p - 2T = poi0oo

Corr(X,Y) =

5.2.3 Total probability formula; Bayes formula

Rewrite (5.9) as
f(yaw) = fX(‘r)fYLX(y ‘ .le), (5.10)

flzy) = fy (W) fxy (| v), (5.11)
and compute the marginal density, we will get

- / T @) fyix(y | 2)da, (5.12)

z) = / T @) fyix(y | 2)dy. (5.13)

Now substitute (5.11) and (5.13) back to (5.9), obtaining the Bayes:
W) fxpy (| y)

/ fy(y fX|Y(33 | y)dx
fx(x )fY|X(y | )
/ fx(@) fyix(y | z)dz

frix(y | ) ; (5.14)

(5.15)

fX|Y(37 | y)

5.3 Conditional expectation

5.3.1 Discrete cases

Let X and Y be discrete r.v.s.
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5.3 Conditional expectation

Definition 5.8

For any x, the conditional expectation of Y given X = x is

p(z) =ElY | X =2] = nywx y | ). (5.16)

The conditional expectation of Y given X is a function of X :

E[Y | X] := o(X) (517) o

Remark EJY | X]is a random variable denoting the “best guess” of Y~ given the information of X.

Proposition 5.1 (Towering property)

E[E(Y | X)] = B(Y).

e
Proof. Note that
E(Y | X)] fo EY | X =2] =) > fx(@) yfrixy | )
z Yy
=3 uf@y) = ufv(y)
= E(Y).
O

Remark
1. Towering property is useful to compute F(Y);
2. Let {A;} be a partition of {2, then
=> P(A)E(Y | Aj)

Example 5.11 For a coffee shop, we assume that IV, the number of customer, satisfies N ~ Poisson(\) and
each customer has probability p to carry a dog and probability 1 — p of not carrying a dog. Let K denote the
number of dogs. Try to compute E[K | N|, E(K), E[N | K].

Solutuion. Note that E[K | N = n] = np since given N = n, K ~ Bionomial(n, p). Thus E[K | N] =
E(K)=E[E(K | N)]=p- E(N) = pA. Finally,
In(n | k) = fKN(; [ ) v (n)
K (k)
_ ra—ph e
Yonsk ()PP = p)nk e

I;g/\lC —pA (L=p)" kA Tk (1—p))\

o n—k!
k k n kAn k _
/\ e—PA kawT —(1=p)A
(1 )" ek~
— )\'n (1-p)A
(n—k)! c ’

implying given K = k, N — k is Poisson ((1 — p)A). Thus
EIN|K=kl=EN—-k|K=kl+k=(1-pA+k, FEN|K =(1-pI+K.
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5.3 Conditional expectation

5.3.2 Continuous cases

Definition 5.9

For any x, the conditional expectation of Y given X = x is

ola) = BIY | X =al = [ " ylvix(y | )y

E[Y | X] := ¢(X)

The conditional expectation of Y given X is nothing but a random variable, a function of X :

(5.18)

(5.19) &

The following property holds for both discrete and continuous cases:

Proposition 5.2
For X and Y being independent, one has E|Y | X| = E(Y).

)

Proof. We prove the discrete case. Note that
EY | X =z]=) yfyix(ylz) =) yfr(y) = EY)
Yy y

for any z;.

For X and Y being independent and for any g : R — R, one has E[g(Y) | X] = g(Y).

Again, we have tower property in continuous sense:

Proposition 5.3 (Tower property)

E(E(Y | X)) = E(Y).

Proof. Note that

o0

/ (,y dydw—/ / yf(y | z)fx(x)dydw
/ -

= E(E(

—00

))-

Remark If Y = 1 4, we have
/ fx(x)P(A| X = z)dz.

[ v
{ / yfy|w>dy}fx< o= [ B X = a)fx(@)ds
Y| X

Corollary 5.1

From the proof of tower property, given X discrete, one has

=Y E(Y|X =x)P(X =)

whereas given X continuous, one has

= /_OO EY | X =2x)fx(x)dz

(5.20)

(5.21)
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5.3 Conditional expectation

Example 5.12 Recall the bivariate standard normal distribution:

1 1
[ay) = ——ese T

21/ 1 — p?

(2® —2pzy+y?)

Try to compute E(Y | X).

Solution. Note that

Fa) = o=e% A HE
€T T2 ¢ 2(1-p%)
Y ¢ V2r (=)
. 1 <2 1 _ (y—pz)?
Since fx(r) = me‘? one has fy|x(y | z) = mc 2(-+") | Then

EY |X=2x2)=px, EY|X)=pX
O

Example 5.13 A man is at a three-way intersection. It will take him 3 hours to reach his destination if he
chooses road one. However, he will get back to the origin after 5 and 7 hours if he chooses road two or three,
respectively. Suppose that he will choose each road with a equal probability. What will be the average time to

reach his destination?

Solution. Let X denote the time he needs. We use random variable Y to denote the road he chooses, i.e.,

{Y =i} denotes the event that he chooses road i. By the condition,

P(Y:l):P(Y:Q):P(Y:?)):%.

Note that

EX|Y =1)=3;

EX|Y =2)=5+ E(X);

EX|Y =3)=7+ E(X).
From (5.20),

E(X)= é[3+ 5+EX)+7+E(X)|=5+ ;E(X)

and thus F(X) = 15. O
Example 5.14 Let X, X5, - - - be random variables that are independent with [V, another random variable only

taking values in N. Show that

E()_X;) = E(X1)E(N).

i=1

Proof. By Tower property and (5.20),

E(ﬁ}XQ:E[E(iV: ﬂ ZE<2X|N—TL>( =n)

=1
= Z E(Z ) (N =n)= ZnE(Xl)P(N =n)
= n=1

B(X1) i nP(N = n) = E(X;)E(N).
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5.3 Conditional expectation

#:  Exercise 5.6 Show that
I. E(aY +bZ | X)=aE(Y | X)+bE(Z | X)fora,b € R;
2. (tower property) E{E(Y | X, Z) | X} =E(Y | X)=F{EY | X) | X, Z}

Proof. 1. We have

E(aY+bZ|X::U):Z(ay+bz)P(Y:y,Z:z|X:aj)

y7
:aZyIP’(Y:y,Z:Z|X:x)+bZzIP’(Y:y,Z:z\X:x)
Y,z Y,z

:aZyP(Y:y\X:m)—i—bZzP(Z:z|X::c)

=aB(Y | X =2)+bE(Z | X =x).
2. Define the function g by
g(z,2) =E[Y | X =x,Z = 2]

Then
E{E(Y|X,Z)| X=2}=) g, 2)P(X =2/, Z=2| X =)

:Zg(x,z)P(X:x|Z:z)
:ZE[YyX:x,Z:z]P(X:x\Z:z)

=Y > yP(Y=y|X=2,Z=2)P(X =2|Z=2)

B PY=yX=x,Z=2) PX=z7=2)
—Z:zy:y PX=22Z=2 PX=u

=Y yP(Y =y | X =2)=E(Y | X =)
Y

—E{E(Y | X)| X = 2,7 = z}.

#1 Exercise 5.7 If E(Y') and E[h(Y")] both exist, show that E[h(Y) | Y] = h(Y).

Proof. We prove the discrete case. Let ¢(Y) = E[h(Y) | Y]. Note that for any y;(i = 1,2,---), h(y;) is a
constant and hence is independent with Y. Therefore

e(yi) = E[h(yi) | Y = yi] = h(y:)
and one deduces that E[h(Y) | Y] = h(Y). O

4y Exercise 5.8 Show the following properties:
I E[g(X)Y | X] = g(X)E(Y | X):
2. E(XY)=FEXEY | X)]
3. CoviX,E(Y | X)] = Cov(X,Y).

Proof. 1. Note that E(¢(X)Y | X =2) = g(z)E(Y | X = ) and thus E[g(X)Y | X] = g(X)E(Y |
X);
2. Note that E(XY) = E[E(XY | X)] = E[XE(Y | X)];
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5.3 Conditional expectation

3. Note that
CoviX,E(Y | X)|]=E[X-E(Y |X)] - EX)-E(Y)
=FE(XY)-EX)-E(Y)

= Cov(X,Y).
O]
For multiple conditioning, we define
Definition 5.10
EX Y, Z] = ¢(Y, Z)
such that
d eP(X=z|Y=y,7Z=2)
oy,2) =EX |Y =y, Z=2]=4q 2
/If(.’E, Y, Z)dl’ = fYZ(y7 Z)
)
Proposition 5.4 (Tower proposition)
Given g measurable,
E(EY | X)-g(X)) = E(Y - g(X)). N
Let (2, F,P) be a probability space and G C F be a sub-o-algebra.
Definition 5.11
The measure theoretic definition of conditional expectation E[X | G| is a random variable such that
1. @g = E[X | G| is G-measurable.
2. Forall A € G, we have/ E[X | G]dP = / XdP.
A A
We define E[X | Y] = E[X | o(Y)]. Iy

Example 5.15Let G = P(2), then by 2, E[X | G] = X as..
Example 5.16 Let G = {@,Q}, then by 2, E[X | G] = E(X).

70



Chapter 6 Random Walk

1-dimensional random walk .
Sp =S + Z Xi,
i=1
where X; are i.i.d random variables. We set P(X; = 1) = pand P(X; = —1) = ¢. If p=¢ = 1/2, itis called
the symmetric simple random walk.

More generally, many results under the assumption that X; are i.i.d and E(X 12) < 00.

d-dimensional random walk Now we assume S,, € Z<.

Lemma 6.1 (Spatial homogenuity)

P(Sp=j|So=a)=P(Sp=j—al|Sy=0). ©.1)

Proof. Note that

P(Sy=j|So=a)=P(Sp=j—a|S=0=P>_ Xi=j-a).
=1

O
Lemma 6.2 (Time homogenuity)
P(S,=j|So=a)=P(Sp+m =17 | Sm =a). (6.2) O
Proof. Note that
n m-+n
LHS=P() Xi=j—a)=P( ) Xi=j—a)=RHS.

i=1 i=m+1

O
Proposition 6.1 (Markov property)
The position after m steps do not depend on the previous m steps:

P(Sn—l—m:j’SO,Slf"7Sm):P(Sn+m:j‘Sm)- Py

Recurrence and Transience Let 7 = 0 and for k > 1,let T := inf{n > T~ ' : 5, = y}.

Definition 6.1

We say that a random walk is recurrent if it visits its starting position infinitely often with probability
one and transient if it visits its starting position finitely often with probability one. That is y is called

recurrent if Py[T,) < oo] = 1 and is called transient if P,[T, < oc] < 1. *

Remark
1. If y is recurrent, by Markov property, ¥n € N, P(T, yk < 00) = 1. Thus P,(S,, = y infinitely often) =
Py(limsup,,_,..{Sn» =y}) = 1.



oo
2. If y is transient, let N, := Z L5, =y} (number of times of visiting y). Then

n=1
P,(T} < o0)

B(Ny) = 3PNy > ) = 3 AT < 00) =3 [A(T) < o)l = 1= w5

< 00.
y

y is a recurrent state (or transient state) if and only if E(Ny) = 400 (or E(N,) < +00).

Proof. Start with 1-D symmetric random walk. We define
1, ify==«
dy(z) =

0, else

Note that
E(Ny) =P(X;=1)-E(Ny | X1 =1)+P(X1 =-1)- E(Ny | X1 = —1) + ¢,
= LB(Net) + S E(Neya) +9,
with E(NNg) = 0 and E(Ny) = 0. Solve the recurrence,
E(N,) ~ cN
and thus E(N,) — +ooas N — +o0.

For random walk on Z¢ (d > 2), let G(x) := E(N,) denote the mean number of returns at z before hitting
the boundary. Then

Glz) = % S G(2) + 4,

zZ~T

G(z)=0, ifze0

1
Let Af(x) = 2 Z( f(2) — f(x)). Then the recurrence can be written as the discrete Green’s function:

AG(z) = —0y(z)
G(z)=0 ifz€0

Set y = 0, then

o),

implying y is recurrent in d = 2 and transient in d > 3.

Recall solving PDE by Fourier transformation:
AG(z) = —dg(z), inRY,
then
Gk = / k2 G () da
Rd

AGk) = (K + k3 + -+ ED)G(k)
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thus )
Gk) = —.
AT
d
Actually on Z¢, f;(z) := e’** are eigenfunctions of A with A fy = i fx, where A\, = — Z(l — cos k;). For
j=1
example,ond = 1,
1 1
Afu(e) = 5 filz +1) + 5 fule = 1) = fi(z)
1 . 1 .
= fk(.fli) <2€1k + 567”{ — 1>
= fx(z)(cosk — 1)
Fourier transformation
Gk)= > Gx)-e ™
z€Boxn
inverse Fourier transformation: )
G —zka:G k
()= [y 2o ¢ G)
keBox}y,
where
2
Boxy = { (n1,--+ ,nq) [—N, N] OZ}
then
A ) Ga)e™™ = NG(k) =
keBox
Using inverse:
1
G(0) = §: Gk > i
| BOXN | k€Box ‘ BOXN ‘ keBox}yy ijl(l —cos k])
1 / 1
—_ — dz,
2m) Ji—gma 2?21(1 —cos ;)
note that 1 — cos z; ~ |x|? and thus O

Example 6.1 Consider the simple random walk on Z with probability p to go right and probability g to go left.
If the walk starts at a, try to compute P(.S,, = b).

Solution.
_ Z MTTL(a7 b)prqnfr
r

where M) (a, b) := number of paths with Sp = a, S,, = b such that makes r right moves. In fact, r — (n—r) =

1 n
b—aandthusr = —(n+b—a), M) (a,b) = . O]
a r=glntb-a) Myla,b) (;m+b_@>
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Proposition 6.2 (Reflection principle)

If a,b > 0, then Nop(a,b) = Nyp(—a,b) where Ny, (a,b) denotes the number of paths starting at a,
ending at b, and visting 0 somehow; Ny, (—a,b) denotes the number of paths starting at —a, ending at b

without extra conditions. P

Proof. LetT = inf{n : S, = 0}. O

In a ballot, eventually candidate A has a votes and B has b votes such that a > b. Now we revisit the votes
one by one, try to compute P(A is always ahead of B | a > b).

Indeed, S; = number of votes for A at time ¢ — number of votes for B at time 3.

Theorem 6.2

Let S be a simple random walk on Z with Sy = 0, then

P(Sn:b7SZ7é07Z:1727 7n):_

Proof. Assume b > 0, then the number of paths from (0, 0) to (n, b) that does not visit 0 is:
Nn—1(17b) NOn 1(]- b) n 1(1 b) Nn 1 )

- (%(n —n1_+1b— 1) ( (n— 1+1b+1))
“ () (50— "500)
- (%<nn+ b))

)
(=1

b
= 2 N,,(0,b).
—Na(0,0)
b
ThusP(Sn:b,Si;éO,izl,Q,---,n)z%P(Snzb). O

The Ballot problem is now converted to a simple randow walk starting at 0: If we get a vote for A, we go

right. Otherwise we go left. What we want is exactly P(S,1p =a—0,5; #0,i =1,2,--- ;a+b) = Z _T_ Z
Corollary 6.1
1 1
P(S; #0,i=1,2,--- ,n) = —E(S,) < —+/var(S,) < @
n n n v,
Theorem 6.3
1
Suppose that Sy = 0 withp = q = 5 Then for a > 0,
P(max Sy > a)=P(S, > a)+ P(S, >a+1).
1<k<n v

Proof. Note that
LHS = P( max S > a; S, )+P(max Sk = a; S, <a)

1<k<n 1<k<n

and
P(max S > a;S, > a) = P(S, > a).

1<k<n
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Let Tp, = inf{n > 1 : S,, = a}. Define the reflected walk
Sns itn < T,
2 — S, ifn > T,.

Sin:

Note that 2a — S, has the distribution of SRW starting at a. By Markov property, S,, has the same distribution
as the SRW, i.e.,

P(max Sg > a;S, <a)=P(S, >a)=P(S, >a)=P(S, >a+1).

1<k<n
O
We say (W})i=0 is a Bronian motion if
1. Wy =0;
2. Forany t > s > 0, W, — Wy ~ N(0,t —9);
3. Wy = Wy , Wiy — Wy, -+, Wy, — Wy, | are independent.
4. The map t — W, is continuous.
For a Bronian motion,
P(max Wy > a) =2P(W; > a).
t€[0,T]
. . . . 1
Consider a one-dimensional random walk with p = q = 7 Then
P(last visit to 0 in [0, 2n] is 2k) = P(Sor, = 0) - P(Sap—2r = 0).
Proof. Note that
LHS = P(S9, = 0)P(S; #0,i =2k +1,--- ,2n | Sg = 0).
Let 2m = 2n — 2k (i.e., we shift the random walk 2k steps leftwards), then by Ballot Theorem,
. 1 1 ad
P(Si #0,i=1,2,-+,2m) = o —E(Sm) = 5 — -2;%-13(52m = 2k)
() ()
2m P m+k
1 2m —1 2m —1
-9 - —
21@ Gtes) =Gl
()Y
2
= P(Som = 0).
O
Recall the Stirling Formula:
n
n "2 (2)" Vamn. 6.3)
e

Then

N 2K\ poe 1
P(Sy.=0)= (=) - 2 .
(S = 0) (2) (k> —
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Thus
P(last visit to 0 in [0, 2] < 2nz) = Y P(So = 0) - P(San_ok = 0)

k<nzx

1
k%;\ﬁx/w(n—k)
1
- /o nm/u(l - u)du

= —arcsinx.
T

#)  Exercise 6.1 Consider the random walk on {0, 1, - - - N'} that reflects at 0. More precisely, let Sy = &, 511 =
S; + X; , where X; = 1if S; = 0, otherwise P[X; = 1] = p and P[X; = —1] = ¢q. Compute the expected
number of steps to first reach state IV, as a function of k. Distinguish the cases p = ¢ and p # q.

Solution. Denote Ej, as the expected number of steps to first reach IV with Sy = k. Then

En=0
Eo=1+E;
Epy=p(1+Ex1)+q(1+Eq), 1<E<N-1
That is ) .
Epp=-Ep— 2By — -
p b b
1 q 1
Eyy2 = —Epy1 — —Ep — —
o T
1

q
Eypio — Epy1 = — (Bpp — Bx) — = (Br — Ep—1)
b b
Let z, = E. — Ej._1, then Tt = %xk-‘rl — %xk_,_l

q
Tp42 — Tk+1 = D ($k+1 — )

S ) .
p
q

(Eg+1 — Ex) — (B — Ex—1) = (p) (Ey — 2E1 + Ey)
O
. . . . 1
4 Exercise 6.2 In one-dimensional random walk with p = ¢ = 3 one has
E(number of steps before hitting 0, N) = k(N — k) ~ O(N?).

1
#: Exercise 6.3 In Z%(d > 1) random walk with p = ¢ = 5 one has

E(number of steps before hitting boundary) ~ O(N?).

In 7Z2-LERW,
E(length of LERW) = O(N°/%).

In 7Z3-LERW, there is o such that
E(length of LERW) ~ N“.
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Theorem 6.7 (Self-avoiding walks)

In 72-SAW, SAW,,, the distance between the destination and the origin satisfies:

Vvar(SAW,) ~ O(N3/4).
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Chapter 7 Functions of random variables

7.1 Functions of random variables

Example 7.1 Let X ~ N(0,1) and Y = X?2. Try to compute the probability density function of Y.

Solution. Note that
P(—\/gngg\/@) ify > 0;

0 else.

Now let v o1
oly) = / —=e " e

oo V2T

Then
P(=vy < X < V) = ¢(Vy) = o(=vy) = 20(Vy) — 1

Finally,

1 1

) =2¢'(y) 5= = —=c¥* y=0.
O
The following corollary is a generalization of Exercise 5.3:
If (X1, Xo,- -+, X,,) has joint density function f, thenY1,Ya,--- Y, = T(X1, Xo,- -, X,,) has density
function
8(%1,¢T2, o 7'/1;71)
2°°° ¢ — €T 9°°° ¢ ’...71; 9°°° ¢ o .
i v (1 yn) = f(@1(11 Yn) n(y1 Yn)) '8(y1,y2,--- o)
Proof. Note that
P(Y1,---,Y,eT(A) =P((Xy, - ,X,) €A = / flxy, - ,xp)dey - - - day,
A
8(1:17:1727 U ,l’n)
= T s Un)y LT s dy---d
/Af( (1 Yn) n(y1 yn))‘a(yl’y%m ) | Qv dun
O

Example 7.2 Let X, Xo, - have joint density function f. Define X; = aY; + bY2, X5 = ¢Y] + dYs with
ad # be. Find fy, v, (y1,y2).

Solution. The jacobian is given by:

Oz, Ony
dyr 0 b
I Dl I A I P Y
Oy Ozz) e d
Oy Oy2

and thus
Iviye (1, y2) = flayr + by, cy1 + dy2) - |ad — bel.



7.1 Functions of random variables

Example 7.3 Suppose independent X, Y has joint density function f. Show that U := XY has density function
o wy 1
fu(lu) = / f (v, 7) —dv.
oo v/ vl

Proof. Consider the transformation

U= Ty
v=2x
and then
r =7
U
y=—
v
with Jacobian
0 1
1
J = = —
M=l w =
v v2
Then )
U
fov(u,v) = f (v, *) =
v/ |
so that

fu(u) = /_i fxy <v, %) : |71j’dv.
]

Example 7.4 Suppose independent X, Y has joint density function f. Show that U := X/Y has density

function

fu(u) = /_ fxy (u,wv)|v|do.

Proof. Let V =Y, considering the transformation

x
u=—
Y
v=y
and then
T =uv
Yy=v
with Jacobian
vou
1= Y = ol
0 1
Thus
f(u,v) = fx(uv) - fy (0)[J]| = fx(uv)fy(v)|v]
so that

fu(u) = /oo fxy(uv,v) - |v]dv.
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7.1 Functions of random variables

Example 7.5 Let X1, X5 be independent r.v.s obeying exp(\). Find the joint denstiy function of Y1 = X; + X
X1
dY, = —.
Ry,

Solution. Note that from

Y1 = X1+ Xo
X1
Y —_ =
2 X,
we get
1Y,
X =
Ty
i
X, —
2T 11T,
with Jacobian
Y2 Y1
I+ (1+y2)? ly1]
Jl=1 4 BRGCERSE
_n (1+y2)
) (1+y2)?
Thus
_ Y1Yy2 Y1 |y1’
fyiya (1 02) = fxix. <1 1 +y2> (1+ y2)2
1
— )\26—/\y1 -
(T

Example 7.6 Let X1, Xo ~ AN(0, 1) be independent. Then X; 4+ X5 are independent.
Example 7.7(Rayleigh Distribution) Let X,Y be independent A/(0,1). Find the joint density function of

Y
R=vX?2+Y2 0= arctany.

Solution. Note that

X =Rcos®
Y = Rsin®
has Jacobian
0 —rsind,
g = |“0 TR
sinf  rcos@
Furthermore, , .
fxy(z,y) = ge‘%
Thus 1
fre(r,0) = fxy(rcosf,rsinf) - r = 276*7"2/27‘_
s
That is,

© ~ unif[0,27), fr(r) = re "2,

1
#)  Exercise 7.1 Show that R?, © are independent and R? ~ exp <2>
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7.1 Functions of random variables

Solution. Let Z = R2. Note that

x =+/zcosb,

y = +/zsinf
has Jacobian

cos —+/zsin 6

23/ z 1

1= si\I{; )

N \/zcosb

Thus
o1 11,
fze(2,0) = fxy(Vzcos,\/zsinh) - - = ——e
’ ’ 2 272

and © ~ unif[0, 27), R? ~ exp(1/2). O

The Rayleigh Distribution suggests that one can use uniform random variables to generate standard normals:

Exercise 7.2 Let Uy, Uz ~ unif|0, 1] be independent, then
1. Z1 = —2InU; ~ exp <;) :P(—2lnU; >2z)=P(U; < e_%) —¢ 3 forz > 0;
2. (Box-Muller transformation) Zs = 27Uz ~ unif|0, 27). Take
R?>=—-2InUj,
O = 27U,

and then

X = /=2InUj cos(2rUs),
Y = /-2InUj sin(27U3),
with (X,Y) ~ N (0, 1) being independent.

d 1
, & —fe_%zl. Hence for z; > 0, Z1 = —2InU; has
dz; 2

=21

N

Solution. Let z1 = —2Inwuq, then u; = e~

density function
1 1

= 76_52(1

2

duy
dzl

That is Z; ~ exp(1/2). Similarly, one deduces that Z5 ~ unif(0, 27).

f2u(z1) = fu, (e727)

1 1
From 22 + 3% = —2Inwuy, Y tan(2mug), we have u; = exp _§($2 + y2)} and ug = o arctan .
x 7r x

Thus the Jacobian is

Our duy
or 0Oy 1 1
J- - e {5 )
Ouy Oup)  2m p{ 2 )
oxr Oy
Finally,
1 1
P (o) = fns(un) -1 = g-ew {56 0 b oo <o <00
implying (X,Y") ~ N (0, 1) being independent. O
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7.1 Functions of random variables

Example 7.8 Let X, Y ~ N(0, 1) be independent and define
U=01X,
V = 09pX + 09 MY.
Show that their joint density function is

1
nyv(u,U) _ e—%Q(u,v)7
2wo1094/1 —p

where

Example 7.9 Let U, V be bivariate normal. Compute E(UV) and E(U | V).

Solution. As in Example 7.8, we normlize U and V to obtain X and Y which are independent and noraml
distributed. Then
EUV) = 0’102/)E(X2) + 0109V 1 — p2E(XY) = 0102p

since by independence, E(XY) = F(X) - E(Y) =0-0=0.
Now given U = u, we have V' = 02,0— +o9/1—=p?Y ~ N < pu,a3(1 —p )) Therefore,

EV|U=u)= G—lpu, EWV|U)= U—lpU, var(V | U) = o3(1 — p?).

O
Exercise 7.3 Given X1, X», - -+ , X, being independent and X; ~ exp(};), show that
Ai
P(X; =min{X, Xs,--- , X,,}) = .
(X X, X R VIS VS
Proof. By independence, we know (X1, Xo, -, X,,) has density function
n
f('l‘lv ./L'Q, - ’$n) — H )\je—Ajij
i=1
Note that
{Xi = min{Xl,Xg, e ,Xn}}
={X1 2 Xj,-, Xi1 2 X;,0 < X; <00, Xip1 2 Xy, Xy 2 X
Thus
P(X; = min{Xy, Xo,--- , X;,})
/ / / / / H A ’ef)‘jxjdxl <o-dajoqdxigy - - depde;
L)
0 ALt A+ Ay
[
Exercise 7.4 Given X1, X», - - - , X,, being continuous and i.i.d, show that

1
P(Xn > maX{X17X2a T 7X774*1}) = -
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7.2 Generating functions

Proof. Let X;(i = 1,2,--- ,n)has probability density function f(x). Then by independence, their joint density

function is

f(xlvx?v"' 7$n) = Hf(xl)

Note that
{Xn > maX{XlaX2a cet aXn}} = {Xl <Xp, Xo< Xy, X1 < X, —00 < X, < OO}

and thus

P(X,, > max{X, X9, -+, X,,}) =/ / / Hf(aci)dxldxg o odxy,_1da,
—o0 J —o0 -0

The distribution of X is given by F'(z) = / f(t)dt and hence

P(X, > max{X1, Xa,-- , Xn}) = / T () dF (2) = Epn(xn)] - %

—0o0 —00

7.2 Generating functions

Definition 7.1

A sequencea = {a; : 1 = 0,1,2, - -} of real numbers may contain a lot of information. One concise way

of storing this information is to wrap up the numbers together in a “generating function”. For example,

the (ordinary) generating function of the sequence a is the function G, defined by

Gu(s) := Z ans"

n=0

I (n
and ay, can be computed by a, = EGEL )(0).

N
Example 7.10 Let a,, = ( > , then
n

Guls) =Y (JZ) &= (1+5)V.

n

Example 7.11 Let a,, = €'Y, forming an orthornormal basis of L]0, 27), then

GQ(S) zzeinesn_ 1

1 —efs”
n=0

Theorem 7.1 (Convolution of sequences)

Given {ay}, {bn}, we define c,, = apb, + a1b,—1 + - - - + anbo, then
G.(8) = Ga(s) - Gp(s).

Proof. Note that



7.2 Generating functions

Definition 7.2

Let X be a discrete random variable taking value in N. The probability generating function of X is given
by:
Gx(s) = E(sX) = ZP(X =n)-s".
n=0 *

Example 7.12 For X ~ Bernoulli(p), Gx(s) = (1 — p) + ps.
Example 7.13 For X ~ Geometric(p),

Gx(s) = Z(l —p)n_lps" _ pSZ(l —p)n_lsn_l B ps

= 1-(1-p)s

Example 7.14 For X ~ Bionomial(n,p), we have the decomposition X = Y; 4+ --- 4+ Y}, for each Y; ~

Bernoulli(p) being i.i.d. Then
Gx(s) =Gy, (s) Gy, (s) = (1 —p+ps)".
Example 7.15 For X ~ Poisson(\),

If X and 'Y are independent, then

Gx1y(s) = Gx(s) - Gy(s). 9

Example 7.16 Let X ~ Poisson(A) and Y ~ Poisson(u) be independent. Show that X +Y ~ Poisson(A+p).

Proof. Note that
Gx(s) = ek(s—l), Gy (s) = eu(s—l)’
Gx4y(s) = Gx(s) - Gy (s) = eATm=1)
Thatis X + Y ~ Poisson(\ + p). -

Definition 7.3
In general, the probability generating function of a random variable X is Gx(s) := E(s%). Iy

Note that G does indeed generate the sequence { f(i) : ¢ > 0} since

E(s¥) =) s'P(X =i)=> s'f(i).

k i

Remark
1. There is a radius of convergence R such that G x (s) converges absolutely for |s| < R and diverges for
|s| > R where R > 1 (because Gx(1) = 1). The sum is uniformly convergent on sets of the form
{s:|s| < R’} forany R’ < R.
2. For |s| < R, one can differentiate and integrate term by term.
3. If Ga(s) = Gy(s) for s € (—9,9) for some § > 0, then G, = G, and a,, = %G(”) (0) = by.
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7.2 Generating functions

4. (Abel’s Theorem) If a; > 0 and G,(s) converges absolutely for |s| < 1, then ligl Ga(s) = Go(1) =
S

o9
E an.
n=0

If X has generating function G(s), then
1. G'(1) = E(X);
2GR =EX(X-1)--- (X —k+1)].

Proof. Note that

d
gE(sX) = E(Xs* ),

d

=G (s) = BIX(X = 1)+ (X —k +1)s%7)

We know the radius of convergence R > 1 and thus one can apply Abel’s Theorem to s 1 1. 0

Example 7.17 We now have
l. E(X)=G\(1);

2. E(X?)=EX(X -1)+EX)=G"1)+G'(1);

3.

var(X) = B(X?) — E*(X) = E(X(X - 1))+ E(X) — E*(X)

=G"(1) +G'(1) — (G'(1))>.

Example 7.18 Consider the coin flip satisfying Bernoulli(p). Palyer A wins if the m-th head occurs before the

n-th tail. Try to compute P(A wins)?

Solution. We use P, to denote the probability of event “the m-th head occurs before the n-th tail”. It is

elementary, by conditioning on the outcome of the first toss, that the probability P,,,, that A wins, satisfies

Pmn:p'mel,n"i'Q'Pm,nfl

Prno=0
Py, =1

Consider the generating function G(z,y) = Z Prpz™y™:

m=0
n=0

G(gj, y) = Z b mel,nxmyn + Z q- Pm,nflxmyn

m>=1
n=0

+ ) Pouy" + > Pmoz™

n=0 m=0

— Z px - Pm—l,nxm_lyn +

m>1
n=0

+ >y Pan1z™y

m=0
n>1

Thus

G(z,y) = (pr + qy)G(z,y) +
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7.2 Generating functions

1

1=y —pz—qy)
from which one may derive the required information by expanding in powers of x and y and finding the

G(:I;vy) =

coefficient of zy". O
Definition 7.4
The moment generating fucntion of X is given by Mx (t) := E(e!X) = Gx (e). &
If t < R, then
> " n n 1 n
Mx(t) = 3 P ) = M)

Example 7.19 For X ~ Poisson(\), one has
Mx(t) = Gx(e") = XD,
Example 7.20 For X ~ N (0, 1), one has
Mx(t) = ezt

For y ~ N'(u, a?), one has
2t2

My (t) = B(77H10) = ebtes®

Theorem 7.2 (Random sum formula)

For a series of i.i.d. random variables {X,,} with generating function Gx, we have the random sum

N
Sy = Z X for N being independent of X;. Then the generating function of Sy is Gn(Gx($)).
i=1
Vi

Proof.
Gsy(s) = E[s] = E[E[s°" | N]| =) P(N =n)E[s*" | N =n]

=Y P(N =n)E[s"]" =Y P(N =n)(Gx(s))"

= Gn(Gx(s)).
O

Example 7.21 Let N ~ Poisson(\) with X; be i.i.d. Bernoulli(p). Set Sy = X; + - - - + X,,. Try to compute
the distribution of Sy .
Solution. Note that

and

implying Sy ~ Poisson(Ap). O

Definition 7.5

The joint generating function for X1 and X is define by

GX17X2 (Sla 52) = E(Si(lséQ)'
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7.2 Generating functions

X1 and X5 are independent <= Gx, x,(s1,52) = Gx,(51)Gx,(s2).

Proof. =. Recall that if X; and X3 are independent, then E[f(X1)g(X2)] = E[f(X1)]- E[(g(X2))] for any
measurable f, g. Take f(z) = s{ and g(x) = s3, then Gx, x,(s1,52) = Gx, (51)Gx,(52).
<=. Only for discrete cases. Note that

EPBACIN) :ZP (X1 =i, Xo = j)st 5],
Gxi(51)Gxy(s2) ZPXl—Zslszz—J

Now we compare the coefficient of s/ s} and obtain that P(X; = i, X2 =j)=P(X; =9 P(X2=1). O
Example 7.22 Given independent X and Y obeying N(p1, o2), find the joint distribution of X +Y and X — Y.

Solution. Compute the joint generating function:
E[et(X+Y)es(X—Y)] _ E(e(t—i-s)X)E(e(t—s)Y)
(t+s)+ 1 2(t+s) u(t—s)+3 Lo2(t—s)?

—_ 62,ut+02t2 e’ 32.
Thatis X +Y ~ N(2u,20%) and X — Y ~ N(0,20?) and they are independent. O

Exercise 7.5 How many methods are there using 1, 2, 5, and 10 to sum up for 30?

Solution. We assign z, 22, 2%, and 2! to represent 1, 2, 5, and 10 respectively, with their powers indicating

multiples of those values. This leads us to the generation function:

G)=(0+z4+22+ - )A+24+24+ VA +224+ 204+ ) A+ 21042204 ..).
The coefficient of 2 in this function precisely reflects the number of ways to form the sum m using combinations
of 1, 2, 5, and 10. For example, z* can be decomposed as z! - 2! - 21 - 21,22 . 22,22 . 21 . 2! and its coefficient

is 3 in G(z), that is, there are three ways in total to sum up for 4. In general,

1 1 1 1
G(Z)_llefz2lfz5lleo

and what we want is the coefficient of 230

Ldg’OG(z)
300 dz30 |
O
Exercise 7.6 Show that
Z <m+j—1> <n+k:—1> B <m+n+l—1)
y J k l
j+k=l
Proof. First recall that
n
1 =
+z Z (k:)
k
and
1 (—n)(=n—1) » (=n)(=n—1)(-n—-2) 3
=1—
(14 2) neE 2 S 3! 2T
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(n+k—1) n+k—1
=2 (-1 (n— 1)k _zk:(_l)k< k >Zk'

k

1 1
Note that (—1)'xLHS is exactly the coefficient of 2! in and (—1)'xRHS is exactly the
(I4+2)m (14 2)"
1
coefficient of 2! in ——————. 0
(14 z)mtn

Exercise 7.7 Let U : Q — [0, 1] be a random variable and U (w) := (0.£1(w1)&2(w2) - - - &nwy) - - - )2 be the
binary expression (that is each &; only takes value in 0 or 1). Show that &; ~ i.i.d. Bernoulli(1/2) <— U ~
Unif[0, 1].

Proof. Note that

and
E(e™) = E(e t iz 5t 2") HE (€278 = <1+1e;>
i>1

Now we continue with

T (1,1 & (1ot (1 o
— — 27/ 2’L _ ’!’L
E<2+26> 62”1;[1( +e)( “ )
~ ﬁ —
This is exactly the moment generating function for U ~ Unif|[0, 1]:

E(eY) = /1 edu = 1= et.
0

Exercise 7.8 A coin is tossed repeatedly, heads appearing with probability p on each toss.

(a) Let X be the number of tosses until the first occasion by which three heads have appeared successively.
Write down a difference equation for f(k) = P(X = k) and solve it. Now write down an equation for
[E(X) using conditional expectation. (Try the same thing for the first occurrence of HTH).

(b) Let N be the number of heads in n tosses of the coin. Write down G (s). Hence find the probability
that:

(1) N is divisible by 2,
(2) N is divisible by 3.

Solution.  (a) The initial sequences T, HT, HHT, HHH induce a partition of the sample space. By con-
ditioning on this initial sequence, we obtain f(k) = qf(k — 1) + pqf(k — 2) + p?qf(k — 3) for
k > 3, where p + ¢ = 1. Also f(1) = f(2) = 0, f(3) = p>. In principle, this difference equa-
tion may be solved in the usual way (see Appendix I). An alternative is to use generating functions.
Set G(s) = Y22, s*f(k), multiply throughout the difference equation by s* and sum, to find that
G(s) = p3s3/ {1 — qs — pgs® — p?qs®}. To find the coeflicient of s, factorize the denominator, expand
in partial fractions, and use the binomial series.
Another equation for f(k) is obtained by observing that X = k if and only if X > k — 4 and the last four
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tosses were THHH. Hence -
J(k) = qp® (1 -y f(i)> . k>3
i=1

Applying the first argument to the mean, we find that u = E(X) satisfies p = ¢(1 4+ u) + pg(2+
1) + p*q(3 4+ w) + 3p® and hence pu = (1 + p + p?) /p*.
As for HTH, consider the event that HTH does not occur in n tosses, and in addition the next three tosses
give HTH. The number Y until the first occurrence of HTH satisfies
P(Y >n)p’q=P(Y =n+1)pg+P(Y =n+3), n>2
Sum over n to obtain E(Y) = (pg + 1)/ (p*q).
(b) Gn(s) = (g + ps)™, in the obvious notation.
(1) P(2 divides N) = {Gn(1) 4+ Gn(—1)}, since only the coefficients of the even powers of s
contribute to this probability.
(2) Letw be a complex cube root of unity. Then the coefficient of P(X = k) in % {GN(1) + Gn(w)+
Gy (W)} is
%{1+w3+w6} =1,if k=3r

%{1+w+w2}:0,ifk::3r+1

%{1+w2+w4}:0,ifk:37'+2

1 in
for integers . Hence 3 {GN(1) + Gn(w) 4+ GN (w?)} = Z}ioj P(N = 3r), the probability
that IV is a multiple of 3. Generalize this conclusion.

O
Definition 7.6
Let { X, }n>1 and Y be random variables, then we say X,, converges in distribution to Y, denoted by
X, 2, if ILm P(X, <z)=P(Y < z) = Fy(z) for all x such that Fy is continuous at .
n—oo *
Theorem 7.4
If My, (t) — My () for all t € (=6, 5), then X,, - Y. .
Theorem 7.5 (Chernoff bound)
N
Let X; be i.i.d. Bernoulli(p) and define the partial sum X = Z X;. Then
i=1
e’ "
PX>(1 < | — .
[ (14 0)np] ((1+5)1+5>
@
Theorem 7.6 (Hoeffding inequality)
n
Let X; be i.i.d. with X; € [a;,bi] and p =">  E(X;). Then
i=1
P(|zn:X | >t)<C ep{ iy }
i~ 2SO XPY T . e (-
i=1 > i (b — ai)? S
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Let X be a random variable with E(X) = 0, X € [a,b]. Then

E(e'X) < est (b=a)?,

7.3 Galton-Walter process

Suppose that a population evolves in generations, and let Z,, be the number of members of the nth
generation. Each member of the nth generation gives birth to a family, possibly empty, of members of the
(n + 1)th generation; the size of this family is a random variable. Furthermore, suppose that Zy = 1 and
the number of children for each individual is i.i.d. and each individual has generating function G. Let
Gn(s) = E(s%).

n times

Proof. Note that Z,, = X1 + Xo +--- + Xz, _,, where X, is the number of members of the nth generation
which stem from the :th member of the n — 1th generation. These variables are independent and are identically

distributed with the same distribution. By random sum formula,

Gn(s) = Gn1(Gx, (8)) = Gn1(Ga(s)) = Gna(G(5)).

O
In practice, we can evaluate moments of Z,, to moments of Z;:
no?, Bl
Let u = E(Zy) and 0 = var(Zy). Then E(Z,) = pu™ and var(Z,) = o2 (u — 1)L
y m#EL
w—1
Proof. Differentiate G,,(s) = G(G,—1(s)) and set s = 1:
G%(l) = G/(Gn—l(l))GIn—l(l)
obtaining F(Z,) = pE(Z,—1) and hence F(Z,) = p".
Differentiate G,,(s) = G(Gp—1(s)) twice and set s = 1:
Gn(1) = G"(1)G, 1 (1)* + G ()G (1)
Note that
G"(1) = B[Z1(Z1 - 1)] = B(Z}) - BE(Z1)
—var(Z)) + (B(%))* - E(Z1)
=0+ 4’ —p
and thus
Gn(1) = G" ()P 4 pGr_y (1),
Solve the recurssion to get the desired. O
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Example 7.23(Geometric branching) Assume P(Z; = k) = p¥q where ¢ = 1 — p and G(s) = E(s%') =
n—(n—1)s 1
R p=q=7,

n+1-—mns 2
@ =" —ps@" ")

pn+1 _ qn+1 _ps(pn _ qn) v P q:

%ps‘ Show that G (s) =

Extinction and non-extinction Note that

n _ _1

n+1’ p—q—2
P(Z,=0)=G,(0) = n n
q(p" —q")

oo
Asn 1 400, one has {Z; =0} 1 U {Z,, = 0} = {extinction}. Finally,

n=1

1

o 2
P(extinction) = 1
2

Also note that F(Z;) = P and thus the final conclusion is an extinction happens in probability 1 if £(Z;) < 1
q

whereas there is a positive probability of infinite growth given E(Z;) > 1.

o If w = E(Zy) < 1, then P(extinction) = 1;
o If w = E(Zy) > 1, then P(extinction) < 1;
o If u = E(Z1) = 1 and 0® = var(Z1) > 0, then P(extinction) = 1.

Moreover, if we set ) = P(extinction), then 1) is the smallest non-negative solution to s = G(s).

Proof. Letn, = P(Z, =0), thenn,, = G,,(0) = G(G,,—1(0)) = G(np—1). Take n,, — 1, we have n = G(n).
Now I claim that:

Proposition 7.1

If ¢ > 0is a solution to ¢ = G(p), then n < . N

Proof of the proposition. Indeed, G(s) = FE(s#!) is increasing in [0, +oc) with

m=G0)<G(p)=¢, n=Gm)<Glp)=¢- -
and thus 7, = G(n,—1) < G(¢) = . Sending n — oo, we get the desired. O

G(s) is increasing in [0, +-00) such that G’(1) = pand G”(s) = E(Z1(Z1 —1)s%172) > 0 since Z takes
value in N (that is G(s) is convex).

A glance at Figure 7.1 (and a more analytical verification) tells us that these intersections are coincident if
p = G'(1) < 1. On the other hand, if ;1 > 1 then these two intersections are not coincident. In the special case
when 1 = 1 we need to distinguish between the non-random case in which 02 = 0, G(s) = s, and = 0, and
the random case in which 02 > 0, G(s) > sfor0 < s < 1,and n = 1. O
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1

7.4 Characteristic functions

Definition 7.7

The characteristic function of X is defined by
b(t) = E(eX) = / e f(x)dx = E(costX) + iE(sintX).

Example 7.24 For X ~ Cauchy(1), its characteristic function is
/+OO pite 1 da = /+°° cos ta:2 dz
o w1 4a?) —oo (14 a?)

To start the computation, we define a contour I" as a semicircle with diameter [— R, R] on the real axis. Next,

itz itz
we define the function f(z) = 7'('(262 Y = s +ei)(z — The pole of f(z) lies exactly at i. At z = i:
' €itz
9(z) = (z—i)f(2) = m
is analytic so the pole is simple and
—t
e
R ) =g(1) = —.

By Residue Theorem,

/ f(2)dz = 2mi Res(f,i) = e "
r
Send R — 400, noting that

1 itz
/ e dz—/ £ 4
R+ (C+7T1+Z

That is the arc of the semicircle has integration 0 and finally
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Im

-R 9] R Re

Figure 7.2: The contour

Theorem 7.8

The characteristic ¢ satisfies:
1. ¢(0) =1,|p(t)| < Lforanyt € R;
2. ¢ is uniformly continuous;

3. ¢ is positive semi-definite: forany ty,--- ,t, € R, 2z1,--- , 2, € C,

Z QS(tZ — tj)ZiZ_j 2 0
12

Before proving the theorem, we first introduce some consequences in real analysis:

Lemma 7.5 (Fatou)

If fn = 0, then
o < T )
1. /hgr_l}lcgffndp < hnrggf/fndu,

2. Ifsup fn < f, and/fd,u < 400, then

/limsup fndp > lim sup/fnd,u.

n—o0 n—oo

Remark In a probabilitic way: If X, > 0, then
E(liminf X)) < liminf E(X,,).

Proof. Note that liminf f,, = sup,,,~ inf,>m fn, then gy, 1= inf,>p, fr T liminf f,,. By M.C.T,,

/limgmd,u = / sup gm = lim g, du.
m>=1

m>1

/ gmdp < / fndp

Taking inf with respect to n on both sides, we obtain

/gmd:u< igf /fnd:u

/liminf fndp = lim/gmdu < lirginf/fndu

On the other hand, Vn > m,

Send m — +o0, getting

Remark
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1. The equality may not be attained, i.e., there is { f,,} such that / liminf f,, < liminf / fn: Let frn(x) =
Ly n41)(z), then lim inf f,, = 0.
2. If { fn} are not non-negative, Fatou’s Lemma may fail: Let f,,(z) = —1, 41)(2).

Theorem 7.9 (Dominated Convergence Theorem(D.C.T))

Let (0, F, ) be a measure space. {f,}, f are measurable functions such that
1. fn— fae;
2. there is an integration function g such that |f,| < g,¥n > 1, and / gdp < 400,

then f is integrable with li_>m fndp = / fdu.

Q@
Proof. Since f,, + g > 0, by Fatou,
/liminf(fn + g) < liminf [/fn —l—g] = liminf/fn+/g,
that is,
/f < liminf/fn.
Similarly, g — f, = 0 and by Fatou,
/liminf(g—fn) < liminf [/g—fn] = /g—limsup/fn
that is
limsup/fn </f.
In conclusion
limsup/fn < /f < liminf/fn
and this reduces to lim / fn= / f. O
Theorem 7.10 (Bounded Convergence)
For () < +o0, if
1. fn— fae;
2. thereis K < 400 such that |f,| < K a.e., then /fn = /f.
Q@
Proof. Put g = K and apply D.C.T.. O

Proof of Theorem 7.8. First prove 3. Note that
Z E(ei(ti_tj)X)ZiZ_j — Z E[eitiXe—ithZiz—j]
i,j i,J

- E[Z ez e”szj]
i’j
2
~5(% ) >0
Continue with 2. Note that

|6t +h) = $(t)] = [E( M) — B(Y)| = [B(* (¢ —1))| < B(|e" ~1])

eltiX 2
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7.4 Characteristic functions

By Bounded Convergence, }lzirr%) E(lehX — 1)) =o0.
%
As for 1, one has

6(t)] = \ / Ze"tﬂﬂf(w)dx < [T resisa = [ Zf(m>dm=¢<o>=1.

—00
O
Theorem 7.11 (Bachner)
If ¢ satisfies statement 1,2 and 3 in Theorem 7.8, then there is a unique probability measure P such that
B(t) = / e dPp.
Q@
Theorem 7.12
1. If 9*)(0) exists, then
¢"(0) = *E(X"),
from which we see
¢'(0
E(X) = E ) , Var(X) = —¢"(0) + (¢(0))".
E|X*| < oo, if k is even,
2. If o¥)(0) exists, then X7 /
E|X* 1| < 00, ifkisodd.
3. IfE(|X|¥) < +oo, then
(i) .
Bt) = TE(XJ) + o(tF).
Jj=0 Q?
Theorem 7.13
If X and Y are independent, then ¢xy (t) = E[e*XHY)] = ¢ (t) gy (¢). O
IfY = aX +bfor some a,b € R, then ¢y (t) = ¢ x (at). 0
Definition 7.8
The joint characteristic function of X and 'Y is given by
¢(S,t) _ E[eisX-i-itY]. *
Theorem 7.14
X andY are independent <= ¢(s,t) = ¢px(s)py (t). O

Theorem 7.15 (Analytic extension of M (t))
Let M(t) = E(e!X),t € R, and ¢(t) = E(e"™),t € C, be the moment generating function and

characteristic function, respectively, of a random variable X. For any a > 0, the following three
statements are equivalent:

1. |M(t)] < +oo for |t < a;

2. ¢(2) = E(e!Y) is analytic in the strip | Re(z)| < a;
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7.5 Common characteristic functions

1
o1
3. The moments my, = E(X*), k € N exists and hm (%) P
k—oo \ k! a

If any of these conditions hold for a > 0, the power series expansion for M (t) may be extended
analytically to the strip |Im(t)| < a, resulting in a function M with the property that ¢(t) = M (it).

7.5 Common characteristic functions

Example 7.25(Delta Measure) We have fx(a) = 1 and ¢(t) = E(e?X) = i,

Example 7.26(Bernoulli(p)) ¢(t) = ECY = pett +q.

Example 7.27(Binomial(7, p)) Note the decompositon X = Y; + --- + Y], with ¥; ~ i.i.d. Bernoulli(p).
Then

E(eitX) — (E(eitYl))n _ (peit + q)n_

)\k
Example 7.28(Poisson()\)) Recall that f(k) = — 1€ e, then
p(t) = ti Zeztk —X e “—)\'
Example 7.29(Exponential())) Recall that f(z) = Ae™ ]1[0,+oo)($). Then
it X O it A A
t) = B(eX) = it )M g = .
00 = BE) = [ emaede = 2

. L g2
Example 7.30(Normal) ¢(t) = E(e?*X) = / e"e~T dz whereas M(t) = E(etX) = e2'". By analytic
R
extension, ¢(t) = M (it) = e 2 IfY ~ N(p,0?),then Y = p + o X for some X ~ N(0,1) and
¢Y(t) — eiutE(eiatX) _ eiut—%a2t2.

Indeed, for X ~ N (0, 1) note that

- [t E S [t

n=0
(x7) 0, n=2m-—1,
Recall that E(X™) = 2m)! Thus
(2m — 1)l = ﬂ, n = 2m.
2m . m)
— . = —_— — =€ .
(2m)! 2m.m! 2) m!
m=0 m=0
Example 7.31 (X1, -+, X;,) ~ N(0,V) if and only if Cov(X;, X;) = V;;. Their joint density funciton is
1 _l,Ty-1,
T1,  ,Tp) = —F——=€ 2
flax = ey
For t1,--- ,t, € R, the joint characteristic function is
E(e’i(t1X1+"'+tan)) — / tlxl“’ +tnzn) *ffTV d.']:
V(2m)rdet V
Consider the diagonalization of V' ~!: there is orthogonal matrix B and diagonal matrix A = diag(A1, -+, \y)

such that BTV~1B = A. Let z = By, then
Ve =y BTV By = yTAy = M\,

¢(t) _ ef%tTVt.
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7.6 Inversion and continuity

Alternatively, let Y = (Y7,---,Y,) = AX, then Y ~ AN(0, ) with Y7,--- | Y}, being independent normal.
Thus
Xy + oty X, =tT X =tTATY

is a linear transformation of independent normal and is therefore normal. Therefore,
E(thl —+ 04 tan) = 0, Var(t1X1 + -+ tan) = Z tﬂfj COV(XZ', Xj) = Z tl'Vijtj = tTVt.
%,J ,J
Finally,

E[ei(t1X1+---+tan)] —dvar(t1 X1+ +tn Xn) _ ef%tTVT‘

=e
Example 7.32(Geometric) The characteristics function of geometric distribution is

$(t) = E (") = " P(X =)
=0

o . o .
_ Z eztqu—lp _ pq—l(Z(qezt)x - 1)
=1 =0

— pett (1 _ qeit)*l

o
by noting that Z ¢ =(1-q
=0
Example 7.33(Pascal) The Pascal distributed X has density function

F(k) = (f:i)yu—p)“, k=rrdl,---.

One can decompose X into 7 i.i.d. geometric(p) random variables, i.e., X = X; + X2 + --- + X,.. Then

o= [lonio - (25)

7.6 Inversion and continuity

1 R
Recall ¢(z) = Py / e f(x)dx. Then by Fourier inversion theorem, the density function is
T

—00
f@) =5 [ o a.n
27 J_
at every point z such that f is differentiable.
Example 7.34(Revisit to Cauchy distribution) Knowing ¢(t) = e~ !l and apply (7.1), we get
flz) = % /O; et ety
1

oo ) 1 0 )
_ 1 o~ (i)t gy 4 / St gy
2 0 2 —00

1 1 n 1 B 1
C2n\l+iz  1—ix) w(14a2)
Thus X is Cauchy distributed.

97



7.6 Inversion and continuity

Theorem 7.16 (Inversion)

Let X have the distribution F' and characteristic fucntion ¢. Let
= 1
F(z) = = (F(z) + lim F(y)).
2 ytx

Then for any a < b,
N _—iat _ e—ibt

F(b) —F(a)= i - .
b= Fla)= lm | o ¢Wd .
Ifd)x(t) = gby(t), then F'x = Fy. v

Proof. Apply Inversion Theorem with a = —oo: Fx (b) = F'y(b). For any = € R, we use the right continuity
of F'x and Fy. Take b,, | x such that F'x, Fy are continuous at b,,. Then

Fx(bn) = Fx(bn) = Fy(by) = Fy (by),
implying that Fy (z) = Fy (z). O

Theorem 7.17 (Uniqueness)
Distribution function is uniquely determined by the characteristic function. v

Example 7.35 We now have a more elegant way to demonstrate the sum of two independent Gaussian r.v.s is

still Gaussian: suppose that X ~ A(u1,0?),Y ~ N (uz,03) are independent, their characteristic functions
are

Ox(t) = e gy (1) = itiemaoE,

Use independence,
2

Ox v (1) = Ox(1) - By (1) = e tre)soi oDt
From Uniqueness Theorem, one deduces that X + Y ~ N (u1 + p2, 0% + 03).
Exercise 7.9 Let X be a random variable with density function f(x) and characteristic function ¢(t). Show

that f(x) is even if and only if ¢(t) is real and even.

Proof. <=. We now have ¢x (t) = ¢x(—t) = ¢_x(t),i.e., X and —X have the same characteristic function.
Thus they have the same distribution and fx(z) = f_x(x) = fx(—z).
=—>. We now deduce that X and —X have the same distribution (and the same characteristic function)

from f(z) = f(—=). Furthermore, note that ¢_x(t) = ¢x(—t) = ¢x(t), implying that ¢(¢) is indeed real

and even. OJ

Definition 7.9

Let { X, }n>1 and Y be random variables, then we say X,, converges in distribution to Y, denoted by
X, 2, if li_)m P(X, <z)=P(Y < x) = Fy(x) for all x such that Fy is continuous at .
n—od

&

Remark The continuity assumption at x is to deal with discrete random variables: Let X,, = x,, |  := X.
Then Fx, (z) = 0 but F'x(z) = 1.
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7.6 Inversion and continuity

Theorem 7.18 (Continuity)

Suppose a sequence of r.v.s { X, }n>1 have corresponding characteristic funnction {¢p, }rn>1.
1 If Xn -2 X, then ¢n(t) — &(t) for all t;
2. Conversely, if ¢, (t) — ¢(t) for all t, and ¢(t) is continuous at t = 0, then ¢ is the characteristic
function of some random variable X such that X, L x

Theorem 7.19 (Weak law of large numbers)

Let X1, Xy, , X, be a sequence of independent r.v.s such that E(X;) = pu,i = 1,2,--- ,n. Then

Q

1
Sp = X1+ - + X, satisfies — Sy, 2, L
n

Q

1
Proof. Let ¢, be the characteristic function of —5,,.
n

) = (3 055050) — B0 P (14 il pony 1o (1))

t t\\" ,
li n(t) = i 14+i—pu+0|( = = e'th,
m on) = fin (14500 (7)) =

n—o0

1
By continuity theorem, —.5, 2, . O
n

@ Note The “independent” restriction indeed can be weakened to “uncorrelated”: Let X1, Xo, -+, X,, be
a sequence of uncorrelated r.v.s with the same distribution such that E(X;X;) = E(X;)E(X;), E(X?) <
oo, B(X;) = pu,i,7 =1,2,--- ,n. Then S, = X1 + - - - + X,, satisfies

1 P
1 — L2
In fact, - Z X — e
=1
1< 2 1 — 1< ¢
P ((szi ) ) = S B (K- ) = > () <
i=1 ij=1 i=1
a.s. as n — oo.
Theorem 7.20 (Strong law of large numbers)
1
Let X1, -+, X, : Q — Rbei.id withmean pand E(|X1|) < oo, then ﬁSn — pa.s..
Q
Example 7.36(Monte Carlo simulations: Numerically stimulate 7) We generate U;, V;(i = 1,2,--- ,7)

which are independent and uniformly [—1, 1] distributed. We stipulate that

x _ 1, UZ+VEi<1
0, otherwise

Then X is Bernoulli and F(X;) = P(X; = 1) = —. By law of large numbers,

m
4

X, =

S

Yox, D B(X) = %.
=1
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7.6 Inversion and continuity

Definition 7.10

Given r.v.s. {X,}, a confident interval for the theoretical mean 1 with confident level 5% is an interval
of length 2¢ such that
Plpe (X, —&,X: +¢)] < B%.

Example 7.37 What is the smallest n such that one obtains a four-digit accuracy of 7 with confident level 99%?

1
Solution. Note that the stimulation in Example 7.36 is % and thus the error ¢ here is 1000 and the confident
level is 8 = 99%. We look for n such that
— T 1
Pl|X,——|>—| <1
(‘ Tl 4000) % (%)
1
Note that X; is Bernoulli(p) and Var(X;) = p(1 — p) < 7 From Chebychev,
71' 4000% 1
P < 40002 - = 40002 < S
< 4000) 0002 - Var(X,,) = 4000>— Zv r —
Thus if n > 400 x 10°, (&) automatically holds. O

Example 7.38(Revisit to coupon collector) Q = {1,2,--- ,n} and X,, be i.i.d. uniformly {1,2,--- ,n}. We

use T; = inf{n : |{X1, X2, -+, X, }| = i}, the st time to collect ¢ different coupons. We have showed that
E(T,
(7n) — 1. Now I claim that
nlnn T
_n i> 1
Inn

n .
-1
Indeed, note that T, = Z(E —T;—1) with (T; — T;—1) ~ Geo<1 — Z). We already showed that
n
i=1
E(T,) =nlnn+ o(n) and

= 1
Var(T,) = Y (T; = Tj1) = ty < :
—1)2 —1)2
i=1 i=1 (1- ZT) i=1 (1- ZT)
-1
n E N
m=1
) ar(T,) .
I ticular, — 0. By ext f WLLN,
n particular. B(T,)? y extension o
T,—E(T, P 0
nlnn
P
and thus — 1.
nlnn
Var(T, T, — E(T,
LetT, = Z X, for every sequence {ay,} such that H(Tn) — 0asn — oo. We have ni(n) il

2
i=1 an
0.

Exercise 7.10 Use characteristic function to prove the Central Limit Theorem:

Let {X;} beiid. rv.s with E(X;) = 0and E(X?) = 1. Assume E(X}) < +oc, then

1 n
—=>_Xi = N(0,1).
i=1
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7.6 Inversion and continuity

Proof. Compute the characteristic function:

n(t) = E[ef Z?—le} = <E [efXDn
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Chapter 8 Convergence or random variables

8.1 Different modes of convergence

Definition 8.1

Let { Xy, }n>1 be random variables in (2, F, u( or P)). Then
1. We say X,, converges to X almost surely (a.s.) if P({w : li_)m Xp(w)=Xw)}) =1;

2. We say X,, converges to X in probability, denoted as X, P x if foranye > 0, P(|X,, — X| >
g) = 0asn — ooy

3. We say X,, converges to X in the pth moment if E(|X,|P) < +oo for any n € N and E(|X,, —
X|P) = 0asn — oo;

4. We say X,, converges to X almost uniformly if for all ¢ > 0, there is E € F : u(FE) < & such that
fn = fon ES

5. We say X,, converges in distribution to Y, denoted by X, L, Y, if lim P(X, <z)=P(Y <

n—oo
x) = Fy (x) for all x such that Fy is continuous at x.

1. X, — X in pth moment implies X,, — X in probability: for any € > 0, by Chebychev

[ Xn — XIP)
%

E
P(X, - X|>¢) < ( 0.

ep

2. X, — X a.e. implies X,;, — X in probability.

3. Xy — X as. does not imply X,, — X in pth moment: consider f,(x) = 1, »11)(x) with f, — 0 a.s.
but f,, is not convergent to 0 in probability or pth moment.

4. X, — X in pth moment does not imply X,, — X a.s.

Proposition 8.1

fn — f almost uniformly if and only if for all € > 0, li_1>n ,u< U {Ifn— f| > 5}) =0.

n=m

Proof. =>. If f, — f a.u., then for all 0 > 0, there is E with yu(F) < 0 such that f,, = f on E°. Thus
for all € > 0, there is m € N such that for all n > m, one has |f, — f| < € on E°. For such m, note that
U {|fn = f| > ¢} C E and thus

n=m

(U -11>2) <ue) <o

n=m

Send § — 0, Wehavenlignwu( U {Ifn—f]> a}) =0.

n=m

1
<. Suppose that for any & > 1, we have lim M( U {\fn — fl > } = 0). For any 0 > 0, we can
m—00 k

n=m



8.1 Different modes of convergence

find m = m(4, k) such that ,u(

n=m

1 J
— — < —.
{|fn fl> k}) < o0 Define
E

- ({i-11>1})
k=1 m>m(é,k)

Then p(E) < § and f,, = f on E*. O

I. fn — fau = f, — fin measure;
2. If u(Q) < 400, then fr, — f a.e. = f,, — f in probability (or in measure).

X, — X in probability implies X,, — X in distribution.

Proof. Note that foralla € R, e > 0,
{Xn <a} C{X <a+e}U{|X, - X]|> e}
Thus
P(X,

N

a) < P(X <a+e)+P(| X, — X|>e)

and similarly, {X < a —¢} C{X, <a}U{|X,, — X| > ¢} and
P(X<a—-¢)<P(X,<a)+P(|X,—X|>e)

Using X, — X in probability and sending n — oo, we have

liminf P(X,, <a) > P(X <a—c¢) = Fx(a—¢).
If a is continuity point of Fy, then one can send £ — 0 to conclude lim P(X,, < a) = P(X < a). O
However, convergence in distribution does not imply convergence in probability:
Example 8.1 Let X have probability denstiy function
1 1
(X=-1)=5, P(X=1)=
and set X,, = —X. Note that X,, and X have the same distribution and hence X, 3) X. However, for

0 < € < 2, one has
P(X, - X| 2 ¢) = P2IX| 2 ) =1 » 0,

that is X, does not converge to X in probability.

Conclusion
1. fn — f almost uniformly = f, — f a.e.
2. If u(Q) < 400, then fr, — f a.e. < f, — f au. (Egorov).
3. fn — f in probability(measure) = f,, — f in distribution.

fn— f ae.
DCT.| fo— fau——syp Pop—sp Do

frn = fin L,

Figure 8.1: Different convergence
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8.1 Different modes of convergence

Example 8.2 For X, ~ Cauchy(n), i.e., fn(x) = ﬁ, we have X,, 25 0.
n2x?)mw

Proof. Tn fact, X,, -2 0: Ve > 0,

& 2
P(|X,| > ¢) =2/ %dsz 1— Zarctanne | =30
. (I4+n22?)m T
O
Proposition 8.2
Xn X = for any subsequence {X,,}, there is a further subsequence {Xp,} such that
Xy, — X au. (ora.s.). N

1
Proof. =. For any subsequence {X,, }, we have X, P, X and thus VE > 1, P(|an - X| > E) —0as

1 1
n; — 0o. Choose ny(> nj_1) such thatP( U | X, — X| > E) < 1" Foralle > 0,
k>m
1 1
P( U 1%, — X]| >s) <P( U 1Xn, - X|> E) < g 250,

k>m k>m
Then by Proposition 8.1, we obtain X,,, — X a.u..

<. Prove by contradiction. If X,, does not converge to X in probability, there is g > 0,09 > 0 and a
subsequence {n;} such that

lim P(|X,, — X| > &) = 0 ()

1—+00
But by the condition, there is {n;, } such that X, = X (j — o0) a.s., implying Xn,, converges to X in
probability, contradicting (<>). O

Theorem 8.2 (Sufficient criterion for a.s. convergence)

1. Ifforalle >0, P(|X, — X| > €) < +o0, then X, - X a.s.
n=1
2. If{X,, — X} are pairwise independent for some constant X and there is i, | 0, then Z P X, —

n>1

X|>ep) =4o00,Vk = X,, » X a.s.

Q

Example 8.3 {X,,} ~ i.i.d. unif[0,1], then Y;, = min{X;, Xo,--- , X,,} = O as..

Proof. Note that
PY,>e)=P(X1>e,Xo>¢,--- , X;, >¢e)=(1—¢)".

That is Z P(|Y,| > ¢) < +o0. By the sufficient criterion, Y;, — 0 a.s.. O

n>1

Theorem 8.3 (Littlewood three principles)

1. Measurable set is approximately the finite sum of intervals;
2. Measurable function is approximately continuous functions;

3. Convergent sequence of functions is approximately uniformly convergent. v
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8.1 Different modes of convergence

Now we try to demonstrate X,, — X: foralle > 0,n > 1, let B,(¢) = {w : | X,(w) — X(w)| < €}.
Then

{X5, = X} ={weQ:Ve>0,3N such that Vn > N, | X, (w) — X (w)| < &}

-NUN=e-NUN-(;)

e>0N>21n>=N k>1 N>21n>N

.. 1
= [ | liminf B, <k>

k>1

k—o0 n—00

1
< lim P<limsuprL ()) =0
k—oo n—oo k;
1

<= lim P(liminf Bf(¢)) =

e—0 n— 00

X, —> Xas. < lim P<liminan <;>> = 1l

Assume that Z P(A,) < ooy then

neN
P(limsup A,) = P(A, i.0.) = 0.
n—oo
Assume that A,,,n € N, are independent events. If Z P(A,) = oo, then
neN
P(A, io.) =1.

Proof.
P(limsup A,) = P((] |J 4n) = lim P({J 4,) < lim_ > P(Ay)

m=21ln>m n=m n=m

which goes to 0 since Z P(A;) < +oo.

n>1
P[(limsup A,)° << N ya4 ) ) = lim P(() 4%) = lim [1— P(A,)]
m=1ln>m oo n=m Moo nzm
< lim H e PAn) = Jim e Znzm PUAn) —q
m—0o0 m—0o0

nz=zm

Under pairwise independence, let S,, = Z 1 4,. The first lemma tells us P(A4,, i.0.) (Z A = +oo>
i=1 i>1

From this, E(S, Z P(A;) — 400 as n — 4o0. Note that

n
var(S,) = var Z]IA Z cov(]lAi,]lAj)

.7]._1
_Zvar 14,) Z[P(A)—P(Ai)Q]

< E(Sy).
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8.1 Different modes of convergence

Then
P (sn < ;E<sn>) <P (\sn B8 > §E<sn>) < )
4 4 nooo
SEEETE =g, 0
ThatisP(i]lAi<oo>:0. ]

i=1

1. Lemma 1 can be extended to { A;} being pairwise independent;
2. The lemma says certain event of infinite set occurs with probability 0 or 1 (Kolmogorov’s 0-1 law).

Example 8.4(Extreme values) Let {X;} be iid. obeying exp(1), ie., fx,(z) = e "l 1o0)(2),i =

X M,
1,2,---,n. Let M;, = max;—12.... n X;, then limsup 1—” =1 a.s., limsup 1—" =1a.s.
nn nn

Proof. Note that
+oo

P(X,, >~vlnn) = / e %dx = e TN = 77
vylnn

Sum over n, we have

Znﬂ < 400, v>1,

n>1 =+o0, y<L
. . 0,7>1, . ,
By Borel Cantelli, P(X,, > ylnni.o.) = Put 7 to be precisely 1, we have P(X,, > Inni.o.) =1
L,y< 1

and it follows that lim sup —— > 1 a.s. and limsup — > 1 a.s.
Inn Inn

M,
Now we continue to prove limsup —— < 1 a.s. Fix ¢ > 0, since P(X,, > (1 + ¢)Inni.0.) = 0, there is
nn
N(g) < 400 such that for any n > N(e), X,, < (1 + €) Inn. Therefore

max;, () X

“<l+e.
Inn
Also
maXp<N(e) Xn nooo
— —'0
Inn
. . M,
These imply that lim sup on < 1+ ¢€as. Send € — 0 to conclude. 0
nn

M,
For all € > 0, lim inf l—n > 1 — e a.s.. To see this, we first split the interval [0, n] with up to n blocks
nn

where most of them except one has length n*—¢. For block i,

Pi:=P(M; > (1—¢)lni) = P(X; > (1 —¢)In3)’

7€

1\* 1\*
11— ¢ e

1\"™
Since ZP” < 22 (e) < 400, by Borel Cantelli, P(M,, > (1 —¢)lnnio.) = 0 and that is

n>1 n=1

M, M,
lim inf l—n > 1 — e with probability 1. Up to now, we have proved that lim 1—" =1la.s.
nn nn
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8.1 Different modes of convergence

1
Example 8.5 Let {X,,} be i.i.d. coin flip with P(H) = P(T) = 5 Let L,, denote the longest run of heads

at time n, representing the maximum number of consecutive heads observed up to that point. Show that
Ly,

— 1 as..
logyn

Proof. We set l; := run of head at time j. Then

1
For any € > 0,
1
Pll, > (1+¢)logyn] = Z Em < 9—(1+e)logyn _ ) —(1+¢)

k=(14¢€)logyn
Since ), Pll, > (1 + €)logyn| < oo, one concludes that P[l, > (1 + ¢)logyni.o.] = 0, ie., there
is N(g) such that for any n > N(e), I, < (1 + ¢)logyn. Similarly in Example 8.4, one concludes that

lim sup < las..

0go N

Conversely, we show that for all € > 0, lim inf i

> 1 — € a.s. We still apply the “block™ technique:

08y M
seperating the interval [0, n] into many blocks, with most of them have length (1 — ¢) log, n except one. Then
1
P(all heads in each block) = —————— =~ (179,
9(1—¢)logy n
_ 1\ Toban
P(Ly,, < (1 —¢)logyn) < P(all blocks fail) = 1 — e
< 1 >”“<1—!§70g2n _nt
— 1 — ~ e<1*5>1092"
nl—¢
Hence we get Y P(L, < (1 —¢)logyn) < oo and by B.C, P(L,, < (1 +¢)logyni.o.) =0, i.e., there is
L
N(g) such that for all n > N(e), —— > 1—e. O
logon

Exercise 8.1(Revisit to matching problem) n people are to pick n hats. We set

x 1, if the ith person takes his own hat,
Z' ==

0, otherwise,
and X = X7+ Xo+ - + X,

I. Try to find F(X) and Var(X).

X - E(X) »p

2. Conclude that — 0.

Solution. Note that every X; have the same distribution but they are not independent:

1 1

n
Thus
1 1 1 )
EK,X}):—7 Var(XZ):f 1—— , 7]:1,2’...777“
n n n
Therefore,
n
E(X)=) B(X;)=1
i=1
and

n

Var(X) :ZVar(Xi)+2zn: Zn: Cov(Xi, X;).

i=1 i=1 j=i+1
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8.2 Tail events

We now try to compute Cov(X;, X;). By the condition, X; X; only takes value in 0, 1 and

1 1
P(X,-ijl):P(Xizl,Xj:1):E-n_1
implying
1
Hence
1 1\? 1
Cov(X;, X;))=FX;X;) - FX)EX;))=———— |- =—5—
V(X0 Xy) = BUXX,) ~ BB = -t = (5] = et
n—1 n 1
X) = 2 - =1
Var(X) n <2>n2(n—1)
Now for any € > 0, by Chebychey,
X —-FEX 1
P( ( )26)< 55 —0
n n4e
as n — oo. O

8.2 Tail events

Definition 8.2

Let { X}, }nen be a sequence of random variables. Define

To o= 0(Xni1, Xnia, ), and T = )| T
neN
Then T is called the tail o-algebra of the sequence { X, },,cn. We can think of it as containing the events

describing the limiting behaviour of the sequence. &

Theorem 8.4 (Kolmogorov’s 0 — 1 law)

Let { X, } nen be a sequence of independent random variables. Then the tail o-algebra T of { Xy, }nen

contains only events of probability 0 or 1. v

Example 8.6(Coin flips for infinitely many times) Let A = {patterns HHH - - - H occurs infinitely many times}.

1000 times
Then A € T and by Kolmogorov 0-1, P(A) =0 or 1.

Example 8.7(Percolation) P(infinite open clusters) = 0 or 1.
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