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Chapter 1 Basic knowledge

1.1 Calaulation of sets

1.1.1 Intersecton and union

Let Ω be the universe.

Definition 1.1

♣If a set contains all elements of A,B, · · · , it is called the union of A,B, · · · , denoted as A ∪B ∪ · · · .

The operation of union is commutative and associative.

Definition 1.2

♣

Let A,B, · · · be a set sequence. The set, which consists of elements common to A,B, · · · is called the
intersection of A,B · · · , denoted as A ∩B · · · (or AB · · · ).

Definition 1.3

♣The set which consists of elements in Ω but not in A, is called the complement of A, denoted as Ac.

For every element in Ω, either it belongs to A or it belongs to Ac, i.e. x /∈ A ⇐⇒ x ∈ Ac. Of course,
(Ac)c = A.

One can verify that
(A ∪B)c = Ac ∩Bc, (A ∩B)c = Ac ∪Bc.

Similarly, (⋃
An

)c
=
⋂

Ac
n,

(⋂
An
)c

=
⋃

Ac
n.

In fact, suppose that x ∈
⋃
An, then x ∈ An for some n. x ∈

(⋃
An

)c implies that for all n, x /∈ An,
i.e., x ∈ Ac

n. Thus x ∈
⋂
Ac

n. Hence
⋃
An is the complement of

⋂
Ac

n. One can obtain the second equality by
substituting Ac

n with An.

A B

A−B AB B −A

Definition 1.4

♣The set consists of elements that belong to A but not belong to B is denoted as A−B.

One can see that
A−B = A−AB = ABc = Bc −Ac, (1.1)

B −A = B −AB = BAc = Ac −Bc,



1.1 Calaulation of sets

A ∪B = (A−B) + (B −A) +AB.

Note that the three sets in the right hand side of the last equality are disjoint.

Theorem 1.1

♡

Let A,B and C be three sets. Then one has the commutative law

A ∪B = B ∪A, A ∩B = B ∩A; (1.2)

the associative law
A ∪ (B ∪ C) = (A ∪B) ∪ C,

A ∩ (B ∩ C) = (A ∩B) ∩ C;
(1.3)

and the distributive law
(A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C),

(A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C).
(1.4)

Similarly, for set sequence, one has⋂
i

(⋃
j

A
(i)
j

)
=
⋃(

A
(1)
j1

∩A
(2)
j2

∩A
(3)
j3

∩ · · ·
)
,

⋃
i

(⋂
j

A
(i)
j

)
=
⋂(

A
(1)
j1

∪A
(2)
j2

∪A
(3)
j3

∪ · · ·
)
,

where j1, j2, · · · is a permutation of 1, 2, · · · .

Theorem 1.2

♡

One can use intersection and union to obtain the product of sets, i.e.,⋂
n≥1

An = A1 −
⋃
n≥2

(
A1 −An

)
. (1.5)

� Exercise 1.1
1. Let A,B be two subsets of the whole set X . If for any E ⊂ X , one has E ∩ A = E ∪ B, prove that

A = X,B = ∅.
2. Let A,B be two sets. Prove that A = B ⇐⇒ there is set C such that

A ∩ C = B ∩ C, A ∪ C = B ∪ C.

Proof. 1. Take E = X , we get A = X . Take E = Ac, we get B = ∅.
2. =⇒. Take C = A.

⇐=. From
A = A ∩ (C ∪ Cc) = (A ∩ C) ∪ (A ∩ Cc),

we know A ∪ C = (A ∩ Cc) ∪ C. Similarly, B ∪ C = (B ∩ Cc) ∪ C. Note that C ∩ (A ∩ Cc) = ∅ =

C ∩ (B ∩ Cc), hence A ∩ Cc = B ∩ Cc, implying

A = (A ∩ C) ∪ (A ∩ Cc) = (B ∩ C) ∪ (B ∩ Cc) = B.
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1.1 Calaulation of sets

1.1.2 Limit of Set Sequences

Definition 1.5

♣

For a set sequence {An}, let

Bj =

∞⋃
k=j

Ak(j = 1, 2, · · · ), Cj =

∞⋂
k=j

Ak(j = 1, 2, · · · ),

then Bj ⊃ Bj+1, Cj ⊂ Cj+1, (j = 1, 2, · · · ). We define its lime superior limAn and its lime inferior
limAn as

limAn = lim
k→∞

Bk =

∞⋂
j=1

Bj =
⋂
n≥1

( ⋃
i≥n

Ai

)
,

limAn = lim
k→∞

Ck =

∞⋃
j=1

Cj =
⋃
n≥1

( ⋂
i≥n

Ai

)
.

(1.6)

When limAn = limAn, this result is defined as limAn.

In convention, one usually uses “An occurs infinitely often” to read limAn and “An occurs almost always”
to read limAn. Condider the following statements:

x ∈ infinitely An’s ⇐⇒ ∀p ∈ N,∃n ≥ p, such that x ∈ An

⇐⇒ ∀p ∈ N, x ∈
⋃
n≥p

An

⇐⇒ x ∈
⋂
p∈N

⋃
n≥p

An


and

x is in all but a finite number of the An’s ⇐⇒ ∃mx ∈ N,∀n > mx, x ∈ An

⇐⇒ x ∈
⋃

mx⩾1

( ∞⋂
n=mx+1

An

)
.

One can see that lim, lim have nothing to do with the arrangement of An. Actually, limAn is the collection
of elements that are common to infinitely An and limAn is the collection of elements that are common to a
‘deleted’ An(i.e. finite Ak’s are deleted from the original {An}). Hence, we have lim inf An ⊂ lim supAn.

When {An} is increasing, i.e., A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ · · · ,

limAn =
⋃
n≥1

An. (1.7)

When {An} is decreasing, i.e., A1 ⊃ A2 ⊃ · · · ⊃ An ⊃ · · · ,

limAn =
⋂
n≥1

An. (1.8)

Generally, we have
limAn = lim

n→∞

⋃
i≥n

Ai, limAn = lim
n→∞

⋂
i≥n

Ai. (1.9)

For the complement, we have

(limAn)
c = limAc

n, (limAn)
c = limAc

n. (1.10)

3



1.2 Mappings and cardinality

Example 1.1 Let E,F be two sets. Consider the set sequence

AF =

E, k is odd,

F, k is even
k = (1, 2, · · · ),

then we have
lim
k→∞

Ak = E
⋃

F, lim
k→∞

Ak = E
⋂

F.

Example 1.2 Let {fn(x)} and f(x) be real-valued functions defined on R. Then D, the set of points where
fn(x) dose not converge to f(x) can be described as

D =

∞⋃
k=1

∞⋂
N=1

∞⋃
n=N

{x : |fn(x)− f(x)| ⩾ 1

k
}.

Indeed, if fn(x) does not converge to f(x) on x0, for a fixed ε0 > 0, for any natural number k, there is
n ⩾ k such that

|fn(x)− f(x)| ⩾ ε0,

i.e., xn is in infinitely many En’s, where

En(ε0) := {x : |fn(x)− f(x)| ⩾ ε0},

namely, xn is in the lime superior of {En(ε0)}. Moreover, taking union of ε, the discontinuous points are given
by the union of these lime superiors. Finally, we use a decreasing sequence {εk = 1/k} to supersede ε and
reach our desired D.
Example 1.3 Let {fn(x)} and f(x) be real-valued functions defined on R with

lim
n→∞

fn(x) = f(x), x ∈ R.

Then for t ∈ R,

{x ∈ R : f(x) ⩽ t}

=
∞⋂
k=1

∞⋃
m=1

∞⋂
n=m

{x ∈ R : fn(x) < t+
1

k
}.

1.1.3 Direct product of sets

Definition 1.6

♣

Let X,Y be two sets. The collection of all ordered “element pair” (x, y) (where x ∈ X, y ∈ Y ) is called
the direct product of X and Y , denoted by X × Y , i.e.,

X × Y = {(x, y) : x ∈ X, y ∈ Y },

where (x, y) = (x′, y′) refers to x = x′, y = y′. X ×X is also denoted by X2.

1.2 Mappings and cardinality

Definition 1.7
Let X,Y be two non-empty sets. If for every x ∈ X , there is a unique y ∈ Y corresponding to it, we call
this corresponding relation a mapping. If we use f to denote this relationship, we write

f : X → Y,

4



1.2 Mappings and cardinality

♣

and f is called a mapping from X to Y . Now the unique y ∈ Y corresponding to a certain x ∈ X is
called the image of x under f whereas x is called a pre-image of y, denoted by f(x) = y. If for any
y ∈ Y , there is x ∈ X such that f(x) = y, f is called a surjection of f from X to Y .

For f : X → Y and A ⊂ X , we write

f(A) = {y ∈ Y : x ∈ A, y = f(x)}

with stipulation f(∅) = ∅. Clearly,

(i) f

(⋃
α∈I

Aα

)
=
⋃
α∈I

f(Aα);

(ii) f

(⋂
α∈I

Aα

)
⊂
⋃
α∈I

f(Aα).

For f : X → Y and B ⊂ Y , we write

f−1(B) = {x ∈ X : f(x) ∈ B}.

Similarly,
(i) for B1 ⊂ B2, we have f−1(B1) ⊂ f−1(B2);

(ii) f−1

(⋃
α∈I

Bα

)
=
⋃
α∈I

f−1(Bα)(Bα ⊂ Y, α ∈ I);

(iii) f−1

(⋂
α∈I

Bα

)
=
⋂
α∈I

f−1(Bα)(Bα ⊂ Y, α ∈ I);

(iv) f−1(Bc) = (f−1(B))c(B ⊂ Y ).

Definition 1.8

♣

Let f : X → Y . If f satisfies that for x1, x2 ∈ X and x1 ̸= x2,

f(x1) ̸= f(x2),

f is called an injection from X to Y . If f is both injective and surjective, f is called a bijection from X

to Y . Take f bijective from X to Y , then for every y ∈ Y , there is a unique x ∈ X such that f(x) = y,
i.e., there is a mapping

g : Y → X, g(y) = x,

where x is determined by y = f(x). g is then called the inverse of f , denoted as f−1.

Definition 1.9

♣

The indicator mapping of set A, denoted as 1A, is defined as

1A(x) :=

1, if x ∈ A

0, if x /∈ A.
(1.11)

Example 1.4 Show that

1lim supAn = lim sup1An , and 1lim inf An = lim inf 1An .

Proof. Observe that both mappings 1lim supAn and lim sup1An only take values in {0, 1}.
For an arbitrary x ∈ Ω, consider the following statements:

1lim supAn = 1 ⇐⇒ x ∈ limAn

5



1.2 Mappings and cardinality

⇐⇒ ∀p ∈ N, ∃n ≥ p, such that x ∈ An

⇐⇒ ∀p ∈ N, ∃n ≥ p, such that 1An(x) = 1

⇐⇒ lim sup1An(x) = 1.

Definition 1.10

♣

Let X be a non-empty set. The collection of all subsets of X (including ∅ and X) is called the power set
of X , denoted as P(X).

For example, there are 2n elements in the power set of an n-element set E.
Example 1.5(Fixed points of monotonous mappings) Let X be a non-empty set. Let f : P(X) → P(X)

satisfying f(A) ⊂ f(B) for any A ⊂ B ∈ P(X), then there is T ⊂ P(X) such that f(T ) = T .

Proof. Consider sets S and T , where

S = {A : A ∈ P(X) and A ⊂ f(A)},

T =
⋃
A∈S

A(∈ P(X)).

I claim that f(T ) = T .
Indeed, from A ∈ S we know that A ⊂ f(A). Moreover, A ⊂ T , implying that f(A) ⊂ f(T ), hence we

deduce f(A) ⊂ f(T ) from A ∈ S, following⋃
A∈S

A ⊂ f(T ), T ⊂ f(T ).

On the other hand, based on T ⊂ f(T ), we know f(T ) ⊂ f(f(T )), implying f(T ) ∈ S thus f(T ) ⊂
T .

6



Chapter 2 Measure theory and probability spaces

2.1 Algebras and σ-algebras

Definition 2.1

♣

Let E be a set and let A be a set of subsets of E. We say that A is an algebra if for all B,A ∈ A,

∅ ∈ A, Ac ∈ A, and A
⋃

B ∈ A.

We say that A is a π-system if for all B,A ∈ A,

∅ ∈ A, and A
⋂

B ∈ A.

We say that A is a λ-system if

∅ ∈ A, and B \A ∈ A given A,B ∈ A, A ⊆ B, and

A ∈ A given An ↑ A,An ∈ A.

We say that A is a σ-algebra if for all A ∈ A, and all sequences {An}n∈N,

∅ ∈ A, Ac ∈ A, and
⋃
n∈N

An ∈ A.

Immediately, we have the following lemmas:

Lemma 2.1

♡Every σ-algebra is an algebra.

Lemma 2.2

♡Every algebra is a π-system.

Example 2.1 A = {∅, E} is a(n) (σ-)algebra, ususally called the trivial (σ-)algebra.
Example 2.2 The power set P(E) := {A : A ⊂ E} is a(n) (σ-)algebra.

Lemma 2.3

♡

The intersection of any collection of (σ-)algebras is a(n) (σ-)algebra, i.e., if A1 and A2 are both
(σ-)algebras, then their intersection A1 ∩ A2 is also a(n) (σ-)algebra.

Definition 2.2

♣

Note that the intersection of any collection of σ-algebras is a σ-algebra. Thus for any set of subsets C the
intersection of all the σ-algebras (there is at least one) containing C is itself a σ-algebra. We call this the
σ-algebra generated by C, and we denote it by σ(C). Similarly, the intersection of all the algebras (there
is at least one) containing C is itself an algebra. We call this the algebra generated by C, and we denote
it by a(C). To be more precise,

σ(C) =
⋂

A is a σ-algebra
C⊆A

A;

a(C) =
⋂

A is an algebra
C⊆A

A.



2.1 Algebras and σ-algebras

Based on definition 2.2, we know

Proposition 2.1

♠σ(C) is the smallest σ-algebra containing C whereas a(C) is the smallest algebra containing C.

Proposition 2.2

♠

Let C be a set of subsets. Then

a(C) ⊆ σ(C), σ(a(C)) = σ(C).

Proof. The first assertion is trivial since every σ-algebra is an algebra. For the second one, first note that
C ⊆ a(C) thus σ(a(C)) is actually a σ-algebra containing C, implying σ(C) ⊆ σ(a(C)). Conversely, since
a(C) ⊆ σ(C), we know that σ(C) is a σ-algebra containing a(C). Hence σ(a(C)) ⊆ σ(C).

Example 2.3 For A ⊆ E, let C = {∅, A}. Then a(C) = {∅, A,Ac, E}.

Proof. We use the shorthand F = {∅, A,Ac, E}. It is easy to observe that F is an algebra containing C. Then
a(C) ⊆ F according to the “smallest”, implying a(C) ⊆ F .

On the other hand, for every member in F , they are in a(C), implying F ⊆ a(C).

Example 2.4 Let π = {A1, A2, · · · , An} be a partition of E, i.e., Ai ∩Aj = ∅ and
m⋃
i=1

Ai = E. Then

a(π) = {finite disjoint unions of {Ai}mi=1}

= {
⋃
i∈I

Ai for some I ⊆ {1, 2, · · · ,m}}.

Example 2.5 Let A be an algebra of R and X : E → R be a set function. Then {X−1(A) : A ∈ A} is an
algebra where X−1(A) := {ω ∈ E : X(ω) ∈ A}.
Example 2.6 Let E , a set of subset of R be E = {(a, b] : −∞ ⩽ a < b ⩽ +∞, (a,+∞) : a ∈ R}. Then
a(E) = {I1 ∪ I2 ∪ · · · ∪ In, Ik ∈ E , Ii ∩ Ij = ∅, 1 ⩽ i, j, k ⩽ n}.
Example 2.7(π-systems generating B(R)) The followings are four methods to generate B(R):

1. E1 := {(a, b] : −∞ ⩽ a ⩽ b < +∞} is a π-system.
2. E2 := {(a, b) : −∞ ⩽ a ⩽ b ⩽ +∞} is a π-system.
3. E3 := {A ⊂ R : A is open} is a π-system.
4. E4 := {A ⊂ R : A is closed} is a π-system.

Proof. Only for 3. It suffices to show σ(E2) = σ(E3). σ(E2) ⊂ σ(E3) is trivial since E2 ⊂ E3. Conversely, let
A ⊆ R be open, and then

A =

∞⋃
i=1

(xi − εi, xi + εi)

implying E3 ⊂ σ(E2) and thus σ(E3) ⊂ σ(E2) according to the “smallest”.

� Exercise 2.1 Let A be an algebra on E. If A /∈ A and B /∈ A, is it the same for A ∪B and A ∩B?

Solution. Let E = {0, 1},A = {∅, E}, A = {1}, B = {0}. Then A∩B = ∅ ∈ A and A∪B = E ∈ A.

� Exercise 2.2 Provide a counterexample in which A ∪ B is not an algebra whereas A and B are both algebras,
seperately.

8



2.2 Measurable spaces

Solution. Set Ω = {0, 1, 2}, A = {0}, B = {0, 1}. Then a(A) = {∅,Ω, A,Ac}, a(B) = {∅,Ω, B,Bc}.
Note that a(A) ∪ a(B) = {∅, {0}, {0, 1}, {2}, {1, 2},Ω} whereas {0, 1} ∩ {1, 2} = {1} /∈ a(A) ∪ a(B).

� Exercise 2.3 Let E be an infinite set (countable or not). Let A be the set of subsets of E that are either finite or
with finite complement in E. Prove that A is an algebra but not a σ-algebra.

Proof. Take a subset A of E where A ∈ A. If A is finite, its complement must also be in A since (Ac)c = A.
If Ac is finite, it is the same. This has already implied ∅, E ∈ A.

Now take another B ⊆ E with B ∈ A. If A and B are both finite, A ∪ B is also finite thus in A. We
finished the proof. Otherwise, assume A is not finite. Note that (A∪B)c = Ac ∩Bc is finite since Ac is finite.
Hence A ∪B is indeed in A.

Now assume that N ⊂ E. Consider the even number set 2N = {2n, n ∈ N}. If A is a σ-algebra, since
each {n} is in A, their countable union 2N must also be in A. However, neither 2N nor E \ 2N is finite.

� Exercise 2.4 Let Ω = N. For n ⩾ 0, let Fn = σ({{0}, · · · , {n}}), the smallest σ-algebra containing all of
{0}, · · · , {n}. Show that

⋃
n⩾0

Fn is not a σ-algebra.

Proof. Let us write down several Fn’s.

F0 = {∅,N, {0},N \ {0}};

F1 = {∅,N, {0}, {1},N \ {0},N \ {1},N \ {0, 1}};
...

We can obsrve that for each natural even number 2k, {2k} ∈
⋃
n⩾0

Fn, whereas 2N does not belong to
⋃
n⩾0

Fn.

2.2 Measurable spaces

Definition 2.3

♣

A pair (E, E), where E is a set and E is a σ-algebra on E, is called a measurable space. Given a
measurable space (E, E) each A ∈ E is called a measurable set (or an E-measurable set).

Recall the set E in Example 2.6. We have had an understanding of a(E). Now let’s take a look at σ(E).
First, one can observe that any single point {a}, a ∈ R is in σ(E) since {a} =

⋃
n≥1

(a − 1

n
, a]. Thus every

countable set (for example, Q and transcendental numbers) is also in σ(E). Moreover, every open interval (a, b)
is in σ(E) since (a, b) =

⋃
n⩾1

(a, b − 1

n
). Finally, [a, b) is in σ(E) since [a, b) =

⋃
n⩾1

[a, b − 1

n
). Thus, σ(E)

actually basically contains the “nice subsets of R”, usually it is called the Borel set of R, denoted as B(R).
We will keep using the notation E to represent the set mentioned in Example 2.6 in this section if not

specifically stated.

Definition 2.4

♣

Let E be a set, and let A be an algebra on E. A set function is any function µ : A → [0,∞] with
µ(∅) = 0.
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2.2 Measurable spaces

Let µ be a set function. We say that µ is increasing if, for all A,B ∈ A with A ⊆ B,

µ(A) ≤ µ(B).

We say that µ is additive if, for all disjoint sets A,B ∈ A,

µ(A ∪B) = µ(A) + µ(B).

We say that µ is countably additive if, for all sequences of disjoint sets {An}n∈N ⊆ A, with
⋃
n∈N

An ∈ A, we

have
µ(
⋃
n∈N

An) =
∑
n∈N

µ(An).

Definition 2.5

♣

Let A be an algebra (of subsets of E). A set function µ : A → [0,+∞) is called a content if
1. µ(∅) = 0;
2. µ is finitely additive.

Lemma 2.4

♡

Let µ : A → [0,+∞) be a content. Then for any A,B ∈ A,
1. µ(A ∪B) + µ(A ∩B) = µ(A) + µ(B);
2. If A ⊆ B and µ(A) < +∞ then µ(B \A) = µ(B)− µ(A);
3. If A ⊆ B, then µ(A) ⩽ µ(B).
4. (Subadditivity) If A1, A2, · · · , An ∈ A, then

µ(

n⋃
i=1

Ai) ⩽
n∑

i=1

µ(Ai).

5. (σ-superadditivity) If {Ai}+∞
i=1 is a sequence of disjoint elements and

⋃
i⩾1

Ai ∈ A, then

µ(
⋃
i⩾1

Ai) ⩾
∑
i⩾1

µ(Ai).

Proof. Only prove 5. By 4, we have for any N ∈ N

µ

( N⋃
i=1

Ai

)
⩽

N∑
i=1

µ(Ai).

Thus the superadditivity holds by nature since by 3,

µ

( ∞⋃
i=1

Ai

)
⩾ µ

( N⋃
i=1

Ai

)
⩾

N∑
i=1

µ(Ai).

Example 2.8(Density of R) Let E = R and A = a(E). For any A ∈ a(E), define µ(A) = lim
L→∞

|A ∩ (0, L)|
L

.
Then µ is finitely additive but not countably additive. In fact, note that

1 = µ(
⋃
i⩾0

[i, i+ 1)) >
∑
i⩾0

µ([i, i+ 1)) = 0.

Definition 2.6

♣

Let (E, E) be a measurable space. A countably additive set function µ : E → [0,∞] is called a measure;
the triple (E, E , µ) is called a measure space.

10



2.2 Measurable spaces

Example 2.9 Let E = R. Define a set function m : a(E) → [0,+∞]. Let m((a, b]) = b− a,m((a,+∞)) =

+∞ and extend for every A ∈ a(E), i.e., m(A) =

n∑
j=1

m(Ij) where A =

n⋃
j=1

Ij and Ij’s are two by two disjoint.

Then m is actually a content.

Lemma 2.5

♡

The set function m defined in Example 2.9 is countably additive, i.e., for {Ak}∞k=1 ⊂ a(E) such that Ak’s
are two by two disjoint and A =

⋃
k⩾1

Ak ⊂ a(E), one has m(A) =
∑
k⩾1

m(Ak).

Proof. We introduce a new partition of A, i.e., set A =
n⋃

i=1

Ii, where every Ii ∈ E is disjoint with each other.

Moreover, let Ak =

mk⋃
j=1

Jj,k, where where every Jj,k ∈ E is disjoint with respect to j with each other. Then

m(A) =
n∑

i=1

m(Ii) =
n∑

i=1

mk∑
j=1

∑
k⩾1

m(Ii ∩ Jj,k)

=

mk∑
j=1

∑
k⩾1

m(Ii ∩ Jj,k) =
+∞∑
k=1

m(Ak).

Definition 2.7

♣

If µ(E) = 1 then µ is called a probability measure and (E, E , µ) is called a probability space. The
notation (Ω,F , P ) is often used to denote a probability space.

Lemma 2.6

♡

Let (E,F , µ) be a measure space. Then if A1, A2, · · · ∈ F , one has

µ(
⋃
i⩾1

Ai) ⩽
∑
i⩾1

µ(Ai).

Proof. Define B1 = A1, B2 = A2 \A1, · · · , Bn = An \
n−1⋃
i=1

Ai, · · · . Then the sequence {Bi} satisfies:

each Bi(i = 1, 2, · · · , n, · · · ) is disjoint with each other;⋃
i⩾1

Bi = A;

µ(Bi) ⩽ µ(Ai)

Thus
µ(A) = µ(

⋃
i⩾1

Bi) =
∑
i⩾1

µ(Bi) ⩽
∑
i⩾1

µ(Ai).

Theorem 2.1 (Continuity of measures)
Let µ be a measure and A1, A2, . . . be an increasing sequence of events, so that A1 ⊆ A2 ⊆ A3 ⊆ · · · ,
and write A for their limit:

A =
∞⋃
i=1

Ai = lim
i→∞

Ai.

11



2.2 Measurable spaces

♡

Then µ(A) = lim
i→∞

µ (Ai). Similarly, if B1, B2, . . . is a decreasing sequence of events, so that B1 ⊇
B2 ⊇ B3 ⊇ · · · , then

B =
∞⋂
i=1

Bi = lim
i→∞

Bi

satisfies µ(B) = lim
i→∞

µ (Bi).

Proof. A = A1 ∪ (A2\A1) ∪ (A3\A2) ∪ · · · is the union of a disjoint family of events. Thus, by definition,

µ(A) = µ (A1) +
∞∑
i=1

µ (Ai+1 \Ai)

= µ (A1) + lim
n→∞

n−1∑
i=1

[µ (Ai+1)− µ (Ai)]

= lim
n→∞

µ (An) .

To show the result for decreasing families of events, take complements and use the first part.

Definition 2.8

♣

Given a measure space (E, E , µ), µ is said to be finite if

µ(E) < ∞

and µ is said to be σ-finite if there exist sets {En}n∈N ⊆ E such that µ(En) < ∞ and
⋃
n∈N

En = E.

Definition 2.9

♣

An element F ∈ E is called µ-null if µ(F ) = 0. A statement φ about points s ∈ E is said to hold almost
everywhere if

F := {s ∈ E : φ(s) is false} ∈ E, and µ(F ) = 0.

� Exercise 2.5 Recall the definition of limit of a set sequence {An}. Prove that µ(An) → µ(A), where
A = lim supAn = lim inf An.

Proof. We use the shorthandBn =

∞⋃
i=n

Ai andCn =

∞⋂
i=n

Ai. Then {Bn} and {Cn} are set sequences decreasing

and increasing, respectively. Moreover,

B := lim supAn =
⋂
n⩾1

⋃
m⩾n

Am =
⋂
n⩾1

Bn = lim
n→∞

Bn

C := lim inf An =
⋃
n⩾1

⋂
m⩾n

Am =
⋃
n⩾1

Cn = lim
n→∞

Cn.

We have that

Cn =
∞⋂
i=n

Ai ⊆ An ⊆
∞⋃
i=n

Ai = Bn,

and therefore µ (Cn) ≤ µ (An) ≤ µ (Bn). By the continuity of measures, if Cn ↑ C then µ (Cn) ↑ µ(C), and
if Bn ↓ B then µ (Bn) ↓ µ(B). If B = C = A then

µ(A) = µ(C) ≤ lim
n→∞

µ (An) ≤ µ(B) = µ(A).

12
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� Exercise 2.6 Let m be Lebesgue measure on [0, 1], and 0 ⩽ a ⩽ b ⩽ c ⩽ d ⩽ 1 such that a + d ⩾ b + c.
Give an example of a sequence of sets A1, A2, · · · in [0, 1], such that m(lim infnAn) = a, lim infnm(An) =

b, lim supnm(An) = c and m(lim supnAn) = d.

2.3 Extension Theorem

Theorem 2.2 (Caratheodory Extension Theorem)

♡

Let F be an algebra on Ω and µ be a coutabley additive content on (Ω,F). If µ is σ-finite, i.e., there is

{Ai}∞i=1Ai ⊆ F such that µ(Ai) < +∞ and
∞⋃
i=1

Ai = Ω, then µ extend to a measure on (Ω, σ(F)).

Example 2.10(Lebesgue-Stieltjes measure) Let mF : a(E) → R be a set function such that mF ((a, b]) =

F (b) − F (a), where F : R → [0, 1] is a right-continuous increasing function with convention F (+∞) =

sup{F (x), x ∈ R}, F (−∞) = inf{F (x), x ∈ R}. Extend mF to a(E) by finite subadditivity, mF is countable
additive. Hence by the Extension Theorem, mF extends to a measure on (R, σ(E)). That is the Lebesgue-
Stieltjes measure.

2.4 Inclusion and exclusion principle

Proposition 2.3 (Inclusion and Exclusion)

♠

P(
⋃

1≤j≤n

Aj) =
∑
j

P(Aj)−
∑
j1<j2

P(Aj1 ∩Aj2) + · · ·+ (−1)n−1
∑

j1<···<jn

P(Aj1 ∩ · · · ∩Ajn). (2.1)

Proof. Apply induction on n. For the case n = 2, it is trivial that the formula is true. Let m ⩾ 2 and suppose
that the result is true for n ⩽ m. Then it is true for pair of events, so that

P

(
m+1⋃
i=1

Ai

)
= P

(
m⋃
i=1

Ai

)
+ P(Am+1)− P

{(
m⋃
i=1

Ai

)
∩Am+1

}

= P

(
m⋃
i=1

Ai

)
+ P(Am+1)− P

{
m⋃
i=1

(Ai ∩Am+1)

}
.

Using the induction hypothesis, we may expand the two relevant terms on the right-hand side to obtain the
result.

Remark If we truncate (2.1), we may obtain several inequalities:

1. P(E1 ∪ E2 ∪ · · · ∪ En) ⩾
n∑

i=1

P(Ei)−
∑
i<j

P(Ei ∩ Ej);

2. P(E1 ∪ E2 ∪ · · · ∪ En) ⩽
n∑

i=1

P(Ei)−
∑
i<j

P(Ei ∩ Ej) +
∑

i<j<k

P(Ei ∩ Ej ∩ Ek).

Example 2.11(Birthday problem) Consider a group of n people. What is the probability that at least two of
them have the same birthday?

Solution. We start by considering the complement, i.e., working with the condition where no one has the same
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2.4 Inclusion and exclusion principle

birthday. Indeed,

P(no one has the same birthday) =
365× 364× · · · × (365− n+ 1)

(365)n

= 1 · (1− 1

365
) · (1− 1

365
) · · · · · (1− n− 1

365
).

If we consider the approximation e−x ≈ 1− x, the final result becomes

e−1/365 · e−1/365 · · · · · e−(n−1)/365 = e−n(n−1)/730.

Example 2.12(Matching problem) n people are to pick n hats. What is the probability that no one picks
his/her own hat?

Solution. Still consider complement. Define Ei as Ei = {the i-th people gets his/her own hat}. We see that

P(Ei) =
(n− 1)!

n!
=

1

n
, P(E1 ∩ E2,∩ · · · ∩ Er) =

(n− r)!

n!
,

(−1)r−1
∑

j1<j2<···<jr

P(E1 ∩ E2,∩ · · · ∩ Er)

= (−1)r−1

(
n

r

)
(n− r)!

n!
= (−1)r−1 1

r!
, 1 ⩽ r ⩽ n.

From (2.1),

P(E1 ∪ E2 ∪ · · · ∪ En) =
n∑

r=1

(−1)r−1 1

r!
.

If we send n → ∞, the result will converge to e−1and what we want is 1− e−1.

Example 2.13(Texas Holder) In a poker game, what is the probability that you have
1. a straight?
2. a full house?

The numebr you can use are from Ace to 10.

Solution. 1. To get a straight, there will be 10 choices of your starting number. For the five card position,
there will be 45 − 4 choices in total for seperate unit. Thus the probability is

10 · (45 − 4)

C5
52

.

2. The probability is
13 · 12 · C3

4 · C2
4

C5
52

.

� Exercise 2.7 Six cups and saucers come in pairs: there are two cups and saucers which are red, two white, and
two with stars. If the cups are placed randomly onto the saucers (one each), find the probability that no cup is
upon a saucer of the same pattern.

Solution. We first place the saucers in a certain order, for example, put it as “RRWWSS”. Note that there are
6!

2! · 2! · 2!
= 90 methods to put on the cups. Now to fulfill the reequirement of the problem, a basic idea is to

first consider three different cups. That is, for the cup tuple (S,R,W ), its position must be either S()R()W ()
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or W ()S()R(), where () denotes an empty seat. By enumeration or a little calculation, there are 10 ways in
total fulfilling the reequirement. Hence the probability is 10/90 = 1/9.

� Exercise 2.8 You are given that at least one of the events Ar, 1 ⩽ r ⩽ n, is certain to occur, but certainly no
more than two occur. If P(Ar) = p and P(Ar ∩As) = q, r ̸= s, show that p ⩾ 1/n and q ⩽ 2/n.

Proof. Since at least one of the Ar occurs,

1 = P(
n⋃

r=1

Ar) =
∑
r

P(Ar)−
∑
r<s

P(Ar ∩As)

= np− n(n− 1)

2
q.

Hence p ⩾ 1/n and
1

2
n(n− 1)q = np− 1 ⩽ n− 1.

� Exercise 2.9 You are given that at least one, but no more than three, of the events Ar, 1 ⩽ r ⩽ n, is certain to
occur, where n ⩾ 3. The probability of at least two occuring is 1/2. If P(Ar) = p and P(Ar ∩As) = q, r ̸= s,
and P(Ar ∩As ∩At) = x, r < s < t. Show that p ⩾ 3/(2n) and q ⩽ 4/n.

Proof. Similarly first we have

1 = P(
n⋃

r=1

Ar) =
∑
r

P(Ar)−
∑
r<s

P(Ar ∩As) +
∑

r<s<t

P(Ar ∩As ∩At)

= np−
(
n

2

)
q +

(
n

3

)
x.

Since at least two of the event occur with probability
1

2
,

1

2
= P

(⋃
r<s

(Ar ∩As)

)
=
∑
r<s

P(Ar ∩As)−
1

2

∑
r<s
t<u

(r,s)̸=(t,u)

P(Ar ∩As ∩At ∩Au).

Since no more than three events can occur, in the item Ar ∩ As ∩ At ∩ Au, there must be a repetition in index
and there are four choices for the repeated one. Hence one deduces that

P(Ar ∩As ∩At ∩Au) = 4P(Ar ∩As ∩At).

Substitute back,
1

2
=

(
n

2

)
q − 2

(
n

3

)
x.

Hence
3

2
= np− C3

nx so that p ⩾ 3/(2n). Also C2
nq = 2np− 5

2
whence q ⩽ 4/n.

2.5 Conditional probability

2.5.1 Definitons

Definition 2.10
Consider an expriemnt carried out many times. For two event A and B, we use N(·) to represent the
number of times that event · occurs. If the event of interest is A and the event B is known or assumed to
have occurred, “the conditional probability of A given B”, or “the probability of A under the condition
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2.5 Conditional probability

♣

B”, is usually written as P(A | B) and

P(A | B) =
N(A ∩B)

N(B)
=

N(A ∩B)/N

NP (B)/N
=

P(A ∩B)

P(B)
.

Example 2.14(Two kids) Assume that a family has two kids. What is the probability that
1. both kids are boys given at least one of them is a boy?
2. both kids are boys given at least one of them is a boy born on Wedenesday?

Solution. We use the notation

A := {both kids are boys}, C := {at least one of them is a boy},

D := {at least one of them is a boy born on Wedenesday}

and letter B and G to represent boy and girl, respectively.
1. The full sample space is Ω = {BB,GB,BG,GG} together with A = {BB}, C = {BB,BG,GB}.

Thus the result is 1/3.
2. The full sample now becomes Ω = {BiBj , GiBj , BiGj , GiGj : i, j ∈ {1, 2, · · · , 7}}, where i and j

denote the birth date (for example, B1B1 denote the event that both boys are born on Monday). Now

|A ∩D| = |{two boys at least one is born on Wedenesday}|

= |{BiB3, B3Bj}| = 13

and

|D| = |{at least one of the two boys is born on Wedenesday}|

= |{B3Bj , BjB3, B3Gj , GjB3}| = 27.

Thus the final is 13/27.

2.5.2 Multiplication formula

Theorem 2.3 (Multiplication formula)

♡

For events A1, A2, . . . , An satisfying P (A1 ∩A2 ∩ · · · ∩An−1) > 0, prove that

P (A1 ∩A2 ∩ · · · ∩An) = P (A1)P (A2 | A1)P (A3 | A1 ∩A2) · · ·P (An | A1 ∩A2 ∩ · · · ∩An−1) .

Proof. Check by direct calculation:

RHS = P(A1) ·
P(A1 ∩A2)

P(A1)
· P(A1 ∩A2 ∩A3)

P(A1 ∩A2)
· · · · · P(A1 ∩A2 ∩ · · · ∩An)

P(A1 ∩ · · · ∩An−1)

= P (A1 ∩A2 ∩ · · · ∩An) .

Example 2.15(Can model) There are b black balls and r red balls in a can. Every time a man randomly picks
one ball from the can and then put it back, together with c balls with the same color and d balls with the other
color. We use Bi to denote the event “the i-th picked ball is black” whereas Rj denote the event “the j-th picked
ball is red”.
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2.5 Conditional probability

Consider the scenario where two red and one black appear in three consecutive selected balls. Then by
Multiplication formula,

P(B1R2R3) = P(B1)P(R2 | B1)P(R3 | B1 ∩R2)

=
b

b+ r
· r + d

b+ r + c+ d
· r + d+ c

b+ r + 2c+ 2d
,

P(R1B2R3) = P(R1)P(B2 | R1)P(R3 | R1 ∩B2)

=
r

b+ r
· b+ d

b+ r + c+ d
· r + d+ c

b+ r + 2c+ 2d
,

P(R1R2B3) = P(R1)P(R2 | R1)P(B3 | R1 ∩R2)

=
r

b+ r
· r + c

b+ r + c+ d
· b+ 2d

b+ r + 2c+ 2d
.

When c > 0, d = 0, the can model becomes the pandemic model, i.e., every time you pick a red (black)
ball, the probability that the next time you still pick a red (blcak) will increase. Under this restriction,

P(B1R2R3) = P(R1B2R3) = P(R1R2B3) =
br(r + c)

(b+ r)(b+ r + c)(b+ r + 2c)
.

2.5.3 Total probability formula

Theorem 2.4 (Total probability formula)

♡

For any events A and B such that 0 < P < 1,

P(A) = P(A | B)P(B) + P(A | Bc)P(Bc).

More generally, let B1, B2, · · ·Bn be a partition of Ω such that P(Bi) > 0 for all i. Then

P(A) =
n∑

i=1

P(A | Bi)P(Bi).

Proof. A = (A ∩B) ∪ (A ∩Bc). This is a disjoint union and so

P(A) = P(A ∩B) + P(A ∩Bc)

= P(A | B)P(B) + P(A | Bc)P(Bc).

For the second part, recall the definiton of partition,

A = (A ∩B1) ∪ (A ∩Bc
1)

= (A ∩B1) ∪ {A ∩ (B2 ∪B3 ∪ · · · ∪Bn)}

= (A ∩B1) ∪ (A ∩B2) ∪ · · · ∪ (A ∩Bn).

Note that A ∩Bi(1 ⩽ i ⩽ n) is disjoint two by two hence we have the desired.

Example 2.16(Lottery) Assume that there will be one “win” in n lotteries. What is the probability that the
second person wins the lottery?

Solution. Let Ai denote the event that “the i-th person wins the lottey”, i = 1, 2, · · · , n. The desired is P(A2).
Note that A1 occurs or not will influence A2, i.e.,

P(A2 | A1) = 0, P(A2 | Ac
1) =

1

n− 1
.

Moreover, note that
P(A1) =

1

n
, P(Ac

1) =
n− 1

n

17
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and hence by the total probability formula,

P(A2) = P(A1)P(A2 | A1) + P(Ac
1)P(A2 | Ac

1) =
1

n
· 0 + n− 1

n

1

n− 1
=

1

n
.

Similarly, one deduces
P(A3) = P(A4) = · · · = P(An) =

1

n
,

implying that the lottery is fair.
If k(⩽ n) among n lotteries have the reward,

P(A1) = P(A2) = · · · = P(An) =
k

n
.

2.5.4 Bayes formula

Theorem 2.5 (Bayes formula)

♡

Let B1, B2, · · · , Bn be a partition of the sample space Ω. Assume that P(A) > 0,P(Bi) > 0, i =

1, 2, · · · , n, then

P(Bi | A) =
P(Bi)P(A | Bi)∑n
j=1 P(Bj)P(A | Bj)

, i = 1, 2, · · · , n. (2.2)

Proof. Note that

P(Bi | A) =
P(A ∩Bi)

P(A)
,

P(A ∩Bi) = P(Bi)P(A | Bi),

P(A) =
n∑

j=1

P(Bj)P(A | Bj),

and hence
P(Bi | A) =

P(Bi)P(A | Bi)∑n
j=1 P(Bj)P(A | Bj)

.

� Exercise 2.10 Prove that P(A | B) = P(B | A)P(A)/P(B) whenever P(A)P(B) ̸= 0. Show that, if
P(A | B) > P(A), then P(B | A) > P(B).

Proof. Check by definition.

� Exercise 2.11 A man possesses five coins, two of which are double-headed, one is double-tailed, and two are
normal. He shuts his eyes, picks a coin at random, and tosses it.

1. What is the probability that the lower face of the coin is a head?
2. He opens his eyes and sees that the coin is showing heads; what is the probability that the lower face is a

head?
3. He shuts his eyes again, and tosses the coin again. What is the probability that the lower face is a head?
4. He opens his eyes and sees that the coin is showing heads; what is the probability that the lower face is a

head?
5. He discards this coin, picks another at random, and tosses it. What is the probability that it shows heads?
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2.5 Conditional probability

Solution. 1. Let HH be the event the selected coin is double headed, TT be the event that it is doubletailed
and N that it is normal. Let Hl denote the event that the lower face of the coin is a head. Then,

P (Hl) = P (Hl | HH)P(HH) + P (Hl | TT )P(TT ) + P (Hl | N)P(N)

= 1 · 2
5
+ 0 · 1

5
+

1

2
· 2
5
=

3

5
.

2. Let Hu be the event that the upper face of the coin is a head. Then,

P (Hl | Hu) =
P(HH)

P (Hu)
.

Since P (Hu) =
3

5
(the calculation is the same as for P (Hl) ), therefore

P (Hl | Hu) =
2/5

3/5
=

2

3
.

3. Let H2
l be the event that the coin’s lower in the second toss is a head. Then,

P
(
H2

l | Hu

)
= P

(
H2

l | HH,Hu

)
P (HH | Hu) + P

(
H2

l | N,Hu

)
P (N | Hu)

= 1 · P (HH | Hu) +
1

2
· (1− P (HH | Hu)) .

Since HH = Hl ∩Hu, we can write this probability as

P
(
H2

l | Hu

)
= 1 · P (Hl | Hu) +

1

2
· (1− P (Hl | Hu)) =

2

3
+

1

2
· 1
3
=

5

6
.

4.

P
(
H2

l | H2
u, Hu

)
=

P(HH)

P (H2
u ∩Hu)

=
P(HH)

P (H2
u | Hu)P (Hu)

=
2
5

5
6 · 3

5

=
4

5
,

where we used results of (1) and (3). (The probabilities P
(
H2

u | Hu

)
and P (Hu) are the same as

P
(
H2

l | Hu

)
and P (Hl), respectively).

5. The probability that he discards a double-headed coin is
4

5
by the previous part, the probability that he

discards a normal coin is
1

5
. In the first case we have 1 double-headed coin, 1 double-tailed, and 2 normal

coins. In the second case, we have 2 double-headed coins, 1 double-tailed and 1 normal. Hence, by
conditioning on the discard we have:

P
(
H3

u

)
=

4

5

(
1 · 1

4
+

1

2
· 2
4

)
+

1

5

(
1 · 2

4
+

1

2
· 1
4

)
=

21

40

� Exercise 2.12 There are n urns of which the rth contains r − 1 red balls and n− r magenta balls. You pick an
urn at random and remove two balls without replacement. Find the probability that:

1. the second ball is magenta;
2. the probability that the second ball is magenta given the first is red.

Solution. 1. Note that we have n− 1 balls for each urn. First we pick an random urn with equal probability
1

n
. We need to sum up all the possibility that the second removed ball is magenta. For the rth urn, there

are (r − 1)(n − r) + (n − r)(n − r − 1) ways of removal (the first is red and the second is magenta or
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2.5 Conditional probability

both are magenta). Hence what we want is

P (B2 = M) =
1

n

n∑
r=1

(
n− r

n− 2

r − 1

n− 1
+

n− r − 1

n− 2

n− r

n− 1

)

=
1

n(n− 1)

n∑
r=1

(n− r) · r − 1 + n− r − 1

n− 2

=
n2 −

∑n
r=1 r

n2 − n

=
n2 − 1

2n(n+ 1)

n2 − n

=
1

2
2. For this question, we first calculate the probability that both removals are magenta:

P(B1 = M,B2 = M) =
1

n

n∑
r=1

(n− r)(n− r − 1)

(n− 1)(n− 2)

=
1

n(n− 1)(n− 2)

n∑
r=1

(n− r)2 − (n− r)

=
1

n(n− 1)(n− 2)

[
(n− 1)n(2n− 1)

6
− n2 +

n(n− 1)

2

]
=

1

3
.

The probability that the first removal is magenta is
1

2
since there are n(n − 1) balls in total and half of

them are magenta. Hence the result is
2

3
.

� Exercise 2.13 There is one ball with unknown color (either black or white) in a bag. Now put another white
ball into the bag and pick one of the two balls randomly, obtating a white one. What is the probability that the
original ball is white?

Solution. We use A to denote the event that the original one is white, B to denote the event that the original
one is black and C to denote the event that the picked ball is white. By the condition,

P(A) = P(B) =
1

2
,

P(C | A) = 1, P(C | B) =
1

2
.

Solving this, we get P(A | C) =
2

3
.

� Exercise 2.14 There are 2n vertices among n ropes. Now connecting one vertice with exactly one another
vertice, what is the probability that n circles occur?

Solution. We treat the head and tail of a certain rope as different vertices. We first put all 2n vertices in a line.
Then one connection corresponds to one permutation of 2n (for example, 1234 can be regarded as we connect
vertices 1 and 2, 3 and 4). Thus the total number of connection method is (2n)!.

The only way to form n circles is that we connect each rope’s head with their tail. To be more specific, we
must place every rope’s head and tail in position 2k − 1 and 2k for 1 ⩽ k ⩽ n. Since we can switch the head
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2.5 Conditional probability

and tail, there are 2n · n! ways in total. Thus the result is
2n · n!
(2n)!

=
(2n)!!

(2n)!
=

1

(2n− 1)!!
,

where (2n)!! = 2n · (2n− 1) · · · · · 4 · 2, (2n− 1)!! = (2n− 1) · (2n− 3) · · · · · 3 · 1.

� Exercise 2.15 m students are passing ball to each other starting from Tsubaki. Every time each student (except
the one who is passing) has a equal probability to receive the ball. What is the probability that the n-th pass is
still finished by Tsubaki?

Solution. We use pk to denote the probability of the event that the k-th pass is finished by Tsubaki. Then p1 = 1

by condition. Note that if pk+1 happens, Tsubaki can not finish the k-th pass and thus

pk+1 =
1

m− 1
(1− pk),

pk+1 −
1

m
= (

1

1−m
)(pk −

1

m
).

� Exercise 2.16 There are b black balls and r red balls in a can at first. Every time we pick a ball from it,
adding c(c > 0) balls with the same color as the picked one and finally put back the picked one. Show that the
probability that we pick a black ball at k-th time is b/(b+ r), k = 1, 2, · · · .

Proof. We use Ai(b, r) to denote the event that “there are b black balls and r red balls in the can and the i-th

ball taken out is black”. Consider applying induction on i. By condition, P(A1(b, r)) =
b

b+ r
. Now assume

P(Ak−1(b, r)) =
b

b+ r
. By total probability formula, one has

P(Ak(b, r)) = P(A1(b, r)) · P(Ak(b, r) | A1(b, r)) + P(Ac
1(b, r)) · P(Ak(b, r) | Ac

1(b, r)).

Note that

P(Ak(b, r) | A1(b, r)) = P(Ak−1(b+ c, r))

P(Ak(b, r) | Ac
1(b, r)) = P(Ak−1(b, r + c)).

To see this, for the first equation, given the event A1(b, r), c black balls are added. Now (k − 1) picks are
required in the new can (b+ c, r). The second equation is the same. Substituting back and from the induction
assumption,

P(Ak(b, r)) =
b

b+ r
· b+ c

b+ c+ r
+

r

b+ r
· b

b+ c+ r

=
b

b+ r
.

� Exercise 2.17 A bag contains a white balls, b black balls and n red balls. The balls are taken out one by one
without returning. Show that the probability that white balls appear earlier than black balls is always

a

a+ b
and

has nothing to do with n.

Proof. Let A denote the event that “the first ball taken out is white”, B denote the event that “the first ball taken
out is black” and C denote the event that “the first ball taken out is red”. It is easy to see that A,B and C

contradicts with each other whereas A ∪B ∪C = Ω. Let Ek denote the event that “when there are k red balls,
the white balls appear earlier than the black balls”. Apply induction on k. If k = 0, E0 means the first ball
taken out must be white, i.e., P(E0) = a/(a+ b).
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2.5 Conditional probability

Now assume P(Ek−1) =
a

a+ b
. By the total probability formula,

P(Ek) = P(A)P(Ek | A) + P(B)P(Ek | B) + P(C)P(Ek | C)

=
a

a+ b+ n
· 1 + b

a+ b+ n
· 0 + n

a+ b+ n
· P(Ek−1)

=
a

a+ b
.

� Exercise 2.18 Given P(A | B) > P(A | Bc), prove that P(B | A) > P(B | Ac).

Proof. Since
P(A ∩B)

P(B)
>

P(A ∩Bc)

P(Bc)
=

P(A)− P(B ∩A)

1− P(B)
,

we know P(A ∩B) > P(A)P(B). Thus

P(B | Ac) =
P(B ∩Ac)

P(Ac)
=

P(B)− P(B ∩A)

1− P(A)

<
P(B)− P(B)P(A)

1− P(A)
=

P(B)(1− P(A))
1− P(A)

= P(B)

whereas

P(B | A) =
P(B ∩A)

P(A)
>

P(A)P(B)

P(A)
= P(B).

� Exercise 2.19 Let P(A) = p,P(B) = 1− ε, prove that:
p− ε

1− ε
⩽ P(A | B) ⩽

p

1− ε
.

Proof. On one hand,

P(A | B) =
P(A ∩B)

P(B)
⩽

P(A)
P(B)

=
p

1− ε
.

On the other hand,

P(A | B) =
P(A ∩B)

P(B)
=

P(A) + P(B)− P(A ∩B)

P(B)

⩾
P(A) + P(B)− 1

P(B)
=

p− ε

1− ε
.

� Exercise 2.20 Prove P(Bc | Ac) = 1 provided P(A | B) = 1.

Proof. Apply the formula P(A ∪B) = P(A) + P(B)− P(A ∩B).

� Exercise 2.21 The ’ménages’ problem poses the following question. Some consider it to be desirable that men
and women alternate when seated at a circular table. If n heterosexual couples are seated randomly according
to this rule, show that the probability that nobody sits next to his or her partner is

1

n!

n∑
k=0

(−1)k
2n

2n− k

(
2n− k

k

)
(n− k)!
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2.5 Conditional probability

Proof. Label the seats 1, 2, . . . , 2n clockwise. For the sake of definiteness, we dictate that seat 1 be occupied
by a woman; this determines the sex of the occupant of every other seat. For 1 ≤ k ≤ 2n, let Ak be the event
that seats k, k + 1 are occupied by one of the couples (we identify seat 2n + 1 with seat 1 ). The required
probability is

P

(
2n⋂
1

Ac
i

)
= 1− P

(
2n⋃
1

Ai

)
= 1−

∑
i

P (Ai) +
∑
i<j

P (Ai ∩Aj)− · · ·

Now, P (Ai) = n(n − 1)!2/n!2, since there are n couples who may occupy seats i and i + 1, (n − 1) !
ways of distributing the remaining n− 1 women, and ( n− 1) ! ways of distributing the remaining n− 1 men.
Similarly, if 1 ≤ i < j ≤ 2n, then

P (Ai ∩Aj) =

n(n− 1)
(n− 2)!2

n!2
if |i− j| ≠ 1

0 if |i− j| = 1

subject to P (A1 ∩A2n) = 0. In general,

P (Ai1 ∩Ai2 ∩ · · · ∩Aik) =
n!

(n− k)!

(n− k)!2

n!2
=

(n− k)!

n!

if i1 < i2 < · · · < ik and ij+1 − ij ≥ 2 for 1 ≤ j < k, and 2n+ i1 − ik ≥ 2; otherwise this probability is 0 .
Hence

P

(
2n⋂
1

Ac
i

)
=

n∑
k=0

(−1)k
(n− k)!

n!
Sk,n

where Sk,n is the number of ways of choosing k non-overlapping pairs of adjacent seats. Finally, we calculate
Sk,n. Consider first the number Nk,m of ways of picking k non-overlapping pairs of adjacent seats from a line
(rather than a circle) of m seats labelled 1, 2, . . . ,m. There is a oneone correspondence between the set of
such arrangements and the set of (m− k)-vectors containing k1 ’s and (m− 2k)0 ’s. To see this, take such an
arrangement of seats, and count 0 for an unchosen seat and 1 for a chosen pair of seats; the result is such a vector.
Conversely take such a vector, read its elements in order, and construct the arrangement of seats in which each 0

corresponds to an unchosen seat and each 1 corresponds to a chosen pair. It follows that Nk,m =

(
m− k

k

)
.

Turning to Sk,n, either the pair 2n, 1 is chosen or it is not. If it is chosen, we require another k − 1 pairs
out of a line of 2n− 2 seats. If it is not chosen, we require k pairs out of a line of 2n seats. Therefore

Sk,n = Nk−1,2n−2 +Nk,2n =

(
2n− k − 1

k − 1

)
+

(
2n− k

k

)
=

(
2n− k

k

)
2n

2n− k

� Exercise 2.22 Each member of a group of n players rolls a die.
1. For any pair of players who throw the same number, the group scores 1 point. Find the mean and variance

of the total score of the group.
2. Find the mean and variance of the total score if any pair of players who throw the same number scores

that number.

Solution. 1. Let Iij be the indicator function of the event that players i and j throw the same number. Then

E (Iij) = P (Iij = 1) =
6∑

i=1

(
1

6

)2

=
1

6
, i ̸= j.
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2.5 Conditional probability

The total score of the group is S =
∑

i<j Iij , so

E(S) =
∑
i<j

E (Iij) =
1

6

(
n

2

)
We claim that the family {Iij : i < j} is pairwise independent. The crucial calculation for this is as
follows: if i < j < k then

E (IijIjk) = P(i, j, and k throw same number ) =
6∑

r=1

(
1

6

)3

=
1

36
= E (Iij)E (Ijk) .

Hence

var(S) = var

∑
i<j

Iij

 =
∑
i<j

var (Iij) =

(
n

2

)
var (I12)

by symmetry. But var (I12) =
1

6

(
1− 1

6

)
.

2. Let Xij be the common score of players i and j, so that Xij = 0 if their scores are different. This time
the total score is S =

∑
i<j Xij , and

E(S) =

(
n

2

)
E (X12) =

(
n

2

)
1

6
· 7
2
=

7

12

(
n

2

)
.

The Xij are not pairwise independent, and you have to slog it out thus:

var(S) = E


∑

i<j

Xij

2− E(S)2

=

(
n

2

)
E
(
X2

12

)
+

(
n

3

)
E (X12X23)

+


(

n

2

)2

−

(
n

2

)
−

(
n

3

)E (X12)
2 −

(
7

12

)2
(

n

2

)2

=
315

144

(
n

2

)
+

35

432

(
n

3

)
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Chapter 3 Random variables and their distribution

3.1 Random variables; Distribution function

Definition 3.1

♣

Let (E, E) and (G,G) be measurable spaces and let µ be a measure on (E, E). A function f : E → G

is said to be measurable if

f−1(A) := {x ∈ E : f(x) ∈ A} ∈ E whenever A ∈ G.

Note that f−1 maps subsets to subsets.

Definition 3.2

♣

Let (Ω,F ,P) be a probability space, let (G,G) be a measure space. Then a measurable function
X : Ω → G is called a random variable.

Definition 3.3

♣

Let (Ω,F ,P) be a probability space, together with the special measure space (R,B(R)). Then a
measurable function X : Ω → R is called a real random variable and

FX(x) := PX((−∞, x]) = P({X ⩽ x})

(where {X ⩽ x} = {ω ∈ Ω : X(ω) ⩽ x}) is called the distribution function of X.

Proposition 3.1

♠
The map f−1 preserves all set operations, i.e. f−1

(⋃
i

Ai

)
=
⋃
i

f−1(Ai) and f−1(Ac) = [f−1(A)]c.

Indeed, to vertify measuribility, we only need to check the preimage on a smaller set:

Lemma 3.1

♡

Let (Ω1,F1), (Ω2,F2) be measurable spaces. Suppose there is E ⊆ F2 such that σ(E) = F2. Then
X : Ω1 → Ω2 is measurable if and only if for any A ∈ E , X−1(A) ∈ F1.

Proof. =⇒. Trivial.
⇐=. Define G := {B ∈ Ω2 : X−1(B) ∈ F1}. Then follow Proposition 3.1 one can deduce that G is a

σ-algebra. By condition, E ⊆ G. Therefore F2 = σ(E) ⊆ G, implying that X is measurable.

Example 3.1 Consider (Ω,F) and (R,B(R)). For any A ∈ F , the function X := 1A is measurable.
Indeed, take any B ∈ B(R),

X−1(B) = {x ∈ Ω : 1A(x) ∈ B} =



Ω, if 0 ∈ B and 1 ∈ B

Ac, if 0 ∈ B and 1 /∈ B

A, if 0 /∈ B and 1 ∈ B

∅, if 0 /∈ B and 1 /∈ B

.

Since F is a σ-algebra, all possibilities of X−1(B) must lie in F .
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Definition 3.4

♣

Consider measure spaces (Ω,F) and (R,B(R)). A measurable function f : Ω → R is called a Borel
function.

Corollary 3.1

♡

Let (Ω,F) be a measurable space. The followings are equivalent:
1. X : Ω → R is a Borel function;
2. {X < a} ∈ F , ∀a ∈ R;
3. {X ⩾ a} ∈ F , ∀a ∈ R;
4. {X ⩽ a} ∈ F , ∀a ∈ R;
5. {X > a} ∈ F , ∀a ∈ R.

Proof. We prove 2 =⇒ 1 and the remainings are similar. The statement in 2 is equivalent to ∀a ∈
R, X−1((−∞, a)) ∈ F . By Lemma 3.1, it suffices to show that E2 = {(−∞, a) : a ∈ R} satisfies
σ(E2) = B(R). We have know that B(R) = σ(E0) where E0 = {(a, b] : −∞ ⩽ a < b < +∞}. Note
E0 ⊆ σ(E2) since (−∞, b] =

⋂
n⩾1

(−∞, b +
1

n
), (a, b] = (−∞, b] \ (−∞, a]. Conversely, E2 ⊆ σ(E0) since

(−∞, a) =
⋃
n⩾1

(−∞, a− 1

n
].

Lemma 3.2

♡

Let X be a random variable on some probability space. Then the distribution function of X , i.e. FX ,
has the following properties:

1. FX : R → [0, 1], and FX is monotonically increasing;
2. lim

x→+∞
FX(x) = 1, lim

x→−∞
FX(x) = 0;

3. FX is right-continuous (i.e., FX(y) ↓ FX(x) as y ↓ x).

Proof. 1. Note that {X ⩽ x} ⊆ {X ⩽ y} and hence FX(x) ⩽ FX(y) by the monotonicity of probability.
2. First we show lim

n→−∞
F (n) = 0. By “continuity from above”,

lim
n→−∞

F (n) = lim
n→−∞

P({X ⩽ n}) = P( lim
n→−∞

{X ⩽ n})

= P

(⋂
n∈Z

{X ⩽ n}

)
= P(∅)

= 0.

Symmetrically, by continuity from below,

lim
n→+∞

F (n) = lim
n→+∞

P({X ⩾ n}) = P( lim
n→+∞

{X ⩾ n})

= P

(⋃
n∈Z

{X ⩾ n}

)
= P(R)

= 1.

3. First we show lim
n→∞

F (x+
1

n
) = F (x). By continuity from above,

lim
n→∞

F (x+
1

n
) = lim

n→∞
P({X ⩽ x+

1

n
}) = P( lim

n→∞
{X ⩽ x+

1

n
})
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3.1 Random variables; Distribution function

= P

(⋂
n⩾1

{X ⩽ x+
1

n
}

)
= P({X ⩽ x})

= F (x).

The by monotonicity FX(x+ h) ↓ FX(x) as h ↓ 0.

Indeed, we can also prove that functions satisfying the three properties in Lemma 3.2 are distribution
functions of certain random variables. Hence these three properties are necessary and sufficient judgements
to determine whether a function is a distribution function (of a certain random variable) or not:

Theorem 3.1

♡If F satisfies 1, 2, and 3 in Lemma 3.2, then it is the distribution function of some random variable.

Proof. Let Ω = (0, 1),F = the Borel sets, and P = probability (or, Lebesgue) measure. If ω ∈ (0, 1), let

X(ω) = sup{y : F (y) < ω}

Once we show that
{ω : X(ω) ≤ x} = {ω : ω ≤ F (x)} (⋆)

the desired result follows immediately since P (ω : ω ≤ F (x)) = F (x). (Recall P is probability measure.)
To check (⋆), we observe that if ω ≤ F (x) then X(ω) ≤ x, since x /∈ {y : F (y) < ω}. On the other hand if
ω > F (x), then since F is right continuous, there is an ϵ > 0 so that F (x+ ϵ) < ω and X(ω) ≥ x+ ϵ > x.

Lemma 3.3

♡

Let X be a random variable and F be its distribution function. Then for x, y ∈ R,
1. P(x < X ⩽ y) = F (y)− F (x);
2. P(X = x) = F (x)− lim

y→x−
F (y).

Proof. Statement 1 is trivial. To see 2, let Bn = {x− 1

n
< X ⩽ x}. By 1, P(Bn) = F (x)− F (x− 1

n
). Now

send n → ∞, one gets lim
n→∞

Bn =
⋂
n⩾1

Bn = {x}. By continuity of measure,

P(X = x) = lim
n→∞

P(Bn) = F (x)− lim
n→∞

F (x− 1

n
) = F (x)− lim

y→x−
F (y).

� Exercise 3.1 Let (Ω1,F1) and (Ω2,F2) be measurable spaces with f : Ω1 → Ω2.
1. Show that F := {f−1(A) : A ∈ F2} is a σ-algebra on Ω1.
2. Show that if G is a σ-algebra on Ω1 such that f is G-measurable, then G ⊇ F .

Proof. 1. Trivial.
2. Take B ∈ F then B = f−1(A) for some A ∈ F2. Since f is G-measurable, B = f−1(A) ∈ G, and thus

G ⊇ F .

� Exercise 3.2 Let (Ω1,F1) and (Ω2,F2) be measurable spaces with f : Ω1 → Ω2.
1. Show that F̃ := {A ⊆ Ω2 : f

−1(A) ∈ F1} is a σ-algebra on Ω1.
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3.2 Properties of Borel functions

2. Show that if G is a σ-algebra on Ω2 such that f is G-measurable, then G ⊆ F̃ .

Proof. 1. Trivial.
2. Take B ∈ G then since f is G-measurable, f−1(B) ∈ F1, i.e., B ∈ F̃ and thus G ⊆ F̃ .

3.2 Properties of Borel functions

For random variable X and Y , we use the shorthand {X < Y } := {ω : ω ∈ Ω : X(ω) < Y (ω)}.

Lemma 3.4

♡

Let (Ω,F) be a measurable space and X,Y be Borel functions. Then
1. {X < Y }, {X ⩾ Y }, {X = Y }, {X ̸= Y } ∈ F;
2. cX : c ∈ R, X + Y,X − Y and XY are Borel functions.

Proof. Recall Corollary 3.1, X is a Borel functions if and only if {X < a} ∈ F for any a ∈ R.
1. Using Q is dense in R, one gets {X < Y } =

⋃
q∈Q

{X < q}∩{q < Y } ∈ F . For the remaining terms, note

that {X ⩽ Y } = {X < Y }c, {X = Y } = {X ⩽ Y } ∩ {X ⩾ Y } and that {X ̸= Y } = {X = Y }c.
2. For t ∈ R, if c > 0,

{X > t} = {X > c−1t}.

If c < 0,
{X < t} = {X < c−1t}

and thus cX is Borel. If c = 0, it is trivial.
For t ∈ R, note that

{X + Y > t} =

∞⋃
i=1

({X > ri} ∩ {Y > t− ri})

where ri are all the rational numbers. Thus X + Y is Borel (same as X − Y ). Also note that X2 is
Borel since {X2 > a} = {X >

√
a} ∪ {X < −

√
a}. Combine all these and by the transformation

XY =
1

4
((X + Y )2 − (X − Y )2), one deduces that XY is Borel.

Lemma 3.5

♡

Let {Xn} be a sequence of Borel function. Then sup
n

Xn, inf
n

Xn, lim sup
n→∞

Xn, lim inf
n→∞

Xn are Borel

functions.

Proof. We claim that
{sup

n
Xn ⩽ a} =

⋂
n≥1

{Xn ⩽ a}

and thus supXn is Borel. The infinum infXn is Borel since infXn = − sup(−Xn). The remaining terms are
Borel since

lim sup
n→∞

Xn = inf
m⩾1

sup
n≥m

Xn,

lim inf
n→∞

Xn = sup
m⩾1

inf
n≥m

Xn.
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3.3 σ-algebra generated by a random variable

Corollary 3.2

♡
If lim

n→∞
Xn exists, then lim

n→∞
Xn is Borel.

Lemma 3.6

♡

Let (Ω1,F1), (Ω2,F2), (Ω3,F3) be three measurable spaces. X : Ω1 → Ω2 and Y : Ω2 → Ω3 are
measurable functions. Then Y ◦X : Ω1 → Ω3 is also measurable.

Proof. For any B ∈ F3, note that (Y ◦X)−1(B) = X−1 ◦ Y −1(B) = X−1(Y −1(B)) ∈ F1.

3.3 σ-algebra generated by a random variable

Definition 3.5

♣

Let X be a random variable. Then

σ(X) := {X−1(B) : B ∈ B(R)}

is called the σ-algebra generated by X .

Similarly, given measurable X , σ(X) is the smallest σ-algebra containing X .

Definition 3.6

♣

Given {Xi}i∈I to be a family of random variables,

σ(Xi, i ∈ I) := σ

(⋃
i∈I

σ(Xi)

)
is called the σ-algebra generated by {Xi}i∈I .

Example 3.2 Let Ω,F be measurable space and A1, A2, · · · , An ∈ F are two-by-two disjoint. Define

X := b11A1 + b21A2 + · · ·+ bn1An

with distinct coefficients b1, · · · , bn. Show that σ(X) = σ({A1, A2, · · · , An}).
Before starting the proof, we first verify a lemma:

Lemma 3.7

♡σ(X) = σ({{X < a} : a ∈ R}).

Proof of the lemma. Recall that B(R) = σ(E) where E = {[a, b) : −∞ < a < b ⩽ +∞}. Now for any
S ∈ σ(X), there is [a, b) such that S = X−1([a, b)) = X−1((−∞, a)c ∩ (−∞, b)) = {X < a}c ∩{X < b} ∈
RHS, implying LHS ⊆ RHS.

Conversely, for a fixed a, {X < a} = X−1((−∞, a)) ∈ σ(X). Hence by the “smallest”, RHS⊆LHS.

Proof of Example 3.2. For any i, note that Ai = X−1({bi}) ∈ σ(X) and thus RHS ⊆ LHS.

Conversely, for any a ∈ R, {X ⩽ a} = disjoint union of {Ai}ni=1,

( n⋃
i=1

Ai

)c

∈ σ({A1, A2, · · · , An}).

Hence by the lemma, σ(X) = σ({X ⩽ a}) ⊆ σ({A1, A2, · · · , An}).
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3.4 Independence

3.4 Independence

Definition 3.7

♣

Let I be a countable set. We say that the events {Ai ∈ F : i ∈ I} are independent if, for all finite subsets
J ∈ I ,

P(
⋂
i∈J

Ai) =
∏
i∈J

P(Ai).

Definition 3.8

♣

Intuitively, two random variables X and Y are said to be independent if for any A,B ∈ B(R),

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B).

Definition 3.9

♣

Let (Ω,F , P ) be a probability space.
1. A sequence of G1, G2, · · · , Gn ⊆ F is called independent if

P (A1 ∩A2 ∩ · · · ∩An) = P (A1)P (A2) · · ·P (An),

for all Ai ∈ Gi, i = 1, 2, · · · , n.
2. A sequence of random variable X1, X2, · · · , Xn are independent if σ(X1), · · · , σ(Xn) are inde-

pendent, where σ(Xi) = {X−1
i (B) : B ∈ B(R)}.

Remark
Statement 2 ⇐⇒ ∀B1, B2, · · · , Bn ∈ B(R),

P (X1 ∈ B1, · · · , Xn ∈ Bn) =
n∏

i=1

P (Xi ∈ Bi) =
n∏

i=1

P (X−1
i (Bi)).

Events A1, · · · , An are independent ⇐⇒ 1A1 , · · · ,1An are independent random variables.

Definition 3.10

♣

The random variables Xn, n ∈ N, are called independent identically distributed (i.i.d.) if they are
independent and, moreover, all of them have the same distribution (i.e. the distribution functions µXn

are equal, for all n ∈ N).

Theorem 3.2 (Dynkin π − λ)

♡If C is a π-system and L is a λ-system such that C ⊆ L, then σ(C) ⊆ L

Theorem 3.3

♡Suppose A1,A2, · · · ,An are independent π-systems. Then σ(A1), · · · , σ(An) are independent.

Proof. We prove if A1,A2, · · · ,An are independent, then σ(A1),A2, · · · ,An are independent and iterate.
Take A2 ∈ A2, · · · , An ∈ An. Set B := A2 ∩ A3 · · · ∩ An. Define L = {A ∈ Ω : P (A ∩ B) =

P (A)P (B)}. If A ∈ A1, then P (A∩B) = P (A)P (B), implying that L ⊇ A1. We claim that L is a λ-system.
Clearly Ω ∈ L since P (Ω ∩B) = P (Ω)P (B). If A1, A2 ∈ L : A1 ⊆ A2, then

P ((A2 \A1) ∩B) = P (A2 ∩B)− P (A1 ∩B)

= P (A2)P (B)− P (A1)P (B)
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3.4 Independence

= P (A2 \A1)P (B).

If Ak ∈ L and Ak ↑ A, then

P (A ∩B) = lim
k→∞

P (Ak ∩B)

= lim
k→∞

P (Ak)P (B)

= P (A)P (B).

By Dynkin π − λ Theorem, L ⊆ σ(A1), implying for any A ∈ σ(A1),

P (A ∩ (A2 ∩A3 ∩ · · · ∩An)) = P (A)P (A2 ∩A3 ∩ · · · ∩An)

=

n∏
i=1

P (Ai).

Corollary 3.3

♡

X1, X2, · · · , Xn are independent random variables if and only if for any x1, x2, · · · , xn ∈ R,

P [X1 ⩽ x1, · · · , Xn ⩽ xn] =
n∏

i=1

P (Xi ⩽ xi). (3.1)

Proof. LetAi = {{Xi ⩽ x} : x ∈ R}, then eachAi is aπ-system since {Xi ⩽ x}∩{Xi ⩽ y} = {Xi ⩽ x∧y}.
Furthermore, σ(Ai) = σ(Xi) by Lemma 3.7. Now (3.1) implies A1, · · · ,An are independent and thus by
Theorem 3.3, σ(X1), · · · , σ(Xn) are independent.

� Exercise 3.3 Let Ω := [0, 1] × [0, 1],F = B(R2) ∩ [0, 1]2 and m denote the Lebesgue measure. Define
A1 = {[0, 1]× A : A ∈ B(R) ∩ [0, 1]} and A2 = {A× [0, 1] : A ∈ B(R) ∩ [0, 1]}. Show that A1 and A2 are
σ-algebra and they are independent with respect to m.

Proof.

Theorem 3.4 (Uniqueness of extension)

♡

Let G be a π-system. Let µ1, µ2 be two σ-finite measure on (Ω, σ(G)) such that µ1(Ω) = µ2(Ω) and
µ1 = µ2 on G. Then µ1 = µ2 on σ(G).

Proof. Let D := {A ∈ σ(G) : µ1(A) = µ2(A)}. Then we have D ⊇ G. We claim that D is a λ-system.
Indeed,

Ω ∈ D since µ1(Ω) = µ2(Ω);
If A,B ∈ D : A ⊂ B, note that

µ2(B \A) = µ2(B)− µ2(A) = µ1(B)− µ1(A) = µ1(B \A)

If A,An ∈ D : An ↑ A, note thta

µ2(A) = lim
n→∞

µ2(An) = lim
n→∞

µ1(An) = µ1(A).

Hence by Dynkin’s Theorem, D ⊇ σ(G) and thus µ1 = µ2 on σ(G).
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3.4 Independence

Constructing independent random variables

Let F1, F2, · · · , Fn be distribution functions. How to construct independent variables X1, X2, · · · , Xn

such that P (Xi ⩽ x) = Fi(x)?
Let Ω = Rn and F = B(Rn) and Xi be the projection mapping:

Xi : Rn −→ R

ω 7−→ ωi

Let Pn be the measure on (Rn,B(R)) such that Pn([a1, b1]× [a2, b2]× · · · × [an, bn]) =
n∏

i=1

(Fi(bi)− Fi(ai)).

Since {[a1, b1]×· · ·×[an, bn]} is a π-system that producesB(Rn), by extension theorem, Pn extends uniquely to
a measure on (Rn,B(Rn)). Indeed, Pn = mF1 ⊛mF2 ⊛ · · ·⊛mFn where mF1 , · · · ,mFn are one-dimensional
Lebesgue Stieljes measures.

Constructing infinite random variables

We try a similar construction: Ω := RN = {(ω1, ω2, · · · ) : ωi ∈ R}. Our goal is to define a σ-algebra and
a probability measure based on approximation on finite dimension. Define the cylinder set A as

A :=
∞⋃
n=1

{B1 ×B2 × · · · ×Bn × R× R× · · · : B1, B2, · · ·Bn ∈ B(R)}.

Note that A is an algebra but not a σ-algebra: Let An = R×· · ·× [0, 1]×R×· · · . Then
⋂
n⩾1

An = [0, 1]N /∈ A.

It is natural to define a content (but countably-additive) on A: for any A ∈ A, there is n ∈ N such that
A = B1 × · · · ×Bn × R× · · · × R. Set

P (B1 ×B2 × · · · ×Bn × R× R× · · · ) = Pn(B1 ×B2 × · · · ×Bn)

Can we extend P to σ(A)?

Theorem 3.5 (Kolmogorov extension)

♡

Suppose the probability measure (Rn,B(Rn), Pn)n⩾1 are consistent:

Pn+1((a1, b1]× · · · × (an, bn]× R) = Pn((a1, b1]× · · · × (an, bn]), n ⩾ 1

Then there is a unique probability measure P on (Rn, σ(A)) such that

P ((a1, b1]× · · · × (an, bn]× R× · · · ) = Pn((a1, b1]× · · · × (an, bn]).

Example 3.3 If {Xi}i∈N is a random walk or a Markov chain, the joint distribution

(Xt1 , · · · , Xtn), n ⩾ 1

uniquely determines the law of {Xi}i∈N.
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Chapter 4 Discrete and continuous random variables

4.1 Definitions

Definition 4.1

♣

A random variable X is said to be discrete if it takes value in countable set {x1, x2, · · · }, where
{x1, x2, · · · } are called the atoms of X . Its probability mass function f(x) is defined by

f(x) := P(X = x). (4.1)

Definition 4.2

♣

A random variable X is (absolutely) continuous if

FX(x) =

∫ x

−∞
f(u)du (4.2)

for some integrable function f : R → [0,+∞). Then f is called the probability density function.

Remark There is random variable such that its distribution function is not absolutely continuous:
Example 4.1 Singular variable X whose distribution FX is the Cantor function.

The probability density function has two properties:
1. f(x) ⩾ 0;

2.
∫ ∞

−∞
f(x)dx = 1.

The distribution and mass function are related by

FX(x) = P(X ⩽ x) =
∑

xi,xi⩽x

f(xi), f(x) = F (x)− lim
y↑x

F (y)

Based on (4.2), the relation of probability density function and distribution function is also given by

F ′(x) = f(x). (4.3)

For a discrete random variable, its distribution is always a right-continuous step function. However, for a
continunous random variable, its distribution function is always a continuous one since

F (x+∆x)− F (x) =

∫ x+∆x

x
f(x)dx → 0 (∆x → 0).

Note that for an absolutely continuous random variable, P (X = a) =

∫ a

a
f(x)dx = 0 for any a ∈ R and thus

P (a ⩽ X ⩽ b) = P (a < X ⩽ b) = P (a ⩽ X < b) = P (a < X < b).

4.2 Expectation and variance

Definition 4.3

♣

The mean/expectation/expected value of a discrete random variable X with probability mass function f

is
E(X) :=

∑
x:f(x)>0

xf(x) =
∑

x:f(x)>0

xP(X = x). (4.4)



4.2 Expectation and variance

Example 4.2 Let X denote the number of heads occuring in two coin flips. Then according to (4.4),

E(X) =
∑

xP(X = x)

= 0 · P(X = 0) + 1 · P(X = 1) + 2 · P(X = 2)

= 0 + 1 · 1
2
+ 2 · 1

4

= 1.

Lemma 4.1 (Change of variable)

♡

Let g : R → R and X be a random variable with probability mass function f . Then

E[g(X)] =
∑

x:f(x)>0

g(x)f(x).

Proof. Note that for a fixed y,

P(g(X) = y) = P{ω : g(X(ω)) = y} =
∑

x:g(x)=y

P(X = x)

and thus

E(g(X)) =
∑
y

yP(g(X) = y) =
∑
y

∑
x:g(x)=y

yP(X = x)

=
∑
x

g(x)P(X = x) =
∑
x

g(x)f(x).

Lemma 4.2

♡

Let X be a random variable taking values in N, then
1. E(X) =

∑
n∈N

P(X ⩾ n).

2.
∞∑
k=0

kP(X > k) =
1

2
[E(X2)− E(X)].

Proof. 1.

E(X) = 1 · P(X = 1) + 2 · P(X = 2) + 3 · P(X = 3) + · · ·

= (P(X = 1) + P(X = 2) + · · · ) + (P(X = 2) + P(X = 3) + · · · ) + · · ·

= P(X ⩾ 1) + P(X ⩾ 2) + · · ·

=
∑
n∈N

P(X ⩾ n).

2.
∞∑
k=0

kP (X > k) =

∞∑
k=0

k
∞∑

i=k+1

P (X = i) =
∞∑
i=1

i−1∑
k=0

kP (X = i)

=

∞∑
i=1

P (X = i)
(i− 1)i

2
=

1

2

∞∑
i=1

i2P (X = i)− 1

2

∞∑
i=1

iP (X = i)

=
1

2
E
(
X2
)
− 1

2
E(X).
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4.2 Expectation and variance

Example 4.3 Let Xi be i.i.d random variable denoting the offer you receive and define T as

T := the first time you see an offer better than X1.

Compute E(T ).

Solution. By Lemma 4.2,

E(T ) =
∑
n⩾1

P(T ⩾ n) =
∑
n⩾1

P(X1 = max{X1, X2, · · · , Xn})

=
∑
n⩾1

1

n
= +∞.

Definition 4.4

♣

Let X be a continuous random variable with probability density function p(x). If∫ ∞

−∞
|x|p(x)dx < ∞,

the value
E(X) =

∫ ∞

−∞
xp(x)dx < ∞, (4.5)

is called the mean/expectation/expected value of X .

Similarly, one has

Lemma 4.3 (Change of variable)

♡

Let g : R → R and X be a random variable with probability mass function f . Then

E[g(X)] =

∫ ∞

−∞
g(x)p(x)dx.

Lemma 4.4

♡

For a non-negative continuous random variable X , one has

E(X) =

∫ ∞

0
P (X ⩾ x)dx.

Proof. It suffices to prove that

E(X) =

∫ ∞

0
[1− F (x)]dx.

Note that ∫ ∞

0
xf(x)dx =

∫ ∞

0

(∫ x

0
dy

)
f(x)dx =

∫ ∞

0

(∫ ∞

y
f(x)dx

)
dy =

∫ ∞

0
[1− F (y)]dy.

� Exercise 4.1 Let X ⩾ 0 be a random variable. Show that

E(Xn) =

∫ ∞

0
nxn−1P (X > x)dx.

Proof. Use the conclusion above, we see

E(Xn) =

∫ ∞

0
P (Xn > y)dy.
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4.2 Expectation and variance

Now set y = xn, we get

E(Xn) =

∫ ∞

0
P (Xn > xn)nxn−1dx =

∫ ∞

0
P (X > x)nxn−1dx.

Definition 4.5

♣

The k-th moment of a random variable X is defined as mk := E(Xk) whereas the the k-th central
moment of X is defined as σk := E[(X − E(X))k].

Definition 4.6

♣

The second central moment, i.e., E[(X − E(X))2] is defined to be the variance of X , denoted by σ2 or
var(X).

Remark Note that

var(X) = E[(X − E(X))2] = E[X2 − 2X · E(X) + E(X)2]

= E(X2)− 2E(X)2 + E(X)2

= E(X2)− E(X)2.

Lemma 4.5

♡

Expectation has the following properties:
1. For any a, b ∈ R,E(aX + bY ) = aE(X) + bE(Y );
2. E(XY ) = E(X)E(Y ) given X and Y independent;
3. var(X + Y ) = var(X) + var(Y ) given X and Y independent.

Proof. 1. Trivial.
2. Note that

E(XY ) =
∑

xiyjP(X = xi, Y = yj)

=
∑

xiP(X = xi)
∑

yjP(Y = yj)

=E(X)E(Y ).

3.

var(X) + var(Y ) =E((X + Y − E(X + Y ))2)

=E((X − E(X))2) + E((Y − E(Y ))2) + 2E((X − E(X))(Y − E(Y )))

= var(X) + var(Y ).

The last equality holds since by 2, E(XY ) = E(X)E(Y ) and

E((X − E(X))(Y − E(Y ))) = E(XY −XE(Y )− Y E(X) + E(X)E(Y ))

= E(XY )− 2E(X)E(Y ) + E(X)E(Y )

= 0.
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4.2 Expectation and variance

� Exercise 4.2 Let X be a random variable with distribution function

F (x) =



0, x < 0,

1/4, 0 ⩽ x < 1,

1/3, 1 ⩽ x < 3,

1/2, 3 ⩽ x < 6,

1, x ⩾ 6.

Try to compute P (X < 3), P (X ⩽ 3).

Solution. We first observe that X is discrete and thus

P (X = 0) = F (0)− lim
y→0−

F (y) =
1

4
, P (X = 1) = F (1)− lim

y→1−
F (y) =

1

12
,

P (X = 3) = F (3)− lim
y→3−

F (y) =
1

6
, P (X = 6) = F (6)− lim

y→6−
F (y) =

1

2
.

Thus
P (X < 3) = P (X = 0) + P (X = 1) =

1

3
, P (X ⩽ 3) = 1− P (X = 6) =

1

2
.

� Exercise 4.3 Let X be a random variable with distribution function

F (x) =



ex

2
, x < 0,

1

2
, 0 ⩽ x < 1,

1− 1

2
e−

1
2
(x−1) x ⩾ 1.

Compute Var(X).

Solution. The probability density function of X is given by

p(x) = F ′(x) =


ex

2
, x < 0,

0, 0 ⩽ x < 1,
1

4
e−

1
2
(x−1) x ⩾ 1.

� Exercise 4.4 Let g : R → R be a non-decreasing function such that E(g(X)) exists. Show that for every ε > 0,

P(X > ε) ⩽
E(g(X))

g(ε)
.

Proof. Let p(x) denote the probability density function of X . Then

P(X > ε) =

∫ ∞

ε
p(x)dx =

∫ ∞

ε

g(x)

g(x)
p(x)dx ⩽

∫ ∞

ε

g(x)

g(ε)
p(x)dx =

1

g(ε)

∫ ∞

ε
g(x)p(x)dx ⩽

E(g(X))

g(ε)
.

� Exercise 4.5 Let X be a non-negative continuous random variable. Prove that for x ⩾ 0,

P(X < x) ⩾ 1− E(X)

x
.
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4.3 Lebesgue integration

Proof. Let p(x) denote the probability density function of X . Then

P(X < x) =

∫ x

0
p(t)dt = 1−

∫ ∞

x
p(t)dt ⩾ 1−

∫ ∞

x

t

x
p(t)dt

⩾ 1− 1

x

∫ ∞

0
tp(t)dt = 1− E(X)

x
.

� Exercise 4.6 Let X be a random variable taking values in N. If var(X) exists, show that

var(X) = 2

∞∑
n=1

nP(X ⩾ n)− E(X)[E(X) + 1].

Proof. By the existence of variance, we know that the series
∞∑
n=1

n2P(X = n) is absolutely convergent and thus

var(X) = E(X2)− E2(X) = E(X2) + E(X)− E(X)[E(X) + 1],

where

E(X2) + E(X) =
∞∑
n=1

n(n+ 1)P(X = n) = 2
∞∑
n=1

( n∑
i=1

i

)
P(X = n)

= 2
∞∑
i=1

i

[ ∞∑
n=i

P(X = n)

]
= 2

∞∑
i=1

iP(X ⩾ i).

4.3 Lebesgue integration

Let (E, E , µ) be a measure space.
We want to define, where possible, for measurable functions f : E → [−∞,∞], the integral of f with

respect to the measure µ:

µ(f) =

∫
E
fdµ =

∫
x∈E

f(x)µ(dx).

For random variables on a probability space (Ω,F ,P), the integral will be called the expectation of X , and
written E(X).

Definition 4.7 (Simple functions)

♣

A simple function is a function of the form

f =

m∑
k=1

ak1Ak
,

where 0 < ak ≤ ∞, and each Ak ∈ E is disjoint with each other.

Definition 4.8 (Integration of simple functions)

♣

We define the integral of a simple function f to be

µ(f) :=

m∑
k=1

akµ(Ak),

with the convention that 0 · ∞ = 0.

Example 4.4 µ(1A) =

∫
A
1dx = µ(A), for any measurable A ∈ E .

38



4.3 Lebesgue integration

Example 4.5 On probability space we have E(1A) =

∫
A
1dP = P(A).

Moreover for simple functions f, g and constants α, β ≥ 0 the following set of properties, (P), holds:
1. µ(αf + βg) = µα(f) + βµ(g);
2. f ≤ g =⇒ µ(f) ≤ µ(g);
3. f = 0 a.e. ⇐⇒ µ(f) = 0.

Definition 4.9 (Integration of general measurable functions)

♣

For general non-negative measurable functions f , we define the integral by

µ(f) := sup{µ(g) : g is simple, g ≤ f}.

Note that property (P)(2) implies that this definition is consistent with the definition of µ for simple
functions. Also the properties (P) hold for f, g non-negative measurable functions. Let

f+ := f ∨ 0 and f− := −f ∨ 0.

Then
f = f+ − f− and |f | = f+ + f−.

We say that a measurable function f is integrable if µ(|f |) < ∞, and define

µ(f) := µ(f+)− µ(f−).

Remark Combining with property (P)(2), we know f is integrable if and only if
∫

|f |dµ < +∞.
Example 4.6 sinx is not integrable with respect to Lebesgue measure since∫

R
| sinx|dx → ∞.

Example 4.7
sinx

x
is not integrable with respect to Lebesgue measure since∫

R

∣∣∣∣sinxx
∣∣∣∣dx ⩾

∞∑
n=1

∫ nπ

(n−1)π

| sinx|
x

dx ⩾
∞∑
n=1

1

nπ

∫ nπ

(n−1)π
| sinx|dx

⩾
∞∑
n=1

2

nπ
.

� Exercise 4.7 Prove that µ(A) = 0 implies
∫
A
fdµ = 0 for a Borel function f .

Proof. Following the standard machine.

Proposition 4.1

♠

Let A be a measurable subset of E, then∫
A
f(x)dx =

∫
E
f(x)1A(x)dx.

Proof. Note that ∫
A
f(x)dx = sup

h(x)⩽f(x)
x∈A

{∫
A
h(x)dx

}

= sup
h(x)1A(x)⩽f(x)1A(x)

x∈E

{∫
A
h(x)dx

}
=

∫
E
f(x)1A(x)dx.
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4.3 Lebesgue integration

Proposition 4.2

♠
f(x) = 0 a.e. if and only if

∫
E
f(x)dx = 0 (If m(E) = 0, then

∫
E
f(x)dx = 0).

Proof. The “=⇒” is trivial. Conversely, we define

Ek := {x ∈ E : f(x) > 1/k}.

Since
1

k
m(Ek) =

∫
Ek

1

k
dx ⩽

∫
Ek

f(x)dx ⩽
∫
E
f(x)dx = 0

we have m(Ek) = 0 (k = 1, 2, · · · ). Note that

{x ∈ E : f(x) > 0} =
∞⋃
k=1

Ek,

and thus m({f > 0}) = 0.

Theorem 4.1 (Monotone Convergence Theorem(M.C.T))

♡

Let {fn}n∈N be a non-decreasing sequence of measurable functions with fn ≥ 0 and lim
n→∞

fn = f . Then

lim
k→∞

∫
E
fk(x)dx =

∫
E
f(x)dx. (4.6)

Proof. It is easy to see that f is measurable and
∫
E
f(x)dx is well-defined. Since∫

E
fk(x)dx ⩽

∫
E
fk+1(x)dx (k = 1, 2, · · · ),

and thus lim
k→∞

∫
E
fk(x)dx is well-defined. From the non-decreasing property, we see

lim
k→∞

∫
E
fk(x)dx ⩽

∫
E
f(x)dx.

Now let 0 < c < 1 and h(x) be any non-negative simple function on Rn such that h(x) ⩽ f(x), x ∈ E. Define

Ek := {x ∈ E : fk(x) ⩾ ch(x)} (k = 1, 2, · · · ),

then Ek is measurable and increasing with lim
k→∞

Ek = E. By Theorem ??,

lim
k→∞

c

∫
Ek

h(x)dx = c

∫
E
h(x)dx.

From inequality ∫
E
fk(x)dx ⩾

∫
Ek

fk(x)dx ⩾
∫
Ek

ch(x)dx = c

∫
Ek

h(x)dx

we get

lim
k→∞

∫
E
fk(x)dx ⩾ c

∫
E
h(x)dx.

Send c → 1, obtaining

lim
k→∞

∫
E
fk(x)dx ⩾

∫
E
h(x)dx.
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4.4 Absoulte continuity and Radon-Nikodym derivative

By the “sup” in the definition of integral, we get

lim
k→∞

∫
E
fk(x)dx ⩾

∫
E
f(x)dx.

4.4 Absoulte continuity and Radon-Nikodym derivative

Definition 4.10

♣

Let (Ω,F , µ) be a measure space. If for any A ∈ F , one has υ(A) =

∫
A
fdµ for a certain Borel function

f : Ω → [0,+∞), then f is called the Radon-Nikodym derivative of υ with respect to µ, denoted by

f =
dυ

dµ
.

Proposition 4.3

♠

Let (Ω,F , µ) be a measure space and f : Ω → [0,+∞) be a Borel function. Then

υ(A) =

∫
A
fdµ

defines a measure.

Proof. From Exercise 4.7 we know if A = ∅ then υ(A) = 0.
Now we continue to prove the countable additivity. Let {Aj} be a countable disjoint set sequence. Then

υ

( ∞⋃
j=1

Aj

)
=

∫
⋃

j⩾1 Aj

fdµ =

∫
Ω
f · 1⋃

j⩾1
dµ

=

∫
Ω
f lim

n→∞
1⋃n

j=1 Aj
dµ = lim

n→∞

∫
Ω
f · 1⋃n

j=1 Aj
dµ

= lim
n→∞

∫
Ω
f ·

n∑
j=1

1Ajdµ = lim
n→∞

n∑
j=1

υ(Aj)

=
∑
j⩾1

υ(Aj).

Definition 4.11

♣

We say υ is absolutely continuous with respect to µ, denoted by υ ≪ µ if and only if υ(A) = 0 given
any A ∈ F such that µ(A) = 0. In particular, if υ ≪ µ and µ ≪ υ, we say they are equivalent, denoted
by µ ∼ υ.

Example 4.8 If υ(A) =

∫
A
fdµ for a Borel f , then υ ≪ µ.

Example 4.9 Define measure M to be M := 2m, where m is the Lebesgue measure. Then M ≪ m and
m ≪ M .
Example 4.10 Let m be the Lebesgue measure whereas c denote the counting measure, i.e.,

c(A) =

|A|, |A| < +∞,

+∞, |A| = +∞,

for any set A. Then m ≪ c whereas the inversed direction is not true.
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4.4 Absoulte continuity and Radon-Nikodym derivative

Theorem 4.2 (Radon-Nikodym)

♡

If µ is σ-finite on Ω, i.e., Ω can be written as
⋃
j⩾1

Aj for Aj ∈ F and µ(Aj) < ∞, and µ ≪ υ, then there

is a measurable function f such that

1. υ(A) =

∫
A
fdµ for any A ∈ F;

2.
∫
Ω
fdµ = 1;

3. f ⩾ 0 a.e. with respect to measure µ.

Proposition 4.4 (Equivalent character of absolute continuity)

♠υ ≪ µ ⇐⇒ ∀ε > 0, ∃δ > 0 such that for any A such that µ(A) < δ, we have υ(A) < ε.

Proof. =⇒. Assume the contrary: ∃ε0 > 0,∀δ > 0, there exists A with µ(A) < δ but υ(A) ⩾ ε0. Now for
any n ∈ N, take An such that µ(An) ⩽ 1/2n and υ(An) ⩾ ε0. Defining

Bn =
⋃
k⩾n

Ak,

B = lim supAn =
⋂
n⩾1

⋃
k⩾n

Ak =
⋂
n⩾1

Bn,

we have
µ(Bn) ⩽

∑
k⩾n

µ(Ak) ⩽
∑
k⩾n

1

2k
=

1

2n−1

and
υ(Bn) ⩾ υ(An) ⩾ ε0.

By continuity of measure, µ(B) = lim
n→∞

µ(Bn) = 0 whereas υ(B) = lim
n→∞

υ(Bn) = 0 ⩾ ε0, contradicting
with υ ≪ µ.

Remark Absolutely random variable ⇐⇒ its distributionPX is absolutely continuous with respect to Lebesgue
measure.

Proposition 4.5 (Chain rule)

♠

υ ≪ µ and f is integrable with respect to υ ⇐⇒ f
dυ

dµ
is integrable with respect to µ and

∫
fdυ =∫

f
dυ

dµ
· dµ.

Remark Write in probabilitic way: if Q ≪ P , then

EQ[X] = EP [X · dQ
dP

].

Proof. Only the “=⇒” direction.
If f = 1A, where A ∈ F , then∫

1Adµ = υ(A) =

∫
A

dυ

dµ
· dµ =

∫
1A

dυ

dµ
· dµ
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4.5 Common discrete distribution

By linearity, if φ =
n∑

i=1

ai1Ai , ai ⩾ 0, Ai ∩Aj = ∅, then∫
φdυ =

∫
φ
dυ

dµ
· dµ.

Let f ⩾ 0 be a non-negative Borel function, then there is increasing measurable simple function sequence
{φk} such that φk → f . Then∫

fdυ = lim
k→∞

∫
φkdυ = lim

k→∞

∫
φk

dυ

dµ
· dµ =

∫
lim
k→∞

φk
dυ

dµ
· dµ =

∫
f
dυ

dµ
· dµ.

Let f be a general Borel function. Then write f as f = f+ − f−.

Example 4.11 Let (Ω,F , P ) be a probability space. Suppose a random variable X is X ∼ N (0, 1). For θ ∈ R,
there is a new probability mesaure Q such that under Q, X + θ ∼ N (0, 1).

Proof. Take
dQ

dP
= e−θX− 1

2
θ2 . Then

EQ(et(X+θ)) = EP

[
et(X+θ)dQ

dP

]
= EP [etXe−θXe−

1
2
θ2eθt]

= EP [e(t−θ)X ]eθt−
1
2
θ2 = e

1
2
(t−θ)2eθt−

1
2
θ2

= e
1
2
t2 .

Thus X + θ
Q∼ N (0, 1).

4.5 Common discrete distribution

Example 4.12(Bernoulli) Let X be a random variable such that P(X = 1) = p and P(x = 0) = q = 1 − p.
Then

E(X) = 0 · P(X = 0) + 1 · P(X = 1) = p, var(X) = E(X2)− E(X)2 = p− p2 = pq.

Example 4.13(Binomial(n, p)) Consider an unfair coin with probability p to be a head and probability q = 1−p

to be a tail after tossing up. Let X denote the number of heads in n coin flips. Then

f(k) = P(X = k) =

(
n

k

)
pkqn−k,

E(X) =
n∑

k=1

k

(
n

k

)
pkqn−k = np.

In fact, consider the Bonomial expression

(1 + x)n =

n∑
k=0

(
n

k

)
xk.

Taking derivative with respect to x, obtaining

n(1 + x)n−1 =

n∑
k=1

(
n

k

)
kxk−1

Thus

n(1 + x)n−1x =

n∑
k=1

(
n

k

)
kxk

Now set x = p/q and multiply qn on both sides, we get E(X) = np.
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4.5 Common discrete distribution

Alternatively, set X = Y1+Y2+ · · ·+Yn, where Yi takes value 1 if a head occurs in toss i and takes value
0 if a tail occurs in toss i. Then Yi are i.i.d random variable obeying Bernoulli distribution and thus

E(X) = E(
n∑

i=1

Yi) =

n∑
i=1

E(Yi) = np;

var(X) = E((X − E(X))2) = E

( n∑
i=1

(Yi − E(Yi))

)2


=
n∑

i=1

E[(Yi − E(Yi))2] + 2
∑
i ̸=j

E[(Yi − E(Yi))(Yj − E(Yj))]

=

n∑
i=1

var(Yi) = npq.

Example 4.14 A random variable X taking value in N is said to be a Poisson random variable with parameter
λ if

f(i) = P(X = i) =
λi

i!
e−λ, E(X) = λ.

In fact, Poisson arises from Bionomial in the limit n → ∞ but np = λ:

P(X = i) =

(
n

i

)
pi(1− p)n−i =

(
n

i

)(
λ

n

)i(
1− λ

n

)n−i

=
n(n− 1) · · · (n− i+ 1)

i!

λi

ni

(
1− λ

n

)n(
1− λ

n

)−i

n→∞
=

λi

i!
e−λ.

� Exercise 4.8 Find the expectation of X(X − 1) · · · (X − k + 1), where X is a random variable obeying the
Poisson distribution.

Solution. To evaluate the moments of the Poisson random variable, we use a little inspiration to observe that
for k ≥ 1,

E(X(X − 1) · · · (X − k + 1)) =

∞∑
j=k

j(j − 1) · · · (j − k + 1)e−λλ
j

j!

= λk
∞∑
j=k

e−λ λj−k

(j − k)!
= λk

where the equalities follow from (i) the facts that j(j − 1) · · · (j − k + 1) = 0 when j < k, (ii) cancelling part
of the factorial, and (iii) the fact that Poisson distribution has total mass 1. Using the last formula, it follows
that EX = λ while

var(X) = EX2 − (EX)2 = E(X(X − 1)) + EX − λ2 = λ

Example 4.15 A random variable X is said to be Geometric(p) if

P(X = k) = (1− p)k−1 · p k ∈ N,

i.e., denoting the first success in independent trials with success probability p. Show that a geometric random
variable X has expectation E(X) = 1/p and variance var(X) = 1− p/p2.
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4.5 Common discrete distribution

Proof. Let q := 1− p. Then

E(X) =
∞∑
k=1

kpqk−1 = p
∞∑
k=1

kqk−1 = p
∞∑
k=1

dqk

dq

= p
d

dq
(
∞∑
k=1

qk) = p
d

dq

(
1

1− q

)
=

p

(1− q)2
=

1

p
.

Note that

E(X2) =
∞∑
k=1

k2pqk−1 = p

[ ∞∑
k=1

k(k − 1)qk−1 +
∞∑
k=1

kqk−1

]

= pq
∞∑
k=1

k(k − 1)qk−2 +
1

p
= pq

∞∑
k=1

d2

dq2
qk +

1

p

= pq
d2

dq2

( ∞∑
k=0

qk

)
+

1

p
= pq

d2

dq2

(
1

1− q

)
+

1

p

= pq
2

(1− q)3
+

1

p
=

2q

p2
+

1

p

and thus
var(X) = E(X2)− E2(X) =

2q

p2
+

1

p
− 1

p2
=

1− p

p2
.

Example 4.16 Consider tossing an unfair coin with probability p(0 < p < 1) to get a head. What is the
expectation of tossing times such that a head and a tail have both occurred?

Solution. We use X to denote the number of tossing times when a head and a tail have both occurred. Then X

take values from 2, 3, · · · , and

P (X = k) = (1− p)k−1p+ pk−1(1− p), k = 2, 3, · · · .

Thus

E(X) =
∞∑
k=2

k[(1− p)k−1p+ pk−1(1− p)]

=
∞∑
k=1

k(1− p)k−1p− p+
∞∑
k=1

kpk−1(1− p)− (1− p)

=
1

p
+

1

1− p
− 1 =

1

p(1− p)
− 1.

Example 4.17(Coupon collector) Suppose there are N types of coupons. Define X to be

X := the first time to get a complete set {1, 2, · · · , N}.

Try to compute E(X).

Solution. Define Yk := first time to get k distinct coupons and thus X = YN =
∑

(Yk − Yk−1) + Y1. Note

that Yk − Yk−1 ∼ Geo

(
N − (k − 1)

N

)
and thus

E(YN ) =

N∑
k=2

E(Yk − Yk−1) + E(Y1) =
N∑
k=2

N

N − (k − 1)
+ 1
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4.5 Common discrete distribution

= 1 +N(1 +
1

2
+ · · ·+ 1

N − 1
) ∼ N lnN + γN +O

(
1

N

)
,

where γ ≈ 0.5772156649 is the Euler-Mascheroni constant.

Example 4.18(Exponential) Let X be a random variable on measure space (R,B(R),m) with probability
density function f(x) = λe−λx1[0,+∞)(x) and distribution function F (x) = 1− e−λx. Then

Pλ(B) :=

∫
B
f(x)dx

defines a probability measure with

Pλ(R) :=
∫ ∞

0
e−λxdx = 1.

X is then called obeying an exponential(λ) distribution, denoted by X ∼ Exp(λ).
� Exercise 4.9 Show that if X ∼ Exp(λ), then E(X) = 1/λ and var(X) = 1/λ2.

Solution.

E(X) =

∫ ∞

0
xλe−λxdx =

λ

−λ

∫ 0

∞
xde−λx

=

∫ ∞

0
xde−λx = xe−λx

∣∣∣∣∞
0

−
∫ ∞

0
e−λxdx

=
1

λ
.

Recall Lemma 4.3,

E(X2) =

∫ ∞

0
x2λe−λxdx =

∫ ∞

0
x2d(−e−λx) = −x2e−λx

∣∣∣∣∞
0

+ 2

∫ ∞

0
xe−λxdx =

2

λ2
.

Thus
var(X) = E(X2)− E2(X) =

2

λ2
− 1

λ2
=

1

λ2
.

� Exercise 4.10 Let X ∼ Exp(λ).
1. (Lack of memory) Show that for any s, t > 0, P[X > t+ s | X > s] = P[X > t].
2. Find all continunous random variable such that P[X > t+ s | X > s] = P[X > t].

Solution. 1. Note that
P(X ⩾ t) =

∫ ∞

t
e−λxdx = e−λt

and

P[X > t+ s | X > s] =
P(X > t+ s ∩X > s)

P(X > s)
=

P(X > t+ s)

P(X > s)

=

∫∞
t+s λe

−λxdx∫∞
s λe−λxdx

=
e−λ(t+s)

e−λs

= e−λt.

2. By condition we have
P(X > t+ s ∩X > s)

P(X > s)
=

P(X > t+ s)

P(X > s)
= P(X > t)

and thus H(x) := 1− F (x), where F (x) denote the distribution function of X , satisfies

H(t+ s) = H(x) ·H(s), s, t > 0.
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4.5 Common discrete distribution

Define G = lnH and then
G(t+ s) = G(t) +G(s) s, t > 0,

implying that G is indeed a linear function, i.e., G(x) = cx for some c ∈ R. It follows that F (x) =

1−H(x) = 1− ecx.

Example 4.19 Let [0, t] be a given time period and N(t) denote the number of times that a breakdown occurs
in the period [0, t]. If N(t) obeys Poisson distribution with parameter λt, show that T , the interval between two
different breakdowns, obeys the exponential distribution.

Proof. By condition, N(t) ∼ Poisson(λt), i.e.,

P (N(t) = k) =
(λt)k

k!
e−λt, k = 0, 1, · · · .

Note that {T ⩾ t} = {N(t) = 0}, and thus
for t < 0, FT (t) = P (T ⩽ t) = 0;
for t ⩾ 0,

FT (t) = P (T ⩽ t) = 1− P (T > t) = 1− P (N(t) = 0) = 1− e−λt,

implying T ∼ exp(λ).

Example 4.20(Gamma distribution) Consider the probability mass functionPλ,t(A) :=

∫
A

1

Γ(t)
λtxt−1e−λxdx

for λ, t ⩾ 0, where Γ(t) :=

∫ ∞

0
xt−1e−xdx is called the Gamma function. The Gamma function has the

following properties:

Γ(1) = 1,Γ

(
1

2

)
=

√
π and fλ,1 = λe−λx;

Γ(t+ 1) = tΓ(t) for t > 0;

Γ(n) = (n− 1)Γ(n− 1) = (n− 1)! and fλ,n =
λn

(n− 1)!
e−λx;

� Exercise 4.11 Compute E(X) and var(X) for a Gamma distributed random variable X .

Solution. Using properties of a Gamma function,

E(X) =
λt

Γ(t)

∫ ∞

0
xte−λxdx =

Γ(t+ 1)

Γ(t)

1

λ
=

t

λ
.

Furthermore,

E(X2) =
λt

Γ(t)

∫ ∞

0
xt+1e−λxdx =

Γ(t+ 2)

λ2Γ(t)
=

t(t+ 1)

λ2
.

Thus

var(X) = E(X2)− E2(X) =
t(t+ 1)

λ2
−
(
t

λ

)2

=
t

λ2
.

Theorem 4.3 (Convolution)

♡

Let X and Y be two independent random variable with density function fX(x) and fY (y), respectively.
Then Z := X + Y has a density function

fZ(z) =

∫ ∞

−∞
fX(z − y)fY (y)dy =

∫ ∞

−∞
fX(x)fY (z − x)dx. (4.7)
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4.5 Common discrete distribution

Proof. Note that by independence

FZ(z) = P (X + Y ⩽ z) =

∫∫
x+y⩽z

fX(x)fY (y)dxdy

=

∫ ∞

−∞

[∫ z−y

−∞
fX(x)dx

]
fY (y)dy =

∫ ∞

−∞

∫ z

−∞
fX(t− y)fY (y)dtdy

=

∫ z

−∞

(∫ ∞

−∞
fX(t− y)fY (y)dy

)
dt.

Hence the density function of Z is

fZ(z) =

∫ ∞

−∞
fX(z − y)fY (y)dy.

Now set z − y = x, we get

fZ(z) =

∫ ∞

−∞
fX(x)fY (z − x)dx.

Proposition 4.6

♠

Let X1, X2, · · · , Xn be independent random variables obeying the exponential(λ) distribution. Then
X1 +X2 + · · ·Xn is a random variable with Gamma (λ, n) distribution.

Proof. First consider the case of discrete. Note that for a fixed z ∈ R,

P (X + Y = z) =
∑
x

P (X = x, Y = z − x) =
∑
x

P (X = x)P (Y = z − x)

=
∑
x

fX(x)fY (z − x)

Furthermore under the condition of continunous,

fX+Y (z) =

∫ ∞

−∞
fX(x)fY (z − x)dx.

Definition 4.12

♣

A Poisson process (Ns)s⩾0 with rate λ satisfies
1. N0 = 0;
2. Nt −Ns ∼ Poisson(λ(t− s)) for any 0 ⩽ s ⩽ t;
3. Nt1 , Nt2 −Nt1 , · · · , Ntn −Ntn−1 are independent for any 0 ⩽ t1 ⩽ t2 ⩽ · · · ⩽ tn.

Alternative construction We will see an alternative construction to generate a Poisson process:

Proposition 4.7

♠

Let τ1, τ2, · · · , τn be independent random variables with exponential(λ) distribution. Define Tn =

N∑
i=1

τi

and Ns = max{n : Tn ⩽ s}. Then (Ns)s⩾0 is a Poisson process with rate λ.

Example 4.21 In figure ??, Ns is equal to 2.

Proof of Proposition 4.7. N0 = 0 is trivial;
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Now assume s = 0. Then

P (Nt = n) = P (Tn ⩽ t, Tn+1 > t) =

∫ t

0
fTn(s)P (Tn+1 > t | Tn = s)ds

=

∫ t

0
fTn(s)P (τn+1 > t− s)ds

=

∫ t

0

λn

(n− 1)!
sn−1e−λse−λ(t−s)ds

=
λn

(n− 1)!
e−λt

∫ t

0
sn−1ds

=
λntn

n!
e−λt.

Finally we show Nt+s −Ns ∼ Poisson(λ, t). Assume Ns = n and by lack of memory,

P (τn+1 > s+ t− Tn | τn+1 > s− Tn) = P (τn+1 > t) = P (τ1 > t) = e−λt.

� Exercise 4.12 For X ∼ Poisson(λ), show that

E(Xn) = λE[(X + 1)n−1].

Proof.

E(Xn) =

∞∑
k=0

kn
λk

k!
e−λ = λe−λ

∞∑
k=1

kn−1 λk−1

(k − 1)!

k′=k−1
= λe−λ

∞∑
k′=0

(k′ + 1)n−1λ
k′

k′!

= λE[(X + 1)n−1].

Example 4.22(Uniform distribution) A random variable X is uniformly distributed if

fX(x) =

1, x ∈ [0, 1]

0, otherwise.

Then P (a ⩽ X ⩽ b) = b− a.
Example 4.23 Let X ∼ unif[0, 1] and Y ∼ unif[0, 1] be independent. What is fX+Y (a)?

Solution.

fX+Y (a) =

∫ +∞

−∞
fX(x)fY (a− x)dx =


∫ a

0
1dx = a, 0 < a < 1,∫ 1

a−1
1dx = 2− a, 1 < a < 2.

Example 4.24 Let X1, X2, · · · , Xn be independent uniformly zero-one distributed.

1. Show that P (X1 + · · ·+Xn ⩽ x) =
xn

n!
for 0 ⩽ x ⩽ 1;

2. Let N := {n : X1 + · · ·+Xn ⩾ 1}. Compute E(N).
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4.5 Common discrete distribution

Proof. 1. By induction, assume Fn−1(x) =
xn−1

(n− 1)!
for x ∈ [0, 1]. Then

Fn(z) =

∫ 1

0
fXn(x)Fn−1(z − x)dx =

∫ 1

0
1 · (z − x)n−1

(n− 1)!
1{x⩽z}dx

=

∫ z

0

(z − x)n−1

(n− 1)!
dx =

zn

n!
.

2. Note that P (N > n) = P (X1 + · · ·+Xn ⩽ 1) = Fn(1). Then

EN =
∞∑
n=0

P (N > n) =
∞∑
n=0

1

n!
= e.

Example 4.25(Normal distribution)
We say a random variable X satisfies the normal zero-one distribution, denoted by X ∼ N (0, 1) if its

probability density function f(x) =
1√
2π

e−x2/2. Note that
∫ ∞

−∞
e−x2/2dx =

√
2π.

We say a random variableX satisfies the normal distribution, denoted byX ∼ N (µ, σ2) if its probability

density function f(x) =
1√
2πσ2

e
−(x−µ)2

2σ2 . We now have E(X) = µ and var(X) = σ2. In fact,

E(X) =

∫ ∞

−∞
x

1√
2π

e−(x−µ)2/2σ2
dx

y=x−µ
=

∫ ∞

−∞
(y + µ)

1√
2πσ2

e−y2/2σ2
dy

=

∫ ∞

−∞
y

1√
2πσ2

e−y2/2σ2
dy + µ

= µ

var(X) = E(X2)− E2(X) =

∫ ∞

−∞

x2e−λx2

√
2π

dx− µ2 =
d

dλ

∫ ∞

−∞

−e−λx2

√
2π

dx− µ2

=

√
2

4

1

λ
√
λ
− µ2 = σ2.

Proposition 4.8

♠
If X ∼ N (µ, σ2), then Y =

X − µ

σ
∼ N (0, 1).

Proof. Note that

P (Y ⩽ a) = P (X ⩽ aσ + µ) =

∫ aσ+µ

−∞

1√
2πσ2

e−(x−µ)2/2σ2
dx

y=x−µ
σ=

∫ a

−∞

1√
π
e−y2/2dy.

Proposition 4.9

♠If X ∼ N (0, 1), then E(etX) = et
2/2.

Proof. Note that

E(etX) =

∫ ∞

−∞

etxe−x2/2

√
2π

dx
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4.5 Common discrete distribution

=
1√
2π

∫ ∞

∞
e−

1
2
(x−t)2e

t2

2 dx

= et
2/2.

� Exercise 4.13 Given X1 ∼ Exp(λ1), X2 ∼ Exp(λ2) being independent. Compute:
1. the distribution and density function of min{X1, X2};
2. P(X1 < X2).

Proof. 1. From the independence, for t ⩾ 0,

P(min(X1, X2) ⩾ t) = P({X1 ⩾ t} ∩ {X2 ⩾ t})

= P({X1 ⩾ t}) · P({X2 ⩾ t})

=

∫ ∞

t
λ1e

−λ1xdx ·
∫ ∞

t
λ2e

−λ2xdx

= e−λ1t · e−λ2t

= e−(λ1+λ2)t

Thus

Fmin{X1,X2}(t) =

0, t < 0

1− e−(λ1+λ2)t, t ⩾ 0.

fmin{X1,X2}(t) =

0, t < 0,

(λ1 + λ2)e
−(λ1+λ2)t, t ⩾ 0.

2. Only a sketch solution:

P(X1 < X2) =

∫ ∞

0
fX1(t)P[X2 > t | X1 = t]dt

=

∫ ∞

0
fX1(t)

P(X2 > t) · P(X1 = t)

P(X1 = t)
dt

=

∫ ∞

0
fX1(t)P(X2 > t)dt

=

∫ ∞

0
λ1e

−λ1te−λ2tdt

=
λ1

λ1 + λ2
.

Example 4.26 Let X ∼ N (0, 1) and Y ∼ N (0, 1) be independent. Show that X + Y ∼ N (0, 2).

Proof.

fX+Y (z) =

∫ ∞

−∞
fX(x)fY (z − x)dx =

∫ ∞

−∞

1√
2π

e−
x2

2
1√
2π

e
−(z−x)2

2 dx

=
1√
2π

e−
1
4
z2
∫ ∞

−∞

1√
2π

e−(x− z
2
)2dx

=
1√

2π
√
2
e−

1
4
z2 .
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� Exercise 4.14 Let X ∼ N (µ1, σ
2
1) and Y ∼ N (µ2, σ

2
2) be independent. Show that X +Y ∼ N (µ1+µ2, σ

2
1 +

σ2
2).

Proof.

Theorem 4.4 (Bounded Convergence)

♡

Let (Ω,F , µ) be a measure space such that µ(Ω) < ∞. Then if fn → f a.e. and supn⩾1 |fn| < ∞, then

lim
n→∞

∫
fndµ =

∫
fdµ.

� Exercise 4.15 Let (Ω,F ,P) be a probability space and X : Ω → [0,∞) is a random variable such that
E(Xn) ⩽ M for some M and for any n ∈ N.

1. Prove that P (X > 1) = 0 and P (X = 1) ⩽ M ;
2. Compute lim

n→∞
E(Xn);

3. If E(Xn) = M for any n ∈ N, show that P (X ∈ {0, 1}) = 1.

Solution. 1. For any ε > 0, note that

M ⩾ E(Xn) =

∫
{0⩽X}

XndP ⩾
∫
{X>1+ε}

XndP ⩾ (1 + ε)n
∫
{X>1+ε}

dP = (1 + ε)nP(X > 1 + ε)

Send n → ∞, we get P (X > 1 + ε) = 0. By continuity of measure,

P(X > 1) = lim
k→∞

P(X > 1 +
1

k
) = 0.

Furthermore,
M ⩾ E(X) ⩾

∫
{X=1}

dP = P (X = 1).

2. Note that for 0 < X < 1, Xn ↓ 0. By M.C.T,

lim
n→∞

∫
{0<X<1}

XndP =

∫
{0<X<1}

lim
n→∞

XndP = 0

Follow the same process as 1, for a fixed ε > 0 and any n,m ∈ N, we have

M ⩾ E(Xn+m) ⩾ (1 + ε)mP (Xn > 1 + ε)

By choosing sufficiently large m, we obtain

P (Xn > 1) = 0 for any n.

Thus

lim
n→∞

E(Xn) = lim
n→∞

(∫
{0<X<1}

XndP+

∫
{1=X}

XndP+

∫
{1<X}

XndP

)
= P (Xn = 1).

3. It suffices to show that P (0 < X < 1) = 0. We claim that P (ε < X < 1 − ε) = 0 for any ε > 0.
Indeed, note that

E(Xn) ⩾
∫
{X=1}

XndP +

∫
{ε<X<1−ε}

XndP

⩾ P (X = 1) + εnP (ε < X < 1− ε).

Since EXn is a a constant, but by 2, limn→∞EXn = P (X = 1) and thus EXn = P (X = 1). Hence
we conclude P (ε < X < 1− ε) = 0. By continuity of measure,

P (0 < X < 1) = lim
k→∞

P (
1

k
< X < 1− 1

k
) = 0.
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4.6 Inequalities

4.6.1 Chebychev

We use the shorthand
{f ≥ λ} := {x ∈ E : f(x) ≥ λ}.

Since
λ1{f≥λ} ≤ f,

it follows that
λµ({f ≥ λ}) ≤ µ(f)

which is known as Chebychev’s inequality.
Example 4.27 Given a random variable X with finite expectation and variance. Then for every real number t
and integer k,

P(|X| > t) ⩽
E(|X|k)

tk
.

Proof. Note that

EXk =

∫
XkdP ⩾

∫
{|X|>t}

XkdP ⩾ tk
∫
{|X|>t}

dP = tkP (|X| > t).

Example 4.28 Given a random variable X with finite expectation and variance. Then for every real number a,

P(|X − E(X)| ≥ a) ≤ var(X)

a2
.

Proof. Note that

P(|X − E(X)| ≥ a) = P((X − E(X))2 ≥ a2) ≤ E((X − E(X))2)

a2
=

var(X)

a2
.

Example 4.29 If E(etX) < ∞ for any t ∈ R. Then P (X > a) = P (etX > eta) ⩽ e−atE(etX).

� Exercise 4.16 Let X1, · · · , Xn are independent variables such that Xi ∼ Bernoulli(p). Let X =
n∑

i=1

Xi, µ =

np. Show that for any δ > 0,

P (X ⩾ (1 + δ)µ) ⩽

(
eδ

(1 + δ)1+δ

)µ

,

P (X ⩽ (1− δ)µ) ⩽

(
e−δ

(1− δ)1−δ

)µ

.

Proof. By Example 4.29, for any t ∈ R,

P (X ⩾ (1 + δ)µ) = P (etX ⩾ et(1+δ)µ) ⩽ e−t(1+δ)µE(etX)

and

E(etX) = E[etX1 · · · etXn ] = [EetX1 ]n

= (1− p+ et · p)n ⩽ ep(e
t−1)·n

= eµ(e
t−1)
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Hence

P (X ⩾ (1 + δ)µ) ⩽
eµ(e

t−1)

eµ(1+δ)t
.

Note that to minimize µ(et − 1− t(1 + δ)), the optimized t is t = ln(1 + δ).

Corollary 4.1

♡

In the same setting,
P (|X − µ| ⩾ δµ) ⩽ e−

δ2

3
µ.

4.6.2 Cauchy-Schwarz

Theorem 4.5

♡

Let X,Y be random variables and then

E2[XY ] ⩽ E(X2)E(Y 2). (4.8)

Proof. Note that

E[(aX − bY )2] = a2E(X2)− 2abE(XY ) + b2E(Y 2) ⩾ 0, ∀a, b

Thus its discriminant 4(E2[XY ]− E2(X)E2(Y )) ⩽ 0.

Remark The equality holds if and only if X = cY for some c ∈ R.
Example 4.30 Let Y ⩾ 0 with E(Y 2) < ∞. Apply the Cauchy-Schwarz inequality to Y 1{Y >0} and conclude

P (Y > 0) ⩾ (EY )2/E(Y 2).

Solution. Following the hint and by Cauchy-Schwarz,

E(Y 2)E(12
{Y >0}) = E(Y 2)E(1{Y >0}) = E(Y 2)P (Y > 0)

⩾ E2(Y 1{Y >0})
Y ⩾0
= E2(Y ).

Corollary 4.2

♡|Cov(X,Y )| ⩽
√
var(X) var(Y ). (4.9)

Proof. Note that

Cov(X,Y ) = E(X − E(X))E(Y − E(Y ))

⩽
√
E[(X − E(X))2]E[(Y − E(Y ))2]

Example 4.31 Let X ⩾ 0 be a random variable with E(X) = 1. Show that for a fixed t ∈ (0, 1), P(X ⩾ t) ⩾
(1− t)2

E(X2)
.

Proof. Define Y := 1{X⩾t}. Note that E(Y 2) = E(12
{X⩾t}) = E(1{X⩾t}) = P({X ⩾ t}). Then

P(X ⩾ t) · E(X2) = E(Y 2) · E(X2) ⩾ (E[XY ])2 = E2(X1{X⩾t})

= (EX − E(X1{X<t}))
2 ⩾ (1− t)2.
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Corollary 4.3 (Payley-Zygmund)

♡

Let Z ⩾ 0 be a random variable and t ∈ (0, 1). Then

P[Z ⩾ tE(Z)] ⩾ (1− t)2
E2(Z)

E(Z2)
. (4.10)
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Chapter 5 Multi-dimensional random variables

5.1 Joint distribution function

The joint distribution function of random variables X and Y are defined to be

F : R2 −→ [0, 1]

(x, y) 7−→ P (X ⩽ x, Y ⩽ y).

Definition 5.1

♣

If X and Y are absolutely continunous random variables, then the joint density function f : R2 →
[0,+∞) satisfies

F (x, y) =

∫ x

−∞

∫ y

−∞
f(u, v)dudv

and thus
f(x, y) =

∂2

∂x∂y
F (x, y).

Moreover,

P (X ∈ [a, b], Y ∈ [c, d]) =

∫ b

a

∫ d

c
f(u, v)dudv

= F (b, d)− F (b, c)− F (a, d) + F (a, c).

By the extension theorem, for A,B ∈ B(R),

P (X ∈ A, Y ∈ B) =

∫
A

∫
B
f(u, v)dudv.

Note that the event {Y < ∞} and {X < ∞} are of probability one, thus

lim
y→∞

F (x, y) = P (X ⩽ x, Y < ∞) = P (X ⩽ x);

lim
x→∞

F (x, y) = P (X < ∞, Y < y) = P (Y ⩽ y),

that is

FX(x) = F (x,∞),

FY (y) = F (∞, y).

Then from the definiton of joint distribution, for discrete cases,

P (X = x) =
∑
y

P (X = x, Y = y);

P (Y = y) =
∑
x

P (X = x, Y = y);

whereas for continuous cases,

FX(x) = F (x,∞) =

∫ x

−∞

(∫ ∞

−∞
f(u, v)dv

)
du =

∫ x

−∞
fX(u)du;

FY (y) = F (∞, y) =

∫ y

−∞

(∫ ∞

−∞
f(u, v)du

)
dv =

∫ y

−∞
fY (v)dv;



5.1 Joint distribution function

and

fX(x) =

∫ ∞

−∞
f(x, y)dy;

fY (y) =

∫ ∞

−∞
f(x, y)dx.

These results are called the marginal density functions.
Remark X and Y are independent ⇐⇒ F (x, y) = FX(x) · FY (y) ⇐⇒ f(x, y) = fX(x) · fY (y).
Example 5.1 If X,Y have joint mass function

f(x, y) =
αxβy

x!y!
e−α−β, x, y ∈ N,

then X and Y are independent:

fX(x) =
∑
y∈N

f(x, y) =
αx

x!
e−α

∑
y∈N

βy

y!
e−β =

αx

x!
e−α,

implying X ∼ Poisson(α) and Y ∼ Poisson(β).

Definition 5.2

♣

For a two-dimensional random variable (X,Y ), the covariance between X and Y is defined to be

Cov(X,Y ) = E[(X − E(X))(Y − E(Y ))]. (5.1)

Especially, Cov(X,X) = Var(X).

Definition 5.3

♣We say X and Y are uncorrelated if Cov(X,Y ) = 0.

From these definitions, we know
X and Y are positively-related if Cov(X,Y ) > 0;
X and Y are negatively-related if Cov(X,Y ) > 0;
X and Y are uncorrelated (distinguish this with independent!) if Cov(X,Y ) = 0.

Property Cov(X,Y ) = E(XY )− E(X)E(Y ).

Proof. Note that

Cov(X,Y ) = E[XY −XE(Y )− Y E(X) + E(X)E(Y )]

= E(XY )− E(X)E(Y ).

Indeed, “uncorrelated” is weaker than “independence”:
Property X and Y are independent =⇒ Cov(X,Y ) = 0 whereas the inverse is not true.
Example 5.2 Let X ∼ N (0, σ2) and Y = X2. Then X and Y are dependent but

Cov(X,Y ) = Cov(X,X2) = E(X ·X2)− E(X)E(X2) = 0

The equality holds since E(X2m−1) = 0,m = 1, 2, · · · (we will verify this later) provided X ∼ N (0, σ2).
Property

var(X ± Y ) = var(X) + var(Y )± 2Cov(X,Y ). (5.2)

Proof. Note that

var(X ± Y ) = E[(X ± Y )− E(X ± Y )]2
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= E{[X − E(X)]± [Y − E(Y )]}2

= E
{
[X − E(X)]2 + [Y − E(Y )]

}2 ± 2[X − E(X)][Y − E(Y )]

= Var(X) + Var(Y )± 2Cov(X,Y ).

�

Note Given X and Y being uncorrelated, we have

var(X ± Y ) = var(X) + var(Y ).

A generalization is: for n random variables X1, X2, · · · , Xn, one has

var

( n∑
i=1

Xi

)
=

n∑
i=1

var(Xi) + 2
n∑

i=1

i−1∑
j=1

Cov(Xi, Xj). (5.3)

Property Cov(X,Y ) = Cov(Y,X).
Property Cov(X, a) = 0 for any constant a.
Property Cov(aX, bY ) = abCov(X,Y ) for constants a, b.
Property Cov(X + Y,Z) = Cov(X,Z) + Cov(Y,Z).

Proof. This is because

Cov(X + Y,Z) = E[(X + Y )Z]− E(X + Y )E(Z)

= E(XZ) + E(Y Z)− E(X)E(Z)− E(Y )E(Z)

= [E(XZ)− E(X)E(Z)] + [E(Y Z)− E(Y )E(Z)]

= Cov(X,Z) + Cov(Y,Z).

Definition 5.4

♣

For an n-dimensional r.v X = (X1, X2, · · · , Xn), its expectation is given by

E(X) = (E(X1), E(X2), · · · , E(Xn)).

Its covariance matrix cov(X) is given by

E[(X − E(X))(X − E(X))′]

=


var(X1) cov(X1, X2) · · · cov(X1, Xn)

cov(X1, X2) var(X2) · · · cov(X2, Xn)
...

...
...

cov(Xn, X1) cov(Xn, X2) · · · var(Xn)


Theorem 5.1

♡cov(X) is symmetrically positive semi-definite.

Proof. Symmetricity is trivial since cov(Xi, Xj) = cov(Xj , Xi). Now pick any real vectorc = (c1, c2, · · · , cn)′,
note that

c′ cov(X)c = (c1, c2, · · · , cn)


var(X1) cov(X1, X2) · · · cov(X1, Xn)

cov(X1, X2) var(X2) · · · cov(X2, Xn)
...

...
...

cov(Xn, X1) cov(Xn, X2) · · · var(Xn)




c1

c2

· · ·
cn
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=
n∑

i=1

n∑
j=1

cicj cov (Xi, Xj)

=

n∑
i=1

n∑
j=1

E {[ci (Xi − E (Xi))] [cj (Xj − E (Xj))]}

= E


n∑

i=1

n∑
j=1

[ci (Xi − E (Xi))] [cj (Xj − E (Xj))]


= E


[ n∑

i=1

ci (Xi − E (Xi))

][ n∑
j=1

cj (Xj − E (Xj))

]
= E

[ n∑
i=1

ci (Xi − E (Xi))

]2
⩾ 0.

Definition 5.5

♣

The correlation coefficient of X and Y is definde to be

Corr(X,Y ) =
Cov(X,Y )√

Var(X)
√
Var(Y )

. (5.4)

Remark Let X and Y have expectation µX , µY respectively, considering the normalization:

X∗ =
X − µX

σX
, Y ∗ =

Y − µY

σY
,

one has
Corr(X∗, Y ∗) = Cov

(
X − µX

σX
,
Y − µY

σY

)
=

Cov(X,Y )

σXσY
= Corr(X,Y ).

Example 5.3(Multi-dimensional uniform distribution) Let D be a bounded region in Rn with volume (area)
SD. If the random variable (X1, X2, · · · , Xn) has a joint density function

f(x1, x2, · · · , xn) =


1

SD
, (x1, x2, · · · , xn) ∈ D,

0, otherwise,
(5.5)

it is called (multi-dimensionally) uniformly-distributed.
Now for a sub-region G ⊂ D, one has

P ((X,Y ) ∈ G) =

∫∫
G
f(x, y)dxdy =

∫∫
G

1

SD
dxdy =

SG

SD
.

Example 5.4(Multi-dimensional normal distribution) Let ann-dimensional r.v. vectorX = (X1, X2, · · · , Xn)

have covariance matrix V = cov(X) and expectation vector a = (a1, a2, · · · , an)′. Then the distribution with
density function

f(x1, x2, · · · , xn) = f(x) =
1√

(2π)n detV
exp

{
−1

2
(x− a)′V −1(x− a)

}
is called a n-deimensional normal distribution. If we set V −1 = (rij), then we also have

f(x1, x2, · · · , xn) =
1√

(2π)n detV
exp

−1

2

n∑
i,j=1

rij(xi − ai)(xj − aj)

 .

Example 5.5(Buffon’s needle) A bunch of parallel straight lines are placed on the ground with a gap of length 1

and one throws a needle with length 1 on the groumd. Try to computeP (the needle intersects with some lines).
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5.1 Joint distribution function

Solution. We use Z to denote the distance from the midpoint of the needle to the nearest line whereas Θ to
denote the angle formed by the needle and the lines. Then Z ∼ unif[0, 1/2] and Θ ∼ unif[0, π]. The joint
density function of (Z,Θ) is

f(z, θ) =


2

π
, (z, θ) ∈ [0,

1

2
]× [0, π]

0, otherwise

Note that the event “intersection” is given by

B := {(z, θ) : 0 < z <
1

2
sin θ}

and thus

P (Intersecton) =
∫∫

B
f(z, θ)dzdθ =

2

π

∫ π

0
dθ

∫ 1
2
sin θ

0
dz =

2

π

∫ π

0

1

2
sin θdθ =

2

π
.

Example 5.6(Standard bivariate normal distribution) Two random variables X and Y are said to have the
standard bivariate normal distribution with correlation coefficient ρ (verified in later sections) if their joint
probability density function is given by

fXY (x, y) =
1

2π
√

1− ρ2
e
−x2−2ρxy+y2

2(1−ρ2) , −1 < ρ < 1.

Then
1.
∫∫

f(x, y)dxdy = 1;

2. For ρ = 0, f(x, y) =
1

2π
e−

x2+y2

2 , and X and Y are independent normally zero-one distributed;
3. The covariance of X and Y satisfies:

Cov(X,Y ) = E(XY )− E(X)E(Y ) =

∫∫
xy · f(x, y)dxdy = ρ.

Proof. Only verify 3. Indeed,

LHS =

∫∫
xy · 1

√
2π
√

1− ρ2
e
− (x−ρy)2

2(1−ρ2)
1√
2π

e−
y2

2 dxdy

=

∫
y

1√
2π

e−
y2

2 dy

∫
x

1
√
2π
√

1− ρ2
e
− (x−ρy)2

2(1−ρ2) dx

=

∫
yρy

1√
2π

e−
y2

2 dy

= ρ

∫
y2

1√
2π

e−
y2

2 dy
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5.1 Joint distribution function

= ρ.

Example 5.7(General bivariate normal distribution) Two random variables X and Y are said to have the
general bivariate normal distribution if their joint probability density function is given by

fXY (x, y) =
1

2πσ1σ2
√
1− ρ2

e−
1
2
Q(x,y),

where

Q(x, y) =
1

1− ρ2

[(
x1 − µ1

σ1

)2

− 2ρ
x− µ1

σ1

y − µ2

σ2
+

(
y − µ2

σ2

)2
]
.

Then
1. Their marginal density: X ∼ N (µ1, σ

2
1) and Y ∼ N (µ2, σ

2
2);

2.
ρ(X,Y ) =

Cov(X,Y )√
var(X) var(Y )

= ρ (ρ = 0 ⇐⇒ X,Y are independent)

Remark
1. If X and Y are Gaussian, then X and Y are independent ⇐⇒ X and Y are uncorrelated.

2. For X ∼ N (0, 1), we know E(etX) = e
1
2
t2 =

∞∑
k=0

1

k!

t2k

2k
. Note that

E(etX) = E(
∞∑
n=0

tnXn

n!
) =

∞∑
n=1

1

n!
tnE(Xn).

Observing the coefficients:

E(X2k+1) = 0, E(X2k) = (2k− 1)!! = (2k− 1)(2k− 3) · · · 1 = number of pairs of {1, 2, · · · , 2k}.

Theorem 5.2 (Wick)

♡

Let X1, X2, · · · , Xn be normal distributed r.v.s such that E(Xi) = 0. Then

E[X1X2 · · ·Xn] =
∑

pairings π of {1,2,··· ,2n}

∏
(i,j)∈π

E[XiXj ].

Example 5.8 Follow Wick’s Theorem, E(X1X2X3X4) = E(X1X2)E(X3X4) + E(X1X3)E(X2X4) +

E(X1X4)E(X2X3).

� Exercise 5.1 Randomly pick two numbers from 0, 1, · · · , n. Try to compute the expectation of the absolute
value of their difference.

Solution. We use X and Y to denote the first number and the second number, then

P (X = i, Y = j) =
1

(n+ 1)n
, i, j = 0, 1, · · · , n, i ̸= j.

Therefore,

E(|X − Y |) = 1

(n+ 1)n

n∑
i=0

{ i∑
j=0

(i− j) +

n∑
j=i+1

(j − i)

}

=
1

(n+ 1)n

n∑
i=0

{
i(i+ 1)

2
+

(n− i)([n− i] + 1)

2

}

=
1

(n+ 1)n

n∑
i=0

{
i2 +

n(n+ 1)

2
− in

}
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5.2 Conditional distribution

=
2n+ 1

6
+

n+ 1

2
− n

2
=

n+ 2

3
.

� Exercise 5.2 Randomly pick n points from the interval (0, 1). What is the expectation of their farthest distance?

Solution. n points will segerate the interval (0, 1) into n + 1 segments. We use Y1, Y2, · · · , Yn+1 to denote
their length. Then Y1, Y2, · · · , Yn+1 are i.i.d., with the same expectation. That is

E(Y1) = E(Y2) = · · · = E(Yn+1) =
1

n+ 1
.

Note that the farthest distance is precisely Y2 + Y3 + · · ·+ Yn, thus the result is
n− 1

n+ 1
.

5.2 Conditional distribution

5.2.1 Discrete cases

Let X and Y be two discrete random variables.

Definition 5.6

♣

The conditional distribution function of Y given X = x is

FY |X(y | x) = P (Y ⩽ y | X = x) =
∑
yi⩽y

P (Y = yi | X = x), (5.6)

for every x ∈ R, such that P (X = x) > 0. The conditional mass function is

fY |X(y | x) = P (Y = y | X = x). (5.7)

Remark
1. f(x, y) = fX(x) · fY |X(y | x);
2. if X and Y are independent, then fY |X(y | x) = fY (y) for all x.

Example 5.9 Let X and Y be independent r.v.s such that X ∼ Poisson(λ1), Y ∼ Poisson(λ2). Find the
conditional distribution of X given X + Y = n.

Solution. Note that X + Y ∼ Poisson(λ1 + λ2) and thus

P (X = k | X + Y = n) =
P (X = k,X + Y = n)

P (X + Y = n)

=
P (X = k)P (Y = n− k)

P (X + Y = n)

=

λk
1

k!
e−λ1 · λn−k

2

(n− k)!
e−λ2

(λ1 + λ2)
n

n!
e−(λ1+λ2)

=
n!

k!(n− k)!

λk
1λ

n−k
2

(λ1 + λ2)
n

=

(
n

k

)(
λ1

λ1 + λ2

)k ( λ2

λ1 + λ2

)n−k

, k = 0, 1, · · · , n.

That is, given X + Y = n, one has X ∼ Bionomial(n, p), where p = λ1/(λ1 + λ2).
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5.2 Conditional distribution

5.2.2 Continuous cases

Let X and Y be continuous r.v.s. Like previously, set ∆x → 0, considering

P [Y ⩽ y | x ⩽ X ⩽ x+∆x] =
P (Y ⩽ y, x ⩽ X ⩽ x+∆x)∆x

P (x ⩽ X ⩽ x+∆x)∆x

=

∫ y

−∞

∫ x+∆x

x
f(u, v)dudv

fX(x)∆x

≈

∫ y

−∞
f(x, v)dv∆x

fX(x)∆x

and we define

Definition 5.7

♣

The conditional distribution function of Y given X = x is

FY |X(y | x) =
∫ y

−∞

f(x, v)

fX(x)
dv, (5.8)

for every x ∈ R, such that P (X = x) > 0. The conditional mass function is

fY |X(y | x) = f(x, y)

fX(x)
. (5.9)

Example 5.10 Suppose the joint density function of X,Y is

f(x, y) =


1

y
e−x/ye−y, x, y > 0,

0, otherwise.

Try to compute P (X > 1 | Y = y).

Solution.

fX|Y (x, y) =
f(x, y)

fY (y)
=

f(x, y)∫ ∞

0
f(x, y)dx

=
e−x/ye−y/y

e−y

y

∫ ∞

0
e−x/ydx

=
e−x/ye−y/y

e−y

=
1

y
e−x/y.

Thus
P (X > 1 | Y = y) =

∫ ∞

1

1

y
e−x/ydx = −e−x/y

∣∣∣∣∞
1

= e−1/y.

� Exercise 5.3 Given compound random variables X(U, V ), Y (U, V ) and their joint density function fX,Y , try
to compute the joint density function of U, V .

Solution. Let R := (−∞, x] × (−∞, y]. Let T be the C1 transformation whose Jacobian is nonzero and that
maps region S in the uv-plane onto a region R in the xy-plane. Then∫∫

R
fX,Y (x, y)dxdy =

∫∫
S
fX,Y (x(u, v), y(u, v))

∣∣∣∣∂(x, y)∂(u, v)

∣∣∣∣dudv
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5.2 Conditional distribution

and thus
fU,V (u, v) = fX,Y (x(u, v), y(u, v))

∣∣∣∣∂(x, y)∂(u, v)

∣∣∣∣ .

� Exercise 5.4 Let X ∼ Unif(1, 2) and Y ∼ exp(x) given X = x. Try to compute the joint distribution function
of XY .

Solution. By condition, Y | X = x ∼ Exp(x) and thus

f(x, y) = fX(x)f(y | x) = xe−xy, 1 < x < 2, y > 0.

Consider the transformation

x = v,

y =
u

v
,

with Jacobian

J =

∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
0 1

1

v
− u

v2

∣∣∣∣∣∣∣ = −1

v

Note that we also have

u = xy,

v = x,
and thus

fU,V (u, v) = fX,Y

(
v,

u

v

) ∣∣∣∣−1

v

∣∣∣∣ = ve−vu/v 1

v
= e−u, 1 < v < 2, u > 0.

Then by marginal density,

fU (u) =

∫ 2

1
e−udv = e−u, u > 0.

� Exercise 5.5 Show that the correlation coefficient of the bivariate normal distribution N (µ1, µ2, σ
2
1, σ

2
2, ρ) is

precisely ρ.

Proof. Start with Cov(X,Y ).

Cov(X,Y ) =E[(X − E(X))(Y − E(Y ))]

=
1

2πσ1σ2
√

1− ρ2

∫ ∞

−∞

∫ ∞

−∞
(x− µ1) (y − µ2) ·

exp

{
− 1

2 (1− ρ2)

[
(x− µ1)

2

σ2
1

− 2ρ
(x− µ1) (y − µ2)

σ1σ2
+

(y − µ2)
2

σ2
2

]}
dx dy.

The terms inside the square brackets are exactly(
x− µ1

σ1
− ρ

y − µ2

σ2

)2

+

(√
1− ρ2

y − µ2

σ2

)2

,

Consider the transformation
u =

1√
1− ρ2

(
x− µ1

σ1
− ρ

y − µ2

σ2

)
,

v =
y − µ2

σ2
,
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5.3 Conditional expectation

then {
x− µ1 = σ1

(
u
√
1− ρ2 + ρv

)
y − µ2 = σ2v

dx dy = |J |du dv = σ1σ2
√
1− ρ2 du dv.

i.e.,

Cov(X,Y ) =
σ1σ2
2π

∫ ∞

−∞

∫ ∞

−∞

(
uv
√

1− ρ2 + ρv2
)
exp

{
−1

2

(
u2 + v2

)}
du dv.

Note that ∫ ∞

−∞

∫ ∞

−∞
uv exp

{
−1

2

(
u2 + v2

)}
du dv = 0∫ ∞

−∞

∫ ∞

−∞
v2 exp

{
−1

2

(
u2 + v2

)}
du dv = 2π

and thus
Cov(X,Y ) =

σ1σ2
2π

· ρ · 2π = ρσ1σ2

Corr(X,Y ) =
Cov(X,Y )

σ1σ2
= ρ

5.2.3 Total probability formula; Bayes formula

Rewrite (5.9) as
f(y, x) = fX(x)fY |X(y | x), (5.10)

f(x, y) = fY (y)fX|Y (x | y), (5.11)

and compute the marginal density, we will get

fY (y) =

∫ ∞

−∞
fX(x)fY |X(y | x)dx, (5.12)

fX(x) =

∫ ∞

−∞
fY (y)fY |X(y | x)dy. (5.13)

Now substitute (5.11) and (5.13) back to (5.9), obtaining the Bayes:

fY |X(y | x) =
fY (y)fX|Y (x | y)∫ ∞

−∞
fY (y)fX|Y (x | y)dx

; (5.14)

fX|Y (x | y) =
fX(x)fY |X(y | x)∫ ∞

−∞
fX(x)fY |X(y | x)dx

. (5.15)

5.3 Conditional expectation

5.3.1 Discrete cases

Let X and Y be discrete r.v.s.
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5.3 Conditional expectation

Definition 5.8

♣

For any x, the conditional expectation of Y given X = x is

φ(x) := E[Y | X = x] =
∑
y

yfY |X(y | x). (5.16)

The conditional expectation of Y given X is a function of X:

E[Y | X] := φ(X) (5.17)

Remark E[Y | X] is a random variable denoting the “best guess” of Y given the information of X .

Proposition 5.1 (Towering property)

♠E[E(Y | X)] = E(Y ).

Proof. Note that

E[E(Y | X)] =
∑
x

fX(x)E[Y | X = x] =
∑
x

∑
y

fX(x) · yfY |X(y | x)

=
∑
x

∑
y

yf(x, y) =
∑
y

yfY (y)

= E(Y ).

Remark
1. Towering property is useful to compute E(Y );
2. Let {Ai} be a partition of Ω, then

E(Y ) =
∑

P (Ai)E(Y | Ai)

Example 5.11 For a coffee shop, we assume that N , the number of customer, satisfies N ∼ Poisson(λ) and
each customer has probability p to carry a dog and probability 1 − p of not carrying a dog. Let K denote the
number of dogs. Try to compute E[K | N ], E(K), E[N | K].

Solutuion. Note that E[K | N = n] = np since given N = n, K ∼ Bionomial(n, p). Thus E[K | N ] = pN ,
E(K) = E[E(K | N)] = p · E(N) = pλ. Finally,

fN |K(n | k) =
fK|N (k | n)fN (n)

fK(k)

=

(
n
k

)
pk(1− p)n−k · λn

n! e
−λ∑

n⩾k

(
n
k

)
pk(1− p)n−k λn

n! e
−λ

=

pkλk

k! e−pλ (1−p)n−kλn−k

n−k! e−(1−p)λ

pkλk

k! e−pλ
∑

n⩾k
(1−p)n−kλn−k

n−k! e−(1−p)λ

=
(1− p)n−k

(n− k)!
λn−ke−(1−p)λ,

implying given K = k, N − k is Poisson ((1− p)λ). Thus

E[N | K = k] = E[N − k | K = k] + k = (1− p)λ+ k, E[N | K] = (1− p)λ+K.
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5.3 Conditional expectation

5.3.2 Continuous cases

Definition 5.9

♣

For any x, the conditional expectation of Y given X = x is

φ(x) := E[Y | X = x] =

∫ ∞

−∞
yfY |X(y | x)dy. (5.18)

The conditional expectation of Y given X is nothing but a random variable, a function of X:

E[Y | X] := φ(X) (5.19)

The following property holds for both discrete and continuous cases:

Proposition 5.2

♠For X and Y being independent, one has E[Y | X] = E(Y ).

Proof. We prove the discrete case. Note that

E[Y | X = xi] =
∑
y

yfY |X(y | xi) =
∑
y

yfY (y) = E(Y )

for any xi.

Lemma 5.1

♡For X and Y being independent and for any g : R → R, one has E[g(Y ) | X] = g(Y ).

Again, we have tower property in continuous sense:

Proposition 5.3 (Tower property)

♠E(E(Y | X)) = E(Y ).

Proof. Note that

E(Y ) =

∫ ∞

−∞

∫ ∞

−∞
yf(x, y)dydx =

∫ ∞

−∞

∫ ∞

−∞
yf(y | x)fX(x)dydx

=

∫ ∞

−∞

{∫ ∞

−∞
yf(y | x)dy

}
fX(x)dx =

∫ ∞

−∞
E(Y | X = x)fX(x)dx

= E(E(Y | X)).

Remark If Y = 1A, we have
P (A) =

∫ ∞

−∞
fX(x)P (A | X = x)dx.

Corollary 5.1

♡

From the proof of tower property, given X discrete, one has

E(Y ) =
∑
x

E(Y | X = x)P (X = x) (5.20)

whereas given X continuous, one has

E(Y ) =

∫ ∞

−∞
E(Y | X = x)fX(x)dx. (5.21)
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5.3 Conditional expectation

Example 5.12 Recall the bivariate standard normal distribution:

f(x, y) =
1

2π
√
1− ρ2

e
− 1

2(1−ρ2)
(x2−2ρxy+y2)

.

Try to compute E(Y | X).

Solution. Note that

f(x, y) =
1√
2π

e−
x2

2 · 1√
2π(1− ρ2)

e
− (y−ρx)2

2(1−ρ2)

Since fX(x) =
1√
2π

e−
x2

2 , one has fY |X(y | x) = 1√
2π(1− ρ2)

e
− (y−ρx)2

2(1−ρ2) . Then

E(Y | X = x) = ρx, E(Y | X) = ρX.

Example 5.13 A man is at a three-way intersection. It will take him 3 hours to reach his destination if he
chooses road one. However, he will get back to the origin after 5 and 7 hours if he chooses road two or three,
respectively. Suppose that he will choose each road with a equal probability. What will be the average time to
reach his destination?

Solution. Let X denote the time he needs. We use random variable Y to denote the road he chooses, i.e.,
{Y = i} denotes the event that he chooses road i. By the condition,

P (Y = 1) = P (Y = 2) = P (Y = 3) =
1

3
.

Note that

E(X | Y = 1) = 3;

E(X | Y = 2) = 5 + E(X);

E(X | Y = 3) = 7 + E(X).

From (5.20),
E(X) =

1

3
[3 + 5 + E(X) + 7 + E(X)] = 5 +

2

3
E(X)

and thus E(X) = 15.

Example 5.14 Let X1, X2, · · · be random variables that are independent with N , another random variable only
taking values in N. Show that

E
( N∑
i=1

Xi

)
= E(X1)E(N).

Proof. By Tower property and (5.20),

E(

N∑
i=1

Xi) = E

[
E

( N∑
i=1

Xi | N
)]

=

∞∑
n=1

E

( N∑
i=1

Xi | N = n

)
P (X = n)

=

∞∑
n=1

E

( n∑
i=1

Xi

)
P (N = n) =

∞∑
n=1

nE(X1)P (N = n)

= E(X1)

∞∑
n=1

nP (N = n) = E(X1)E(N).
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5.3 Conditional expectation

� Exercise 5.6 Show that
1. E(aY + bZ | X) = aE(Y | X) + bE(Z | X) for a, b ∈ R;
2. (tower property) E{E(Y | X,Z) | X} = E(Y | X) = E{E(Y | X) | X,Z}

Proof. 1. We have

E(aY + bZ | X = x) =
∑
y,z

(ay + bz)P(Y = y, Z = z | X = x)

= a
∑
y,z

yP(Y = y, Z = z | X = x) + b
∑
y,z

zP(Y = y, Z = z | X = x)

= a
∑
y

yP(Y = y | X = x) + b
∑
z

zP(Z = z | X = x)

= aE(Y | X = x) + bE(Z | X = x).

2. Define the function g by
g(x, z) = E[Y | X = x, Z = z]

Then

E{E(Y | X,Z) | X = x} =
∑
x′,z

g(x′, z)P (X = x′, Z = z | X = x)

=
∑
z

g(x, z)P (X = x | Z = z)

=
∑
z

E[Y | X = x, Z = z]P (X = x | Z = z)

=
∑
z

∑
y

yP (Y = y | X = x, Z = z)P (X = x | Z = z)

=
∑
z

∑
y

y
P(Y = y,X = x, Z = z)

P(X = x, Z = z)
· P(X = x, Z = z)

P(X = x)

=
∑
y

yP(Y = y | X = x) = E(Y | X = x)

= E{E(Y | X) | X = x, Z = z}.

� Exercise 5.7 If E(Y ) and E[h(Y )] both exist, show that E[h(Y ) | Y ] = h(Y ).

Proof. We prove the discrete case. Let φ(Y ) = E[h(Y ) | Y ]. Note that for any yi(i = 1, 2, · · · ), h(yi) is a
constant and hence is independent with Y . Therefore

φ(yi) = E[h(yi) | Y = yi] = h(yi)

and one deduces that E[h(Y ) | Y ] = h(Y ).

� Exercise 5.8 Show the following properties:
1. E[g(X)Y | X] = g(X)E(Y | X);
2. E(XY ) = E[XE(Y | X)];
3. Cov[X,E(Y | X)] = Cov(X,Y ).

Proof. 1. Note that E(g(X)Y | X = x) = g(x)E(Y | X = x) and thus E[g(X)Y | X] = g(X)E(Y |
X);

2. Note that E(XY ) = E[E(XY | X)] = E[XE(Y | X)];
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5.3 Conditional expectation

3. Note that

Cov[X,E(Y | X)] = E[X · E(Y | X)]− E(X) · E(Y )

= E(XY )− E(X) · E(Y )

= Cov(X,Y ).

For multiple conditioning, we define

Definition 5.10

♣

E[X | Y, Z] = φ(Y,Z)

such that

φ(y, z) = E[X | Y = y, Z = z] =


∑
x

xP (X = x | Y = y, Z = z)∫
xf(x, y, z)dx = fY Z(y, z)

Proposition 5.4 (Tower proposition)

♠

Given g measurable,
E(E(Y | X) · g(X)) = E(Y · g(X)).

Let (Ω,F ,P) be a probability space and G ⊆ F be a sub-σ-algebra.

Definition 5.11

♣

The measure theoretic definition of conditional expectation E[X | G] is a random variable such that
1. φG := E[X | G] is G-measurable.

2. For all A ∈ G, we have
∫
A
E[X | G]dP =

∫
A
XdP.

We define E[X | Y ] = E[X | σ(Y )].

Example 5.15 Let G = P(Ω), then by 2, E[X | G] = X a.s..
Example 5.16 Let G = {∅,Ω}, then by 2, E[X | G] = E(X).
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Chapter 6 Random Walk

1-dimensional random walk

Sn = S0 +

n∑
i=1

Xi,

where Xi are i.i.d random variables. We set P (Xi = 1) = p and P (Xi = −1) = q. If p = q = 1/2, it is called
the symmetric simple random walk.

More generally, many results under the assumption that Xi are i.i.d and E(X2
i ) < ∞.

d-dimensional random walk Now we assume Sn ∈ Zd.

Lemma 6.1 (Spatial homogenuity)

♡P (Sn = j | S0 = a) = P (Sn = j − a | S0 = 0). (6.1)

Proof. Note that

P (Sn = j | S0 = a) = P (Sn = j − a | S0 = 0) = P (

n∑
i=1

Xi = j − a).

Lemma 6.2 (Time homogenuity)

♡P (Sn = j | S0 = a) = P (Sn+m = j | Sm = a). (6.2)

Proof. Note that

LHS = P (
n∑

i=1

Xi = j − a) = P (
m+n∑

i=m+1

Xi = j − a) = RHS.

Proposition 6.1 (Markov property)

♠

The position after m steps do not depend on the previous m steps:

P (Sn+m = j | S0, S1, · · · , Sm) = P (Sn+m = j | Sm).

Recurrence and Transience Let T 0
y = 0 and for k ⩾ 1, let T k

y := inf{n > T k−1
y : Sn = y}.

Definition 6.1

♣

We say that a random walk is recurrent if it visits its starting position infinitely often with probability
one and transient if it visits its starting position finitely often with probability one. That is y is called
recurrent if Py[T

1
y < ∞] = 1 and is called transient if Py[T

1
y < ∞] < 1.

Remark
1. If y is recurrent, by Markov property, ∀n ∈ N, P (T k

y < ∞) = 1. Thus Py(Sn = y infinitely often) =
Py(lim supn→∞{Sn = y}) = 1.



2. If y is transient, let Ny :=
∞∑
n=1

1{Sn=y} (number of times of visiting y). Then

E(Ny) =
∑
k

P (Ny ⩾ k) =
∑

Py(T
k
y < ∞) =

∞∑
k=1

[Py(T
1
y < ∞)]k =

Py(T
1
y < ∞)

1− Py(T 1
y < ∞)

< ∞.

Theorem 6.1

♡y is a recurrent state (or transient state) if and only if E(Ny) = +∞ (or E(Ny) < +∞).

Proof. Start with 1-D symmetric random walk. We define

δy(x) =

1, if y = x

0, else
Note that

E(Ny) = P (X1 = 1) · E(Ny | X1 = 1) + P (X1 = −1) · E(Ny | X1 = −1) + δy

=
1

2
E(Nx−1) +

1

2
E(Nx+1) + δy

with E(N0) = 0 and E(NN ) = 0. Solve the recurrence,

E(Ny) ∼ cN

and thus E(Ny) → +∞ as N → +∞.
For random walk on Zd (d ⩾ 2), let G(x) := E(Nx) denote the mean number of returns at x before hitting

the boundary. Then

G(x) =
1

2d

∑
z∼x

G(z) + δy

G(z) = 0, if z ∈ ∂

Let ∆f(x) =
1

2d

∑
z∼x

(f(z)− f(x)). Then the recurrence can be written as the discrete Green’s function:

∆G(x) = −δy(x)

G(z) = 0 if z ∈ ∂

Lemma 6.3

♡

Set y = 0, then

G(0) ≈

lnN, d = 2,

O(1), d ⩾ 3,

implying y is recurrent in d = 2 and transient in d ⩾ 3.

Recall solving PDE by Fourier transformation:

∆G(x) = −δ0(x), in Rd,

then

Ĝ(k) =

∫
Rd

eikxG(x)dx

ˆ∆G(k) = (k21 + k22 + · · ·+ k2d)Ĝ(k)
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=

∫
eikxδ0(x)dx = 1,

thus
Ĝ(k) =

1

|k|2
.

Actually on Zd, fk(x) := eikx are eigenfunctions of ∆ with ∆fk = λkfk, where λk = −
d∑

j=1

(1− cos kj). For

example, on d = 1,

∆fk(x) =
1

2
fk(x+ 1) +

1

2
fk(x− 1)− fk(x)

= fk(x)

(
1

2
eik +

1

2
e−ik − 1

)
= fk(x)(cos k − 1)

Fourier transformation
Ĝ(k) =

∑
x∈BoxN

G(x) · e−ikx

inverse Fourier transformation:
G(x) =

1

|BoxN |
∑

k∈Box∗N

e−ikxĜ(k),

where
Box∗N =

{
2π

N
(n1, · · · , nd) : ni ∈ [−N,N ] ∩ Z

}
.

then
∆ ·

∑
k∈BoxN

G(x)eikx = λkĜ(k) = 1.

Using inverse:

G(0) =
1

|BoxN |
∑

k∈Box∗N

Ĝ(k) =
1

|BoxN |
∑

k∈Box∗N

1∑d
j=1(1− cos kj)

→ 1

(2π)d

∫
[−π,π]d

1∑d
j=1(1− cosxj)

dx,

note that 1− cosxj ∼ |x|2 and thus

Example 6.1 Consider the simple random walk on Z with probability p to go right and probability q to go left.
If the walk starts at a, try to compute P (Sn = b).

Solution.

P (Sn = b) =
∑
r

M r
n(a, b)p

rqn−r

where M r
n(a, b) := number of paths with S0 = a, Sn = b such that makes r right moves. In fact, r−(n−r) =

b− a and thus r =
1

2
(n+ b− a), M r

n(a, b) =

(
n

1
2(n+ b− a)

)
.
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Proposition 6.2 (Reflection principle)

♠

If a, b > 0, then N0,n(a, b) = Nn(−a, b) where N0,n(a, b) denotes the number of paths starting at a,
ending at b, and visting 0 somehow; Nn(−a, b) denotes the number of paths starting at −a, ending at b
without extra conditions.

Proof. Let T = inf{n : Sn = 0}.

In a ballot, eventually candidate A has a votes and B has b votes such that a > b. Now we revisit the votes
one by one, try to compute P (A is always ahead of B | a > b).

Indeed, Si = number of votes for A at time i− number of votes for B at time i.

Theorem 6.2

♡

Let S be a simple random walk on Z with S0 = 0, then

P (Sn = b, Si ̸= 0, i = 1, 2, · · · , n) = |b|
n
P (Sn = b).

Proof. Assume b > 0, then the number of paths from (0, 0) to (n, b) that does not visit 0 is:

Nn−1(1, b)−N0,n−1(1, b) = Nn−1(1, b)−Nn−1(−1, b)

=

(
n− 1

1
2(n− 1 + b− 1)

)
−
(

n− 1
1
2(n− 1 + b+ 1)

)
=

(
n

1
2(n+ b)

)(
n+ b

2n
− n− b

2n

)
=

b

n

(
n

1
2(n+ b)

)
=

b

n
Nn(0, b).

Thus P (Sn = b, Si ̸= 0, i = 1, 2, · · · , n) = |b|
n
P (Sn = b).

The Ballot problem is now converted to a simple randow walk starting at 0: If we get a vote for A, we go

right. Otherwise we go left. What we want is exactly P (Sa+b = a− b, Si ̸= 0, i = 1, 2, · · · , a+ b) =
a− b

a+ b
.

Corollary 6.1

♡
P (Si ̸= 0, i = 1, 2, · · · , n) = 1

n
E(Sn) ⩽

1

n

√
var(Sn) ⩽

√
n

n
.

Theorem 6.3

♡

Suppose that S0 = 0 with p = q =
1

2
. Then for a > 0,

P ( max
1⩽k⩽n

Sk ⩾ a) = P (Sn ⩾ a) + P (Sn ⩾ a+ 1).

Proof. Note that
LHS = P ( max

1⩽k⩽n
Sk ⩾ a;Sn ⩾ a) + P ( max

1⩽k⩽n
Sk ⩾ a;Sn < a)

and
P ( max

1⩽k⩽n
Sk ⩾ a;Sn ⩾ a) = P (Sn ⩾ a).
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Let Ta = inf{n ⩾ 1 : Sn = a}. Define the reflected walk

Sn =

Sn, if n ⩽ Ta,

2a− Sn, if n > Ta.

Note that 2a− Sn has the distribution of SRW starting at a. By Markov property, Sn has the same distribution
as the SRW, i.e.,

P ( max
1⩽k⩽n

Sk ⩾ a;Sn < a) = P (Sn > a) = P (Sn > a) = P (Sn ⩾ a+ 1).

Remark We say (Wt)t⩾0 is a Bronian motion if
1. W0 = 0;
2. For any t > s > 0, Wt −Ws ∼ N (0, t− δ);
3. Wt2 −Wt1 ,Wt3 −Wt2 , · · · ,Wtn −Wtn−1 are independent.
4. The map t 7→ Wt is continuous.

Theorem 6.4

♡

For a Bronian motion,
P ( max

t∈[0,T ]
Wt > a) = 2P (Wt > a).

Theorem 6.5 (Last Visit to 0)

♡

Consider a one-dimensional random walk with p = q =
1

2
. Then

P (last visit to 0 in [0, 2n] is 2k) = P (S2k = 0) · P (S2n−2k = 0).

Proof. Note that

LHS = P (S2k = 0)P (Si ̸= 0, i = 2k + 1, · · · , 2n | S2k = 0).

Let 2m = 2n− 2k (i.e., we shift the random walk 2k steps leftwards), then by Ballot Theorem,

P (Si ̸= 0, i = 1, 2, · · · , 2m) =
1

2m
E(S2m) =

1

2m
· 2

∞∑
k=1

2k · P (S2m = 2k)

=
2

2m

∞∑
k=1

2k

(
2m

m+ k

)(
1

2

)2m

= 2
∞∑
k=1

(
1

2

)2m [( 2m− 1

m+ k − 1

)
−
(
2m− 1

m+ k

)]

= 2 ·
(
1

2

)2m(2m− 1

m

)
= P (S2m = 0).

Remark Recall the Stirling Formula:
n!

n→∞∼
(n
e

)n√
2πn. (6.3)

Then

P (S2k = 0) =

(
1

2

)2k

·
(
2k

k

)
k→∞∼ 1√

2πk
.
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Thus

P (last visit to 0 in [0, 2n] ⩽ 2nx) =
∑
k⩽nx

P (S2k = 0) · P (S2n−2k = 0)

∼
∑
k⩽nx

1√
πk

1√
π(n− k)

∼
∫ x

0
n

1

π
√
u(1− u)

du

=
2

π
arcsinx.

� Exercise 6.1 Consider the random walk on {0, 1, · · ·N} that reflects at 0. More precisely, let S0 = k, Sj+1 =

Sj +Xj , where Xj = 1 if Sj = 0, otherwise P [Xj = 1] = p and P [Xj = −1] = q. Compute the expected
number of steps to first reach state N , as a function of k. Distinguish the cases p = q and p ̸= q.

Solution. Denote Ek as the expected number of steps to first reach N with S0 = k. Then

EN = 0

E0 = 1 + E1

Ek = p (1 + Ek+1) + q (1 + Ek−1) , 1 ≤ k ≤ N − 1

That is
Ek+1 =

1

p
Ek −

q

p
Ek−1 −

1

p

Ek+2 =
1

p
Ek+1 −

q

p
Ek −

1

p

Ek+2 − Ek+1 =
1

p
(Ek+1 − Ek)−

q

p
(Ek − Ek−1)

Let xk = Ek − Ek−1, then xk+2 =
1
pxk+1 − 1

pxk+1

xk+2 − xk+1 =
q

p
(xk+1 − xk)

xk+1 − xk =

(
q

p

)k−1

(x2 − x1)

(Ek+1 − Ek)− (Ek − Ek−1) =

(
q

p

)k−1

(E2 − 2E1 + E0)

� Exercise 6.2 In one-dimensional random walk with p = q =
1

2
, one has

E(number of steps before hitting 0, N) = k(N − k) ∼ O(N2).

� Exercise 6.3 In Zd(d ⩾ 1) random walk with p = q =
1

2
, one has

E(number of steps before hitting boundary) ∼ O(N2).

Theorem 6.6 (Loop erased random walk)

♡

In Z2-LERW,
E(length of LERW) = O(N5/4).

In Z3-LERW, there is α such that
E(length of LERW) ≈ Nα.
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Theorem 6.7 (Self-avoiding walks)

♡

In Z2-SAW, SAWn, the distance between the destination and the origin satisfies:√
var(SAWn) ≈ O(N3/4).
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Chapter 7 Functions of random variables

7.1 Functions of random variables

Example 7.1 Let X ∼ N (0, 1) and Y = X2. Try to compute the probability density function of Y .

Solution. Note that

FY (y) = P (Y ⩽ y) =

P (−√
y ⩽ X ⩽

√
y) if y ⩾ 0;

0 else.

Now let
φ(y) =

∫ y

−∞

1√
2π

e−x2/2dx

Then
P (−√

y ⩽ X ⩽
√
y) = φ(

√
y)− φ(−√

y) = 2φ(
√
y)− 1

Finally,
fY (y) = 2φ′(y) · 1

2
√
y
=

1√
2y

e−y/2, y ⩾ 0.

The following corollary is a generalization of Exercise 5.3:

Corollary 7.1

♡

If (X1, X2, · · · , Xn) has joint density function f , then Y1, Y2, · · · , Yn = T (X1, X2, · · · , Xn) has density
function

fY1,··· ,Yn(y1, · · · , yn) = f(x1(y1, · · · , yn), · · · , xn(y1, · · · , yn)) ·
∣∣∣∣∂(x1, x2, · · · , xn)∂(y1, y2, · · · , yn)

∣∣∣∣ .
Proof. Note that

P (Y1, · · · , Yn ∈ T (A)) = P ((X1, · · · , Xn) ∈ A) =

∫
A
f(x1, · · · , xn)dx1 · · · dxn

=

∫
A
f(x1(y1, · · · , yn), · · · , xn(y1, · · · , yn))

∣∣∣∣∂(x1, x2, · · · , xn)∂(y1, y2, · · · , yn)

∣∣∣∣ dy1 · · · dyn
Example 7.2 Let X1, X2, · · · have joint density function f . Define X1 = aY1 + bY2, X2 = cY1 + dY2 with
ad ̸= bc. Find fY1,Y2(y1, y2).

Solution. The jacobian is given by:

|J | =

∣∣∣∣∣∣∣∣
∂x1
∂y1

∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣a b

c d

∣∣∣∣∣ = |ad− bc|

and thus
fY1,Y2(y1, y2) = f(ay1 + by2, cy1 + dy2) · |ad− bc|.



7.1 Functions of random variables

Example 7.3 Suppose independent X,Y has joint density function f . Show that U := XY has density function

fU (u) =

∫ ∞

−∞
f
(
v,

u

v

) 1

|v|
dv.

Proof. Consider the transformation u = xy

v = x

and then x = v

y =
u

v

with Jacobian

|J | =

∣∣∣∣∣∣∣
0 1

1

v
− u

v2

∣∣∣∣∣∣∣ =
1

|v|
.

Then
fU,V (u, v) = f

(
v,

u

v

)
· 1

|v|

so that
fU (u) =

∫ ∞

−∞
fX,Y

(
v,

u

v

)
· 1

|v|
dv.

Example 7.4 Suppose independent X,Y has joint density function f . Show that U := X/Y has density
function

fU (u) =

∫ ∞

−∞
fX,Y (u, uv)|v|dv.

Proof. Let V = Y , considering the transformationu =
x

y

v = y

and then x = uv

y = v

with Jacobian

|J | =

∣∣∣∣∣v u

0 1

∣∣∣∣∣ = |v|.

Thus
f(u, v) = fX(uv) · fY (v)|J | = fX(uv)fY (v)|v|

so that
fU (u) =

∫ ∞

−∞
fX,Y (uv, v) · |v|dv.
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7.1 Functions of random variables

Example 7.5 Let X1, X2 be independent r.v.s obeying exp(λ). Find the joint denstiy function of Y1 = X1+X2

and Y2 =
X1

X2
.

Solution. Note that from Y1 = X1 +X2

Y2 =
X1

X2

we get 
X1 =

Y1Y2
1 + Y2

X2 =
Y1

1 + Y2

with Jacobian

|J | =

∣∣∣∣∣∣∣∣
y2

1 + y2

y1
(1 + y2)2

1

1 + y2
− y1
(1 + y2)2

∣∣∣∣∣∣∣∣ =
|y1|

(1 + y2)2

Thus

fY1,Y2(y1, y2) = fX1,X2

(
y1y2
1 + y2

,
y1

1 + y2

)
· |y1|
(1 + y2)2

= λ2e−λy1 |y1|
1

(1 + y2)2

Example 7.6 Let X1, X2 ∼ N (0, 1) be independent. Then X1 ±X2 are independent.
Example 7.7(Rayleigh Distribution) Let X,Y be independent N (0, 1). Find the joint density function of

R =
√
X2 + Y 2,Θ = arctan

Y

X
.

Solution. Note that X = R cosΘ

Y = R sinΘ

has Jacobian

|J | =

∣∣∣∣∣cos θ −r sin θ,

sin θ r cos θ

∣∣∣∣∣ = r.

Furthermore,
fX,Y (x, y) =

1

2π
e−

x2+y2

2

Thus
fR,Θ(r, θ) = fX,Y (r cos θ, r sin θ) · r =

1

2π
e−r2/2r.

That is,
Θ ∼ unif[0, 2π), fR(r) = re−r2/2.

� Exercise 7.1 Show that R2,Θ are independent and R2 ∼ exp

(
1

2

)
.
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7.1 Functions of random variables

Solution. Let Z = R2. Note that x =
√
z cos θ,

y =
√
z sin θ

has Jacobian

|J | =

∣∣∣∣∣∣∣∣∣
cos θ

2
√
z

−
√
z sin θ

sin θ

2
√
z

√
z cos θ

∣∣∣∣∣∣∣∣∣ =
1

2
.

Thus
fZ,Θ(z, θ) = fX,Y (

√
z cos θ,

√
z sin θ) · 1

2
=

1

2π

1

2
e−z/2

and Θ ∼ unif[0, 2π), R2 ∼ exp(1/2).

The Rayleigh Distribution suggests that one can use uniform random variables to generate standard normals:

� Exercise 7.2 Let U1, U2 ∼ unif[0, 1] be independent, then

1. Z1 = −2 lnU1 ∼ exp

(
1

2

)
: P (−2 lnU1 > x) = P (U1 < e−

x
2 ) = e−

x
2 for x > 0;

2. (Box-Muller transformation) Z2 = 2πU2 ∼ unif[0, 2π). TakeR2 = −2 lnU1,

Θ = 2πU2

and then X =
√
−2 lnU1 cos(2πU2),

Y =
√
−2 lnU1 sin(2πU2),

with (X,Y ) ∼ N (0, 1) being independent.

Solution. Let z1 = −2 lnu1, then u1 = e−
1
2
z1 ,

du1
dz1

= −1

2
e−

1
2
z1 . Hence for z1 > 0, Z1 = −2 lnU1 has

density function

fZ1(z1) = fU1(e
− 1

2
z1)

∣∣∣∣du1dz1

∣∣∣∣ = 1

2
e−

1
2
z1

That is Z1 ∼ exp(1/2). Similarly, one deduces that Z2 ∼ unif(0, 2π).

From x2 + y2 = −2 lnu1,
y

x
= tan(2πu2), we have u1 = exp

{
−1

2
(x2 + y2)

}
and u2 =

1

2π
arctan

y

x
.

Thus the Jacobian is

J =

∣∣∣∣∣∣∣∣
∂u1
∂x

∂u1
∂y

∂u2
∂x

∂u2
∂y

∣∣∣∣∣∣∣∣ = − 1

2π
exp

{
−1

2
(x2 + y2)

}

Finally,

fX,Y (x, y) = fU1,U2(u1, u2) · |J | =
1

2π
exp

{
−1

2
(x2 + y2)

}
, −∞ < x, y < ∞

implying (X,Y ) ∼ N (0, 1) being independent.

81



7.1 Functions of random variables

Example 7.8 Let X,Y ∼ N (0, 1) be independent and defineU = σ1X,

V = σ2ρX + σ2
√
1− ρ2Y.

Show that their joint density function is

fU,V (u, v) =
1

2πσ1σ2
√

1− ρ2
e−

1
2
Q(u,v),

where

Q(u, v) =
1

1− ρ2

((
u

σ1

)2

− 2ρ
u

σ1

v

σ2
+

(
v

σ2

)2
)
.

Example 7.9 Let U, V be bivariate normal. Compute E(UV ) and E(U | V ).

Solution. As in Example 7.8, we normlize U and V to obtain X and Y which are independent and noraml
distributed. Then

E(UV ) = σ1σ2ρE(X2) + σ1σ2
√
1− ρ2E(XY ) = σ1σ2ρ

since by independence, E(XY ) = E(X) · E(Y ) = 0 · 0 = 0.

Now given U = u, we have V = σ2ρ
u

σ1
+ σ2

√
1− ρ2Y ∼ N

(
σ2
σ1

ρu, σ2
2(1− ρ2)

)
. Therefore,

E(V | U = u) =
σ2
σ1

ρu, E(V | U) =
σ2
σ1

ρU, var(V | U) = σ2
2(1− ρ2).

� Exercise 7.3 Given X1, X2, · · · , Xn being independent and Xi ∼ exp(λi), show that

P (Xi = min{X1, X2, · · · , Xn}) =
λi

λ1 + λ2 + · · ·+ λn
.

Proof. By independence, we know (X1, X2, · · · , Xn) has density function

f(x1, x2, · · · , xn) =
n∏

j=1

λje
−λjxj

Note that

{Xi = min{X1, X2, · · · , Xn}}

={X1 ⩾ Xi, · · · , Xi−1 ⩾ Xi, 0 < Xi < ∞, Xi+1 ⩾ Xi, · · · , Xn ⩾ Xi}.

Thus

P (Xi = min{X1, X2, · · · , Xn})

=

∫ ∞

0

∫ ∞

xi

· · ·
∫ ∞

xi

∫ ∞

xi

· · ·
∫ ∞

xi

n∏
j=1

λje
−λjxjdx1 · · · dxi−1dxi+1 · · · dxndxi

=

∫ ∞

0
λie

−(λ1+λ2+···+λn)xidxi =
λi

λ1 + λ2 + · · ·+ λn
.

� Exercise 7.4 Given X1, X2, · · · , Xn being continuous and i.i.d, show that

P (Xn > max{X1, X2, · · · , Xn−1}) =
1

n
.
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7.2 Generating functions

Proof. LetXi(i = 1, 2, · · · , n) has probability density function f(x). Then by independence, their joint density
function is

f(x1, x2, · · · , xn) =
n∏

i=1

f(xi).

Note that

{Xn > max{X1, X2, · · · , Xn}} = {X1 < Xn, X2 < Xn, · · · , Xn−1 < Xn,−∞ < Xn < ∞}

and thus

P (Xn > max{X1, X2, · · · , Xn}) =
∫ ∞

−∞

∫ xn

−∞
· · ·
∫ xn

−∞

n∏
i=1

f(xi)dx1dx2 · · · dxn−1dxn

The distribution of Xi is given by F (x) =

∫ x

−∞
f(t)dt and hence

P (Xn > max{X1, X2, · · · , Xn}) =
∫ ∞

−∞
Fn−1(xn)dF (xn) =

[
1

n
Fn(xn)

]∞
−∞

=
1

n
.

7.2 Generating functions

Definition 7.1

♣

A sequence a = {ai : i = 0, 1, 2, · · · } of real numbers may contain a lot of information. One concise way
of storing this information is to wrap up the numbers together in a “generating function”. For example,
the (ordinary) generating function of the sequence a is the function Ga defined by

Ga(s) :=
∑
n⩾0

ans
n

and an can be computed by an =
1

n!
G

(n)
a (0).

Example 7.10 Let an =

(
N

n

)
, then

Ga(s) =
∑
n

(
N

n

)
sn = (1 + s)N .

Example 7.11 Let an = einθ, forming an orthornormal basis of L2[0, 2π), then

Ga(s) =
∑
n⩾0

einθsn =
1

1− eiθs
.

Theorem 7.1 (Convolution of sequences)

♡

Given {an}, {bn}, we define cn = a0bn + a1bn−1 + · · ·+ anb0, then

Gc(s) = Ga(s) ·Gb(s).

Proof. Note that

Gc(s) =
∑
n⩾0

cns
n =

∞∑
n=0

n∑
k=0

akbn−ks
n

=

∞∑
k=0

aks
k

∞∑
n=k

bn−ks
n−k
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7.2 Generating functions

= Ga(s)Gb(s).

Definition 7.2

♣

Let X be a discrete random variable taking value in N. The probability generating function of X is given
by:

GX(s) = E(sX) =
∑
n⩾0

P (X = n) · sn.

Example 7.12 For X ∼ Bernoulli(p), GX(s) = (1− p) + ps.
Example 7.13 For X ∼ Geometric(p),

GX(s) =
∑
n⩾0

(1− p)n−1psn = ps
∑

(1− p)n−1sn−1 =
ps

1− (1− p)s
.

Example 7.14 For X ∼ Bionomial(n, p), we have the decomposition X = Y1 + · · · + Yn for each Yi ∼
Bernoulli(p) being i.i.d. Then

GX(s) = GY1(s) · · ·GYn(s) = (1− p+ ps)n.

Example 7.15 For X ∼ Poisson(λ),

GX(s) = E(sX) =
∑
k

sk
λk

k!
e−λ = eλ(s−1).

Corollary 7.2

♡

If X and Y are independent, then

GX+Y (s) = GX(s) ·GY (s).

Example 7.16 LetX ∼ Poisson(λ) andY ∼ Poisson(µ) be independent. Show thatX+Y ∼ Poisson(λ+µ).

Proof. Note that

GX(s) = eλ(s−1), GY (s) = eµ(s−1),

GX+Y (s) = GX(s) ·GY (s) = e(λ+µ)(s−1)

That is X + Y ∼ Poisson(λ+ µ).

Definition 7.3

♣In general, the probability generating function of a random variable X is GX(s) := E(sX).

Note that G does indeed generate the sequence {f(i) : i ⩾ 0} since

E(sX) =
∑
k

siP (X = i) =
∑
i

sif(i).

Remark
1. There is a radius of convergence R such that GX(s) converges absolutely for |s| < R and diverges for

|s| > R where R ⩾ 1 (because GX(1) = 1). The sum is uniformly convergent on sets of the form
{s : |s| ⩽ R′} for any R′ < R.

2. For |s| < R, one can differentiate and integrate term by term.
3. If Ga(s) = Gb(s) for s ∈ (−δ, δ) for some δ > 0, then Ga ≡ Gb and an =

1

n!
G(n)(0) = bn.
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7.2 Generating functions

4. (Abel’s Theorem) If ai ⩾ 0 and Ga(s) converges absolutely for |s| < 1, then lim
s↑1

Ga(s) = Ga(1) =

∞∑
n=0

an.

Lemma 7.1

♡

If X has generating function G(s), then
1. G′(1) = E(X);
2. G(k)(1) = E[X(X − 1) · · · (X − k + 1)].

Proof. Note that
d

ds
E(sX) = E(XsX−1),

d

ds
G(k)(s) = E[X(X − 1) · · · (X − k + 1)sX−k].

We know the radius of convergence R ⩾ 1 and thus one can apply Abel’s Theorem to s ↑ 1.

Example 7.17 We now have
1. E(X) = G′

X(1);
2. E(X2) = E(X(X − 1)) + E(X) = G′′(1) +G′(1);
3.

var(X) = E(X2)− E2(X) = E(X(X − 1)) + E(X)− E2(X)

= G′′(1) +G′(1)− (G′(1))2.

Example 7.18 Consider the coin flip satisfying Bernoulli(p). Palyer A wins if the m-th head occurs before the
n-th tail. Try to compute P (A wins)?

Solution. We use Pmn to denote the probability of event “the m-th head occurs before the n-th tail”. It is
elementary, by conditioning on the outcome of the first toss, that the probability Pmn, that A wins, satisfies

Pmn = p · Pm−1,n + q · Pm,n−1

Pm0 = 0

P0n = 1

Consider the generating function G(x, y) =
∑
m⩾0
n⩾0

Pmnx
myn:

G(x, y) =
∑
m⩾1
n⩾0

p · Pm−1,nx
myn +

∑
m⩾0
n⩾1

q · Pm,n−1x
myn

+
∑
n⩾0

P0ny
n +

∑
m⩾0

Pm0x
m

=
∑
m⩾1
n⩾0

px · Pm−1,nx
m−1yn +

∑
m=0
n⩾0

P0ny
n

+
∑
m⩾0
n⩾1

qy · Pm,n−1x
myn−1 +

∑
m⩾0
n=0

Pm0x
m

Thus

G(x, y) = (px+ qy)G(x, y) +
1

1− y
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7.2 Generating functions

G(x, y) =
1

(1− y)(1− px− qy)

from which one may derive the required information by expanding in powers of x and y and finding the
coefficient of xmyn.

Definition 7.4

♣The moment generating fucntion of X is given by MX(t) := E(etX) = GX(et).

If t < R, then

MX(t) =
∞∑
n=0

tn

n!
E(Xn); E(Xn) =

1

n!
M

(n)
X (0).

Example 7.19 For X ∼ Poisson(λ), one has

MX(t) = GX(et) = eλ(e
t−1).

Example 7.20 For X ∼ N (0, 1), one has
MX(t) = e

1
2
t2 .

For y ∼ N (µ, σ2), one has
MY (t) = E(et(σx+µ)) = eµte

1
2
σ2t2 .

Theorem 7.2 (Random sum formula)

♡

For a series of i.i.d. random variables {Xn} with generating function GX , we have the random sum

SN =

N∑
i=1

Xi for N being independent of Xi. Then the generating function of SN is GN (GX(s)).

Proof.

GSN
(s) = E[sSN ] = E[E[sSN | N ]] =

∑
n

P (N = n)E[sSN | N = n]

=
∑
n

P (N = n)E[sX1 ]n =
∑
n

P (N = n)(GX(s))n

= GN (GX(s)).

Example 7.21 Let N ∼ Poisson(λ) with Xi be i.i.d. Bernoulli(p). Set SN = X1 + · · ·+Xn. Try to compute
the distribution of SN .

Solution. Note that
GN (s) = eλ(s−1), GX(s) = ps+ 1− p

and
GSN

(s) = GN (Gλ(s)) = eλ(ps+1−p−1) = eλp(s−1),

implying SN ∼ Poisson(λp).

Definition 7.5

♣

The joint generating function for X1 and X2 is define by

GX1,X2(s1, s2) = E(sX1
1 sX2

2 ).
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7.2 Generating functions

Theorem 7.3

♡X1 and X2 are independent ⇐⇒ GX1,X2(s1, s2) = GX1(s1)GX2(s2).

Proof. =⇒. Recall that if X1 and X2 are independent, then E[f(X1)g(X2)] = E[f(X1)] ·E[(g(X2))] for any
measurable f, g. Take f(x) = sx1 and g(x) = sx2 , then GX1,X2(s1, s2) = GX1(s1)GX2(s2).

⇐=. Only for discrete cases. Note that

GX1,X2(s1, s2) =
∑
i,j

P (X1 = i,X2 = j)si1s
j
2,

GX1(s1)GX2(s2) =
∑
i

P (X1 = i)si1
∑
j

P (X2 = j)sj2.

Now we compare the coefficient of si1si2 and obtain that P (X1 = i,X2 = j) = P (X1 = i)P (X2 = j).

Example 7.22 Given independent X and Y obeying N (µ, σ2), find the joint distribution of X+Y and X−Y .

Solution. Compute the joint generating function:

E[et(X+Y )es(X−Y )] = E(e(t+s)X)E(e(t−s)Y )

= eµ(t+s)+ 1
2
σ2(t+s)2eµ(t−s)+ 1

2
σ2(t−s)2

= e2µt+σ2t2eσ
2s2 .

That is X + Y ∼ N (2µ, 2σ2) and X − Y ∼ N (0, 2σ2) and they are independent.

� Exercise 7.5 How many methods are there using 1, 2, 5, and 10 to sum up for 30?

Solution. We assign z, z2, z5, and z10 to represent 1, 2, 5, and 10 respectively, with their powers indicating
multiples of those values. This leads us to the generation function:

G(z) = (1 + z + z2 + · · · )(1 + z2 + z4 + · · · )(1 + z5 + z10 + · · · )(1 + z10 + z20 + · · · ).

The coefficient of zm in this function precisely reflects the number of ways to form the summ using combinations
of 1, 2, 5, and 10. For example, z4 can be decomposed as z1 · z1 · z1 · z1, z2 · z2, z2 · z1 · z1 and its coefficient
is 3 in G(z), that is, there are three ways in total to sum up for 4. In general,

G(z) =
1

1− z

1

1− z2
1

1− z5
1

1− z10

and what we want is the coefficient of z30:
1

30!

d30G(z)

dz30

∣∣∣∣
z=0

.

� Exercise 7.6 Show that ∑
j,k

j+k=l

(
m+ j − 1

j

)(
n+ k − 1

k

)
=

(
m+ n+ l − 1

l

)
.

Proof. First recall that

(1 + z)n =
∑
k

(
n

k

)
zk

and
1

(1 + z)n
= 1− nz +

(−n)(−n− 1)

2
z2 +

(−n)(−n− 1)(−n− 2)

3!
z3 + · · ·
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7.2 Generating functions

=
∑
k

(−1)kzk
(n+ k − 1)!

(n− 1)!k!
=
∑
k

(−1)k
(
n+ k − 1

k

)
zk.

Note that (−1)l×LHS is exactly the coefficient of zl in
1

(1 + z)m
1

(1 + z)n
and (−1)l×RHS is exactly the

coefficient of zl in
1

(1 + z)m+n
.

� Exercise 7.7 Let U : Ω → [0, 1] be a random variable and U(ω) := (0.ξ1(ω1)ξ2(ω2) · · · ξn(ωn) · · · )2 be the
binary expression (that is each ξi only takes value in 0 or 1). Show that ξi ∼ i.i.d.Bernoulli(1/2) ⇐⇒ U ∼
Unif[0, 1].

Proof. Note that

X = (0.ξ1ξ2 · · · )2 =
∑
i⩾1

ξi
2i

and

E(etX) = E(et
∑

k⩾1
ξi
2i ) =

∏
i⩾1

E(e
t

2i
ξi) =

∏
i⩾1

(
1

2
+

1

2
e

t

2i

)
Now we continue with

n∏
i=1

(
1

2
+

1

2
e

t

2i

)
=

1

2n
1

1− e
t
2n

n∏
i=1

(
1 + e

t

2i

)(
1− e

t
2n

)
=

1

2n
1− et

1− et/2n
n→∞−→ −1− et

t
.

This is exactly the moment generating function for U ∼ Unif[0, 1]:

E(etU ) =

∫ 1

0
etudu = −1− et

t
.

� Exercise 7.8 A coin is tossed repeatedly, heads appearing with probability p on each toss.
(a) Let X be the number of tosses until the first occasion by which three heads have appeared successively.

Write down a difference equation for f(k) = P(X = k) and solve it. Now write down an equation for
E(X) using conditional expectation. (Try the same thing for the first occurrence of HTH).

(b) Let N be the number of heads in n tosses of the coin. Write down GN (s). Hence find the probability
that:

(1) N is divisible by 2,
(2) N is divisible by 3.

Solution. (a) The initial sequences T,HT,HHT,HHH induce a partition of the sample space. By con-
ditioning on this initial sequence, we obtain f(k) = qf(k − 1) + pqf(k − 2) + p2qf(k − 3) for
k > 3, where p + q = 1. Also f(1) = f(2) = 0, f(3) = p3. In principle, this difference equa-
tion may be solved in the usual way (see Appendix I). An alternative is to use generating functions.
Set G(s) =

∑∞
k=1 s

kf(k), multiply throughout the difference equation by sk and sum, to find that
G(s) = p3s3/

{
1− qs− pqs2 − p2qs3

}
. To find the coefficient of sk, factorize the denominator, expand

in partial fractions, and use the binomial series.
Another equation for f(k) is obtained by observing that X = k if and only if X > k− 4 and the last four
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7.2 Generating functions

tosses were THHH. Hence

f(k) = qp3

(
1−

k−4∑
i=1

f(i)

)
, k > 3.

Applying the first argument to the mean, we find that µ = E(X) satisfies µ = q(1 + µ) + pq(2+

µ) + p2q(3 + µ) + 3p3 and hence µ =
(
1 + p+ p2

)
/p3.

As for HTH, consider the event that HTH does not occur in n tosses, and in addition the next three tosses
give HTH. The number Y until the first occurrence of HTH satisfies

P(Y > n)p2q = P(Y = n+ 1)pq + P(Y = n+ 3), n ≥ 2.

Sum over n to obtain E(Y ) = (pq + 1)/
(
p2q
)
.

(b) GN (s) = (q + ps)n, in the obvious notation.
(1) P(2 divides N) = 1

2 {GN (1) +GN (−1)}, since only the coefficients of the even powers of s

contribute to this probability.
(2) Let ω be a complex cube root of unity. Then the coefficient of P(X = k) in 1

3 {GN (1) +GN (ω)+

GN

(
ω2
)}

is
1

3

{
1 + ω3 + ω6

}
= 1, if k = 3r

1

3

{
1 + ω + ω2

}
= 0, if k = 3r + 1

1

3

{
1 + ω2 + ω4

}
= 0, if k = 3r + 2

for integers r. Hence
1

3

{
GN (1) +GN (ω) +GN

(
ω2
)}

=
∑⌊ 1

3
n⌋

r=0 P(N = 3r), the probability
that N is a multiple of 3. Generalize this conclusion.

Definition 7.6

♣

Let {Xn}n⩾1 and Y be random variables, then we say Xn converges in distribution to Y , denoted by
Xn

D−→ Y , if lim
n→∞

P (Xn ⩽ x) = P (Y ⩽ x) = FY (x) for all x such that FY is continuous at x.

Theorem 7.4

♡If MXn(t) → MY (t) for all t ∈ (−δ, δ), then Xn
D−→ Y .

Theorem 7.5 (Chernoff bound)

♡

Let Xi be i.i.d. Bernoulli(p) and define the partial sum X =

N∑
i=1

Xi. Then

P [X ⩾ (1 + δ)np] ⩽

(
eδ

(1 + δ)1+δ

)np

.

Theorem 7.6 (Hoeffding inequality)

♡

Let Xi be i.i.d. with Xi ∈ [ai, bi] and µ =

n∑
i=1

E(Xi). Then

P (|
n∑

i=1

Xi − µ| ⩾ t) ⩽ C · exp
{
− 2t2∑n

i=1(bi − ai)2

}
.
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7.3 Galton-Walter process

Lemma 7.2

♡

Let X be a random variable with E(X) = 0, X ∈ [a, b]. Then

E(etX) ⩽ e
1
8
t2(b−a)2 .

7.3 Galton-Walter process

Suppose that a population evolves in generations, and let Zn be the number of members of the nth
generation. Each member of the nth generation gives birth to a family, possibly empty, of members of the
(n + 1)th generation; the size of this family is a random variable. Furthermore, suppose that Z0 = 1 and
the number of children for each individual is i.i.d. and each individual has generating function G. Let
Gn(s) = E(sZn).

Lemma 7.3

♡

Gn(s) = Gn−1(G(s)) = G(G(· · ·G︸ ︷︷ ︸
n times

(s))).

Proof. Note that Zn = X1 + X2 + · · · + XZn−1 , where Xi is the number of members of the nth generation
which stem from the ith member of the n− 1th generation. These variables are independent and are identically
distributed with the same distribution. By random sum formula,

Gn(s) = Gn−1(GX1(s)) = Gn−1(G1(s)) = Gn−1(G(s)).

In practice, we can evaluate moments of Zn to moments of Z1:

Lemma 7.4

♡

Let µ = E(Z1) and σ2 = var(Z1). Then E(Zn) = µn and var(Zn) =


nσ2, µ = 1,

σ2(µn − 1)µn−1

µ− 1
, µ ̸= 1.

Proof. Differentiate Gn(s) = G(Gn−1(s)) and set s = 1:

G′
n(1) = G′(Gn−1(1))G

′
n−1(1)

obtaining E(Zn) = µE(Zn−1) and hence E(Zn) = µn.
Differentiate Gn(s) = G(Gn−1(s)) twice and set s = 1:

G′′
n(1) = G′′(1)G′

n−1(1)
2 +G′(1)G′′

n−1(1)

Note that

G′′(1) = E[Z1(Z1 − 1)] = E(Z2
1 )− E(Z1)

= var(Z1) + (E(Z1))
2 − E(Z1)

= σ2 + µ2 − µ

and thus
G′′

n(1) = G′′(1)µ2(n−1) + µG′′
n−1(1).

Solve the recurssion to get the desired.
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Example 7.23(Geometric branching) Assume P (Z1 = k) = pkq where q = 1 − p and G(s) = E(sZ1) =

q

1− ps
. Show that Gn(s) =


n− (n− 1)s

n+ 1− ns
, p = q =

1

2
,

q(pn − qn − ps(pn−1 − qn−1))

pn+1 − qn+1 − ps(pn − qn)
, p ̸= q.

Extinction and non-extinction Note that

P (Zn = 0) = Gn(0) =


n

n+ 1
, p = q =

1

2

q(pn − qn)

pn+1 − qn+1
, p ̸= q.

As n ↑ +∞, one has {Z1 = 0} ↑
∞⋃
n=1

{Zn = 0} = {extinction}. Finally,

P (extinction) =


1, p ⩽

1

2
,

q

p
, p >

1

2
.

Also note that E(Z1) =
p

q
and thus the final conclusion is an extinction happens in probability 1 if E(Z1) ⩽ 1

whereas there is a positive probability of infinite growth given E(Z1) > 1.

Theorem 7.7 (General case)

♡

If µ = E(Z1) < 1, then P (extinction) = 1;
If µ = E(Z1) > 1, then P (extinction) < 1;
If µ = E(Z1) = 1 and σ2 = var(Z1) > 0, then P (extinction) = 1.

Moreover, if we set η = P (extinction), then η is the smallest non-negative solution to s = G(s).

Proof. Let ηn = P (Zn = 0), then ηn = Gn(0) = G(Gn−1(0)) = G(ηn−1). Take ηn → η, we have η = G(η).
Now I claim that:

Proposition 7.1

♠If φ ⩾ 0 is a solution to φ = G(φ), then η ⩽ φ.

Proof of the proposition. Indeed, G(s) = E(sZ1) is increasing in [0,+∞) with

η1 = G(0) ⩽ G(φ) = φ, η2 = G(η1) ⩽ G(φ) = φ, · · ·

and thus ηn = G(ηn−1) ⩽ G(φ) = φ. Sending n → ∞, we get the desired.

G(s) is increasing in [0,+∞) such that G′(1) = µ and G′′(s) = E(Z1(Z1− 1)sZ1−2) ⩾ 0 since Z1 takes
value in N (that is G(s) is convex).

A glance at Figure 7.1 (and a more analytical verification) tells us that these intersections are coincident if
µ = G′(1) < 1. On the other hand, if µ > 1 then these two intersections are not coincident. In the special case
when µ = 1 we need to distinguish between the non-random case in which σ2 = 0, G(s) = s, and η = 0, and
the random case in which σ2 > 0, G(s) > s for 0 ⩽ s < 1, and η = 1.
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s

y
y = G(s)

η

η

1

1

y = s

Figure 7.1: µ > 1

7.4 Characteristic functions

Definition 7.7

♣

The characteristic function of X is defined by

ϕ(t) = E(eitX) =

∫
eitxf(x)dx = E(cos tX) + iE(sin tX).

Example 7.24 For X ∼ Cauchy(1), its characteristic function is∫ +∞

−∞
eitx

1

π(1 + x2)
dx =

∫ +∞

−∞

cos tx

π(1 + x2)
dx

To start the computation, we define a contour Γ as a semicircle with diameter [−R,R] on the real axis. Next,

we define the function f(z) =
eitz

π(z2 + 1)
=

eitz

π(z + i)(z − i)
. The pole of f(z) lies exactly at i. At z = i:

g(z) = (z − i)f(z) =
eitz

π(z + i)

is analytic so the pole is simple and

Res(f, i) = g(i) =
e−t

2πi
.

By Residue Theorem, ∫
Γ
f(z)dz = 2πiRes(f, i) = e−t.

Send R → +∞, noting that∫
CR+

f(z)dz =

∣∣∣∣∣
∫
CR+

1

π

eitz

1 + z2
dz

∣∣∣∣∣ ⩽ 1

π

1

R2 − 1
πR → 0.

That is the arc of the semicircle has integration 0 and finally∫
R

eitx

1 + x2
1

π
dx = e−|t|, ∀t ∈ R.
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ReO

Im

R−R

i

Figure 7.2: The contour

Theorem 7.8

♡

The characteristic ϕ satisfies:
1. ϕ(0) = 1, |ϕ(t)| ⩽ 1 for any t ∈ R;
2. ϕ is uniformly continuous;
3. ϕ is positive semi-definite: for any t1, · · · , tn ∈ R, z1, · · · , zn ∈ C,∑

i,j

ϕ(ti − tj)zizj ⩾ 0.

Before proving the theorem, we first introduce some consequences in real analysis:

Lemma 7.5 (Fatou)

♡

If fn ⩾ 0, then

1.
∫

lim inf
n→∞

fndµ ⩽ lim inf
n→∞

∫
fndµ;

2. If sup fn ⩽ f , and
∫

fdµ < +∞, then∫
lim sup
n→∞

fndµ ⩾ lim sup
n→∞

∫
fndµ.

Remark In a probabilitic way: If Xn ⩾ 0, then

E(lim infXn) ⩽ lim inf E(Xn).

Proof. Note that lim inf fn = supm⩾1 infn⩾m fn, then gm := infn⩾m fn ↑ lim inf fn. By M.C.T.,∫
lim gmdµ =

∫
sup
m⩾1

gm = lim
m⩾1

gmdµ.

On the other hand, ∀n ⩾ m, ∫
gmdµ ⩽

∫
fndµ

Taking inf with respect to n on both sides, we obtain∫
gmdµ ⩽ inf

n⩾m

∫
fndµ.

Send m → +∞, getting ∫
lim inf fndµ = lim

∫
gmdµ ⩽ lim inf

n→∞

∫
fndµ

Remark
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7.4 Characteristic functions

1. The equality may not be attained, i.e., there is {fn} such that
∫

lim inf fn < lim inf

∫
fn: Let fn(x) =

1[n,n+1](x), then lim inf fn = 0.
2. If {fn} are not non-negative, Fatou’s Lemma may fail: Let fn(x) = −1[n,n+1](x).

Theorem 7.9 (Dominated Convergence Theorem(D.C.T))

♡

Let (Ω,F , µ) be a measure space. {fn}, f are measurable functions such that
1. fn → f a.e.;

2. there is an integration function g such that |fn| ⩽ g,∀n ⩾ 1, and
∫

gdµ < +∞,

then f is integrable with lim
n→∞

fndµ =

∫
fdµ.

Proof. Since fn + g ⩾ 0, by Fatou,∫
lim inf(fn + g) ⩽ lim inf

[∫
fn + g

]
= lim inf

∫
fn +

∫
g,

that is, ∫
f ⩽ lim inf

∫
fn.

Similarly, g − fn ⩾ 0 and by Fatou,∫
lim inf(g − fn) ⩽ lim inf

[∫
g − fn

]
=

∫
g − lim sup

∫
fn

that is
lim sup

∫
fn ⩽

∫
f.

In conclusion
lim sup

∫
fn ⩽

∫
f ⩽ lim inf

∫
fn

and this reduces to lim

∫
fn =

∫
f .

Theorem 7.10 (Bounded Convergence)

♡

For µ(Ω) < +∞, if
1. fn → f a.e.;

2. there is K < +∞ such that |fn| ⩽ K a.e., then
∫

fn =

∫
f .

Proof. Put g = K and apply D.C.T..

Proof of Theorem 7.8. First prove 3. Note that∑
i,j

E(ei(ti−tj)X)zizj =
∑
i,j

E[eitiXe−itjXzizj ]

= E

[∑
i,j

eitiXzi · eitjXzj

]

= E

(∑
i

∣∣∣∣eitiXzi

∣∣∣∣2) ⩾ 0.

Continue with 2. Note that

|ϕ(t+ h)− ϕ(t)| = |E(ei(t+h)X)− E(eitX)| = |E(eitX(eihX − 1))| ⩽ E(|eihX − 1|)
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By Bounded Convergence, lim
h→0

E(|eihX − 1|) = 0.
As for 1, one has

|ϕ(t)| =
∣∣∣∣ ∫ ∞

−∞
eitxf(x)dx

∣∣∣∣ ⩽ ∫ ∞

−∞
|eitx|f(x)dx =

∫ ∞

−∞
f(x)dx = ϕ(0) = 1.

Theorem 7.11 (Bachner)

♡

If ϕ satisfies statement 1,2 and 3 in Theorem 7.8, then there is a unique probability measure P such that

ϕ(t) =

∫
eitxdP.

Theorem 7.12

♡

1. If ϕ(k)(0) exists, then
ϕk(0) = ikE(Xk),

from which we see

E(X) =
ϕ′(0)

i
, Var(X) = −ϕ′′(0) + (ϕ′(0))2.

2. If ϕ(k)(0) exists, then

E|Xk| < ∞, if k is even,

E|Xk−1| < ∞, if k is odd.
3. If E(|X|k) < +∞, then

ϕ(t) =
k∑

j=0

(it)j

j!
E(Xj) + o(tk).

Theorem 7.13

♡If X and Y are independent, then ϕX+Y (t) = E[eit(X+Y )] = ϕX(t)ϕY (t).

Lemma 7.6

♡If Y = aX + b for some a, b ∈ R, then ϕY (t) = eitbϕX(at).

Definition 7.8

♣

The joint characteristic function of X and Y is given by

ϕ(s, t) = E[eisX+itY ].

Theorem 7.14

♡X and Y are independent ⇐⇒ ϕ(s, t) = ϕX(s)ϕY (t).

Theorem 7.15 (Analytic extension of M(t))

Let M(t) = E(etX), t ∈ R, and ϕ(t) = E(eitX), t ∈ C, be the moment generating function and
characteristic function, respectively, of a random variable X . For any a > 0, the following three
statements are equivalent:

1. |M(t)| < +∞ for |t| < a;
2. ϕ(z) = E(etX) is analytic in the strip |Re(z)| < a;

95



7.5 Common characteristic functions

♡

3. The moments mk = E(Xk), k ∈ N exists and lim
k→∞

(mk

k!

) 1
k
⩽

1

a
.

If any of these conditions hold for a > 0, the power series expansion for M(t) may be extended
analytically to the strip | Im(t)| < a, resulting in a function M with the property that ϕ(t) = M(it).

7.5 Common characteristic functions

Example 7.25(Delta Measure) We have fX(a) = 1 and ϕ(t) = E(eitX) = eiat.
Example 7.26(Bernoulli(p)) ϕ(t) = EeitX = peit + q.
Example 7.27(Binomial(n, p)) Note the decompositon X = Y1 + · · · + Yn with Yi ∼ i.i.d. Bernoulli(p).
Then

E(eitX) = (E(eitY1))n = (peit + q)n.

Example 7.28(Poisson(λ)) Recall that f(k) =
λk

k!
e−λ, then

ϕ(t) = E(eitX) =
∑
k

eitk
λk

k!
e−λ = eλe

it−λ.

Example 7.29(Exponential(λ)) Recall that f(x) = λe−λx1[0,+∞)(x). Then

ϕ(t) = E(eitX) =

∫ +∞

0
eitxλe−λxdx =

λ

λ− it
.

Example 7.30(Normal) ϕ(t) = E(eitX) =

∫
R
eitxe−

x2

2 dx whereas M(t) = E(etX) = e
1
2
t2 . By analytic

extension, ϕ(t) = M(it) = e−
1
2
t2 . If Y ∼ N (µ, σ2), then Y = µ+ σX for some X ∼ N (0, 1) and

ϕY (t) = eiµtE(eiσtX) = eiµt−
1
2
σ2t2 .

�

Note Indeed, for X ∼ N (0, 1), note that

ϕ(t) =
1√
2π

∫ ∞

−∞
eitxe−

x2

2 dx =
1√
2π

∫ ∞

−∞

∞∑
n=0

(itx)n

n!
e−

x2

2 dx =

∞∑
n=0

(it)n

n!

[
1√
2π

∫ ∞

−∞
xne−

x2

2 dx

]

Recall that E(Xn) =

0, n = 2m− 1,

(2m− 1)!! =
(2m)!

2m ·m!
, n = 2m.

Thus

ϕ(t) =
∞∑

m=0

(it)2m

(2m)!
· (2m)!

2m ·m!
=

∞∑
m=0

(
− t2

2

)m 1

m!
= e−

t2

2 .

Example 7.31 (X1, · · · , Xn) ∼ N (0, V ) if and only if Cov(Xi, Xj) = Vij . Their joint density funciton is

f(x1, · · · , xn) =
1√

(2π)n detV
e−

1
2
xTV −1x.

For t1, · · · , tn ∈ R, the joint characteristic function is

E(ei(t1X1+···+tnXn)) =
1√

(2π)n detV

∫
ei(t1x1+···+tnxn)e−

1
2
xTV −1xdx.

Consider the diagonalization of V −1: there is orthogonal matrix B and diagonal matrix Λ = diag(λ1, · · · , λn)

such that BTV −1B = Λ. Let x = By, then

xTV −1x = yTBTV −1By = yTΛy =
∑

λiy
2
i ,

ϕ(t) = e−
1
2
tTV t.
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7.6 Inversion and continuity

Alternatively, let Y = (Y1, · · · , Yn) = AX , then Y ∼ N (0, λ) with Y1, · · · , Yn being independent normal.
Thus

t1X1 + · · ·+ tnXn = tTX = tTATY

is a linear transformation of independent normal and is therefore normal. Therefore,

E(t1X1 + · · ·+ tnXn) = 0, var(t1X1 + · · ·+ tnXn) =
∑
i,j

titj cov(Xi, Xj) =
∑
i,j

tiVijtj = tTV t.

Finally,
E[ei(t1X1+···+tnXn)] = e−

1
2
var(t1X1+···+tnXn) = e−

1
2
tTV T .

Example 7.32(Geometric) The characteristics function of geometric distribution is

ϕ(t) = E
(
eitX

)
=

∞∑
x=0

eitxP (X = x)

=
∞∑
x=1

eitxqx−1p = pq−1

( ∞∑
x=0

(qeit)x − 1

)
= peit

(
1− qeit

)−1

by noting that
∞∑
x=0

qx = (1− q)−1.

Example 7.33(Pascal) The Pascal distributed X has density function

f(k) =

(
k − 1

r − 1

)
pr(1− p)k−r, k = r, r + 1, · · · .

One can decompose X into r i.i.d. geometric(p) random variables, i.e., X = X1 +X2 + · · ·+Xr. Then

ϕX(t) =
r∏

j=1

ϕXj (t) =

(
peit

1− qeit

)r

.

7.6 Inversion and continuity

Recall ϕ(x) =
1

2π

∫ ∞

−∞
eitxf(x)dx. Then by Fourier inversion theorem, the density function is

f(x) =
1

2π

∫ ∞

−∞
e−itxϕ(t)dt (7.1)

at every point x such that f is differentiable.
Example 7.34(Revisit to Cauchy distribution) Knowing ϕ(t) = e−|t| and apply (7.1), we get

f(x) =
1

2π

∫ ∞

−∞
e−ixt · e−|t|dt

=
1

2π

∫ ∞

0
e−(1+ix)tdt+

1

2π

∫ 0

−∞
e(1−ix)tdt

=
1

2π

(
1

1 + ix
+

1

1− ix

)
=

1

π(1 + x2)
.

Thus X is Cauchy distributed.
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7.6 Inversion and continuity

Theorem 7.16 (Inversion)

♡

Let X have the distribution F and characteristic fucntion ϕ. Let

F (x) =
1

2
(F (x) + lim

y↑x
F (y)).

Then for any a < b,

F (b)− F (a) = lim
N→+∞

∫ N

−N

e−iat − e−ibt

2πit
ϕ(t)dt.

Corollary 7.3

♡If ϕX(t) = ϕY (t), then FX = FY .

Proof. Apply Inversion Theorem with a = −∞: FX(b) = F Y (b). For any x ∈ R, we use the right continuity
of FX and FY . Take bn ↓ x such that FX , FY are continuous at bn. Then

FX(bn) = FX(bn) = Fy(bn) = F Y (bn),

implying that FX(x) = FY (x).

Theorem 7.17 (Uniqueness)

♡Distribution function is uniquely determined by the characteristic function.

Example 7.35 We now have a more elegant way to demonstrate the sum of two independent Gaussian r.v.s is
still Gaussian: suppose that X ∼ N (µ1, σ

2
1), Y ∼ N (µ2, σ

2
2) are independent, their characteristic functions

are
ϕX(t) = eitµ1− 1

2
σ2
1t

2
, ϕY (t) = eitµ2− 1

2
σ2
2t

2
.

Use independence,
ϕX+Y (t) = ϕX(t) · ϕY (t) = eit(µ1+µ2)− 1

2
(σ2

1+σ2
2)t

2

From Uniqueness Theorem, one deduces that X + Y ∼ N (µ1 + µ2, σ
2
1 + σ2

2).
� Exercise 7.9 Let X be a random variable with density function f(x) and characteristic function ϕ(t). Show

that f(x) is even if and only if ϕ(t) is real and even.

Proof. ⇐=. We now have ϕX(t) = ϕX(−t) = ϕ−X(t), i.e., X and −X have the same characteristic function.
Thus they have the same distribution and fX(x) = f−X(x) = fX(−x).

=⇒. We now deduce that X and −X have the same distribution (and the same characteristic function)
from f(x) = f(−x). Furthermore, note that ϕ−X(t) = ϕX(−t) = ϕX(t), implying that ϕ(t) is indeed real
and even.

Definition 7.9

♣

Let {Xn}n⩾1 and Y be random variables, then we say Xn converges in distribution to Y , denoted by
Xn

D−→ Y , if lim
n→∞

P (Xn ⩽ x) = P (Y ⩽ x) = FY (x) for all x such that FY is continuous at x.

Remark The continuity assumption at x is to deal with discrete random variables: Let Xn = xn ↓ x := X .
Then FXn(x) = 0 but FX(x) = 1.
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Theorem 7.18 (Continuity)

♡

Suppose a sequence of r.v.s {Xn}n⩾1 have corresponding characteristic funnction {ϕn}n⩾1.
1. If Xn

D−→ X , then ϕn(t) → ϕ(t) for all t;
2. Conversely, if ϕn(t) → ϕ(t) for all t, and ϕ(t) is continuous at t = 0, then ϕ is the characteristic

function of some random variable X such that Xn
D−→ X .

Theorem 7.19 (Weak law of large numbers)

♡

Let X1, X2, · · · , Xn be a sequence of independent r.v.s such that E(Xi) = µ, i = 1, 2, · · · , n. Then

Sn = X1 + · · ·+Xn satisfies
1

n
Sn

D−→ µ.

Proof. Let ϕn be the characteristic function of
1

n
Sn.

ϕn(t) = E(eit
1
n
(X1+···+Xn)) = [E(ei

t
n
X1)]n

E(X1)<∞
=

(
1 + i

t

n
E(X1) +O

(
t

n

))n

and
lim
n→∞

ϕn(t) = lim
n→∞

(
1 + i

t

n
µ+O

(
t

n

))n

= eitµ.

By continuity theorem,
1

n
Sn

D−→ µ.

�

Note The “independent” restriction indeed can be weakened to “uncorrelated”: Let X1, X2, · · · , Xn be
a sequence of uncorrelated r.v.s with the same distribution such that E(XiXj) = E(Xi)E(Xj), E(X2

i ) <

∞, E(Xi) = µ, i, j = 1, 2, · · · , n. Then Sn = X1 + · · ·+Xn satisfies

Xn :=
1

n
Sn

P−→ µ.

In fact,
1

n

n∑
i=1

Xi
L2

−→ µ:

E

((
1

n

n∑
i=1

Xi − µ

)2
)

=
1

n2

n∑
i,j=1

E[(Xi − µ)(Xj − µ)] =
1

n2

n∑
i=1

var(Xi) ⩽
c

n

a.s. as n → ∞.

Theorem 7.20 (Strong law of large numbers)

♡
Let X1, · · · , Xn : Ω → R be i.i.d. with mean µ and E(|X1|) < ∞, then

1

n
Sn → µ a.s..

Example 7.36(Monte Carlo simulations: Numerically stimulate π) We generate Ui, Vi(i = 1, 2, · · · , r)
which are independent and uniformly [−1, 1] distributed. We stipulate that

Xi =

1, U2
i + V 2

i ⩽ 1

0, otherwise

Then Xi is Bernoulli and E(Xi) = P (Xi = 1) =
π

4
. By law of large numbers,

Xn :=
1

n

n∑
i=1

Xi
P−→ E(Xi) =

π

4
.
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Definition 7.10

♣

Given r.v.s. {Xn}, a confident interval for the theoretical mean µ with confident level β% is an interval
of length 2ε such that

P [µ ∈ (Xn − ε,Xε + ε)] ⩽ β%.

Example 7.37 What is the smallest n such that one obtains a four-digit accuracy of π with confident level 99%?

Solution. Note that the stimulation in Example 7.36 is
π

4
and thus the error ε here is

1

4000
and the confident

level is β = 99%. We look for n such that

P

(∣∣∣∣Xn − π

4

∣∣∣∣ > 1

4000

)
⩽ 1% (♣)

Note that Xi is Bernoulli(p) and Var(Xi) = p(1− p) ⩽
1

4
. From Chebychev,

P

(∣∣∣∣Xn − π

4

∣∣∣∣ > 1

4000

)
⩽ 40002 ·Var(Xn) = 40002

1

n2

n∑
i=1

Var(Xi) ⩽
40002

n
· 1
4
.

Thus if n ⩾ 400× 106, (♣) automatically holds.

Example 7.38(Revisit to coupon collector) Ω = {1, 2, · · · , n} and Xn be i.i.d. uniformly {1, 2, · · · , n}. We
use Ti = inf{n : |{X1, X2, · · · , Xn}| = i}, the 1st time to collect i different coupons. We have showed that
E(Tn)

n lnn
→ 1. Now I claim that

Tn

lnn

P−→ 1.

Indeed, note that Tn =

n∑
i=1

(Ti − Ti−1) with (Ti − Ti−1) ∼ Geo

(
1 − i− 1

n

)
. We already showed that

E(Tn) = n lnn+ o(n) and

Var(Tn) =
n∑

i=1

(Ti − Ti−1) =
n∑

i=1

i−1
n

(1− i−1
n )2

⩽
n∑

i=1

1

(1− i−1
n )2

= n2
n∑

m=1

1

m2
⩽ cn2.

In particular,
Var(Tn)

E(Tn)2
→ 0. By extension of WLLN,

Tn − E(Tn)

n lnn

P−→ 0

and thus
Tn

n lnn

P−→ 1.
�

Note Let Tn =

n∑
i=1

Xi for every sequence {an} such that
Var(Tn)

a2n
→ 0 as n → ∞. We have

Tn − E(Tn)

an

P−→

0.
� Exercise 7.10 Use characteristic function to prove the Central Limit Theorem:

Theorem 7.21

♡

Let {Xi} be i.i.d. r.v.s with E(Xi) = 0 and E(X2
i ) = 1. Assume E(X3

i ) < +∞, then

1√
n

n∑
i=1

Xi
D−→ N (0, 1).
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Proof. Compute the characteristic function:

ϕn(t) = E

[
e
i t√

n

∑n
i=1 Xi

]
=

(
E

[
e
i t√

n
X1

])n

=

[
1 + i

t√
n
E(X1)−

1

2

t2

n
E(X2

1 ) +O

(
t3

n3/2

)]n
n→∞−→ e−

t2

2 .

101



Chapter 8 Convergence or random variables

8.1 Different modes of convergence

Definition 8.1

♣

Let {Xn}n⩾1 be random variables in (Ω,F , µ( or P )). Then
1. We say Xn converges to X almost surely (a.s.) if P ({ω : lim

n→∞
Xn(ω) = X(ω)}) = 1;

2. We say Xn converges to X in probability, denoted as Xn
P−→ X if for any ε > 0, P (|Xn −X| >

ε) → 0 as n → ∞;
3. We say Xn converges to X in the pth moment if E(|Xn|p) < +∞ for any n ∈ N and E(|Xn −

X|p) → 0 as n → ∞;
4. We say Xn converges to X almost uniformly if for all ε > 0, there is E ∈ F : µ(E) < ε such that

fn ⇒ f on Ec;
5. We say Xn converges in distribution to Y , denoted by Xn

D−→ Y , if lim
n→∞

P (Xn ⩽ x) = P (Y ⩽

x) = FY (x) for all x such that FY is continuous at x.

Remark
1. Xn → X in pth moment implies Xn → X in probability: for any ε > 0, by Chebychev

P (|Xn −X| > ε) ⩽
E(|Xn −X|p)

εp
→ 0.

2. Xn → X a.e. implies Xn → X in probability.
3. Xn → X a.s. does not imply Xn → X in pth moment: consider fn(x) = 1[n,n+1)(x) with fn → 0 a.s.

but fn is not convergent to 0 in probability or pth moment.
4. Xn → X in pth moment does not imply Xn → X a.s.

Proposition 8.1

♠

fn → f almost uniformly if and only if for all ε > 0, lim
m→∞

µ

( ⋃
n⩾m

{|fn − f | > ε}
)

= 0.

Proof. =⇒. If fn → f a.u., then for all δ > 0, there is E with µ(E) < δ such that fn ⇒ f on Ec. Thus
for all ε > 0, there is m ∈ N such that for all n ⩾ m, one has |fn − f | < ε on Ec. For such m, note that⋃
n⩾m

{|fn − f | > ε} ⊆ E and thus

µ

( ⋃
n⩾m

{|fn − f | > ε}
)

⩽ µ(E) < δ

Send δ → 0, we have lim
m→∞

µ

( ⋃
n⩾m

{|fn − f | > ε}
)

= 0.

⇐=. Suppose that for any k ⩾ 1, we have lim
m→∞

µ

( ⋃
n⩾m

{
|fn − f | > 1

k

}
= 0

)
. For any δ > 0, we can
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find m = m(δ, k) such that µ
( ⋃

n⩾m

{
|fn − f | > 1

k

})
⩽

δ

2k
. Define

E =
⋃
k⩾1

⋃
m⩾m(δ,k)

({
|fn − f | > 1

k

})
Then µ(E) < δ and fn ⇒ f on Ec.

Corollary 8.1

♡

1. fn → f a.u. =⇒ fn → f in measure;
2. If µ(Ω) < +∞, then fn → f a.e. =⇒ fn → f in probability (or in measure).

Theorem 8.1

♡Xn → X in probability implies Xn → X in distribution.

Proof. Note that for all a ∈ R, ε > 0,

{Xn ⩽ a} ⊆ {X ⩽ a+ ε} ∪ {|Xn −X| > ε}.

Thus
P (Xn ⩽ a) ⩽ P (X ⩽ a+ ε) + P (|Xn −X| > ε)

and similarly, {X ⩽ a− ε} ⊆ {Xn ⩽ a} ∪ {|Xn −X| > ε} and

P (X ⩽ a− ε) ⩽ P (Xn ⩽ a) + P (|Xn −X| > ε)

UsingXn → X in probability and sendingn → ∞, we have

lim supP (Xn ⩽ a) ⩽ P (X ⩽ a+ ε) = FX(a+ ε),

lim inf P (Xn ⩽ a) ⩾ P (X ⩽ a− ε) = FX(a− ε).

If a is continuity point of Fx, then one can send ε → 0 to conclude limP (Xn ⩽ a) = P (X ⩽ a).

However, convergence in distribution does not imply convergence in probability:
Example 8.1 Let X have probability denstiy function

P (X = −1) =
1

2
, P (X = 1) =

1

2

and set Xn = −X . Note that Xn and X have the same distribution and hence Xn
D−→ X . However, for

0 < ε < 2, one has
P (|Xn −X| ⩾ ε) = P (2|X| ⩾ ε) = 1 ↛ 0,

that is Xn does not converge to X in probability.
Conclusion

1. fn → f almost uniformly =⇒ fn → f a.e.
2. If µ(Ω) < +∞, then fn → f a.e. ⇐⇒ fn → f a.u. (Egorov).
3. fn → f in probability(measure) =⇒ fn → f in distribution.

fn → f a.e.

fn → f a.u.

fn → f in Lp

fn
P−→ f fn

D−→ fD.C.T.

Figure 8.1: Different convergence
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Example 8.2 For Xn ∼ Cauchy(n), i.e., fn(x) =
n

(1 + n2x2)π
, we have Xn

D−→ 0.

Proof. In fact, Xn
P−→ 0: ∀ε > 0,

P (|Xn| > ε) = 2

∫ ∞

ε

n

(1 + n2x2)π
dx = 2

(
1− 2

π
arctannε

)
n→∞−→ 0

Proposition 8.2

♠

Xn
P−→ X ⇐⇒ for any subsequence {Xnl

}, there is a further subsequence {Xnk
} such that

Xnk
−→ X a.u. (or a.s.).

Proof. =⇒. For any subsequence {Xnl
}, we have Xnl

P−→ X and thus ∀k ⩾ 1, P
(
|Xnl

−X| > 1

k

)
→ 0 as

nl → ∞. Choose nk(> nk−1) such that P
( ⋃

k⩾m

|Xnk
−X| > 1

k

)
⩽

1

2m−1
. For all ε > 0,

P

( ⋃
k⩾m

|Xnk
−X| > ε

)
⩽ P

( ⋃
k⩾m

|Xnk
−X| > 1

k

)
⩽

1

2m−1

m→∞−→ 0.

Then by Proposition 8.1, we obtain Xnk
→ X a.u..

⇐=. Prove by contradiction. If Xn does not converge to X in probability, there is ε0 > 0, σ0 > 0 and a
subsequence {ni} such that

lim
i→∞

P (|Xni −X| > ε0) ⩾ σ0 (♢)

But by the condition, there is {nij} such that Xnij
→ X(j → ∞) a.s., implying Xnij

converges to X in
probability, contradicting (♢).

Theorem 8.2 (Sufficient criterion for a.s. convergence)

♡

1. If for all ε > 0,
∑
n⩾1

P (|Xn −X| > ε) < +∞, then Xn → X a.s.

2. If {Xn−X} are pairwise independent for some constant X and there is εk ↓ 0, then
∑
n⩾1

P (|Xn−

X| > εk) = +∞, ∀k =⇒ Xn ↛ X a.s.

Example 8.3 {Xn} ∼ i.i.d. unif[0, 1], then Yn = min{X1, X2, · · · , Xn} → 0 a.s..

Proof. Note that
P (Yn > ε) = P (X1 > ε,X2 > ε, · · · , Xn > ε) = (1− ε)n.

That is
∑
n⩾1

P (|Yn| > ε) < +∞. By the sufficient criterion, Yn → 0 a.s..

Theorem 8.3 (Littlewood three principles)

♡

1. Measurable set is approximately the finite sum of intervals;
2. Measurable function is approximately continuous functions;
3. Convergent sequence of functions is approximately uniformly convergent.
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Now we try to demonstrate Xn → X: for all ε > 0, n ⩾ 1, let Bn(ε) = {ω : |Xn(ω) − X(ω)| ⩽ ε}.
Then

{Xn → X} = {ω ∈ Ω : ∀ε > 0,∃N such that ∀n ⩾ N, |Xn(ω)−X(ω)| ⩽ ε}

=
⋂
ε>0

⋃
N⩾1

⋂
n⩾N

Bn(ε) =
⋂
k⩾1

⋃
N⩾1

⋂
n⩾N

Bn

(
1

k

)
=
⋂
k⩾1

lim inf
n→∞

Bn

(
1

k

)

Lemma 8.1

♡

Xn → X a.s. ⇐⇒ lim
k→∞

P

(
lim inf
n→∞

Bn

(
1

k

))
= 1

⇐⇒ lim
k→∞

P

(
lim sup
n→∞

Bc
n

(
1

k

))
= 0

⇐⇒ lim
ε→0

P (lim inf
n→∞

Bc
n(ε)) = 1

Lemma 8.2 (Borel Cantelli)

♡

Assume that
∑
n∈N

P (An) < ∞; then

P (lim sup
n→∞

An) = P (An i.o.) = 0.

Assume that An, n ∈ N, are independent events. If
∑
n∈N

P (An) = ∞, then

P (An i.o.) = 1.

Proof.

P (lim supAn) = P (
⋂
m⩾1

⋃
n⩾m

An) = lim
m→+∞

P (
⋃
n⩾m

An) ⩽ lim
m→∞

∑
n⩾m

P (An)

which goes to 0 since
∑
n⩾1

P (An) < +∞.

P [(lim supAn)
c] = P

(( ⋂
m⩾1

⋃
n⩾m

An

)c)
= lim

m→∞
P (
⋂
n⩾m

Ac
n) = lim

m→∞

∏
n⩾m

[1− P (An)]

⩽ lim
m→∞

∏
n⩾m

e−P (An) = lim
m→∞

e−
∑

n⩾m P (An) = 1.

Under pairwise independence, let Sn =

n∑
i=1

1Ai . The first lemma tells us P (An i.o.) = P

(∑
i⩾1

Ai = +∞
)

.

From this, E(Sn) =

n∑
i=1

P (Ai) → +∞ as n → +∞. Note that

var(Sn) = var(

n∑
i=1

1Ai) =

n∑
i,j=1

cov(1Ai ,1Aj )

=

n∑
i=1

var(1Ai) =

n∑
i=1

[P (Ai)− P (Ai)
2]

⩽ E(Sn).
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Then

P

(
Sn ⩽

1

2
E(Sn)

)
⩽ P

(
|Sn − E(Sn)| >

1

2
E(Sn)

)
⩽

4

(E(Sn))2
var(Sn)

⩽
4

(E(Sn))2
E(Sn) =

4

En

n→∞−→ 0.

That is P
( ∞∑

i=1

1Ai < ∞
)

= 0.

Remark
1. Lemma 1 can be extended to {Ai} being pairwise independent;
2. The lemma says certain event of infinite set occurs with probability 0 or 1 (Kolmogorov’s 0-1 law).

Example 8.4(Extreme values) Let {Xi} be i.i.d. obeying exp(1), i.e., fXi(x) = e−x1[0,+∞)(x), i =

1, 2, · · · , n. Let Mn = maxi=1,2,··· ,nXi, then lim sup
Xn

lnn
= 1 a.s., lim sup

Mn

lnn
= 1 a.s.

Proof. Note that

P (Xn > γ lnn) =

∫ +∞

γ lnn
e−xdx = e−γ lnn = n−γ

Sum over n, we have ∑
n⩾1

n−γ

< +∞, γ > 1,

= +∞, γ ⩽ 1.

By Borel Cantelli, P (Xn ⩾ γ lnn i.o.) =

0, γ > 1,

1, γ ⩽ 1.
Put γ to be precisely 1, we haveP (Xn > lnn i.o.) = 1

and it follows that lim sup
Xn

lnn
⩾ 1 a.s. and lim sup

Mn

lnn
⩾ 1 a.s.

Now we continue to prove lim sup
Mn

lnn
⩽ 1 a.s. Fix ε > 0, since P (Xn > (1 + ε) lnn i.o.) = 0, there is

N(ε) < +∞ such that for any n ⩾ N(ε), Xn < (1 + ε) lnn. Therefore
maxn>N(ε)Xn

lnn
⩽ 1 + ε.

Also
maxn⩽N(ε)Xn

lnn

n→∞−→ 0

These imply that lim sup
Mn

lnn
⩽ 1 + ε a.s. Send ε → 0 to conclude.

�

Note For all ε > 0, lim inf
Mn

lnn
⩾ 1 − ε a.s.. To see this, we first split the interval [0, n] with up to n blocks

where most of them except one has length n1−ε. For block i,

Pi := P (Mi > (1− ε) ln i) = P (X1 > (1− ε) ln i)i

=

(
1− 1

i1−ε

)i

⩽ 2

(
1

e

)iε

Since
∑
n⩾1

Pn ⩽ 2
∑
n⩾1

(
1

e

)nε

< +∞, by Borel Cantelli, P (Mn > (1 − ε) lnn i.o.) = 0 and that is

lim inf
Mn

lnn
⩾ 1− ε with probability 1. Up to now, we have proved that lim

Mn

lnn
= 1 a.s..
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Example 8.5 Let {Xn} be i.i.d. coin flip with P (H) = P (T ) =
1

2
. Let Ln denote the longest run of heads

at time n, representing the maximum number of consecutive heads observed up to that point. Show that
Ln

log2 n
→ 1 a.s..

Proof. We set lj := run of head at time j. Then

P (lj = k) =
1

2k+1
, Ln = max

j⩽n
lj

For any ε > 0,

P [ln > (1 + ε) log2 n] =
∑

k⩾(1+ε) log2 n

1

2k+1
⩽ 2−(1+ε) log2 n = n−(1+ε).

Since
∑

n P [ln > (1 + ε) log2 n] < ∞, one concludes that P [ln > (1 + ε) log2 n i.o.] = 0, i.e., there
is N(ε) such that for any n > N(ε), ln ⩽ (1 + ε) log2 n. Similarly in Example 8.4, one concludes that

lim sup
Ln

log2 n
⩽ 1 a.s..

Conversely, we show that for all ε > 0, lim inf
Ln

log2 n
⩾ 1 − ε a.s. We still apply the “block” technique:

seperating the interval [0, n] into many blocks, with most of them have length (1− ε) log2 n except one. Then

P (all heads in each block) =
1

2(1−ε) log2 n
= n−(1−ε),

P (Ln < (1− ε) log2 n) ⩽ P (all blocks fail) =
(
1− 1

n1−ε

) n
(1−ε) log2 n

=

(
1− 1

n1−ε

)n1−ε nε

(1−ε)log2n

∼ e
−nε

(1−ε)log2n

Hence we get
∑

n P (Ln < (1 − ε) log2 n) < ∞ and by B.C, P (Ln < (1 + ε) log2 n i.o.) = 0, i.e., there is

N(ε) such that for all n > N(ε),
Ln

log2n
⩾ 1− ε.

� Exercise 8.1(Revisit to matching problem) n people are to pick n hats. We set

Xi =

1, if the ith person takes his own hat,

0, otherwise,
and X = X1 +X2 + · · ·+Xn.

1. Try to find E(X) and Var(X).

2. Conclude that
X − E(X)

n

P−→ 0.

Solution. Note that every Xi have the same distribution but they are not independent:

P (Xi = 1) =
1

n
, P (Xi = 0) = 1− 1

n
, i = 1, 2, · · · , n.

Thus
E(Xi) =

1

n
, Var(Xi) =

1

n

(
1− 1

n

)
, i = 1, 2, · · · , n.

Therefore,

E(X) =
n∑

i=1

E(Xi) = 1

and

Var(X) =
n∑

i=1

Var(Xi) + 2
n∑

i=1

n∑
j=i+1

Cov(Xi, Xj).
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We now try to compute Cov(Xi, Xj). By the condition, XiXj only takes value in 0, 1 and

P (XiXj = 1) = P (Xi = 1, Xj = 1) =
1

n
· 1

n− 1
implying

E(XiXj) = 0 · P (XiXj = 0) + 1 · P (XiXj = 1) =
1

n(n− 1)
.

Hence

Cov(Xi, Xj) = E(XiXj)− E(Xi)E(Xj) =
1

n(n− 1)
−
(
1

n

)2

=
1

n2(n− 1)
,

Var(X) =
n− 1

n
+ 2

(
n

2

)
1

n2(n− 1)
= 1.

Now for any ε > 0, by Chebychev,

P

(
X − E(X)

n
⩾ ε

)
⩽

1

n2ε2
−→ 0

as n → ∞.

8.2 Tail events

Definition 8.2

♣

Let {Xn}n∈N be a sequence of random variables. Define

Tn := σ(Xn+1, Xn+2, · · · ), and T :=
⋂
n∈N

Tn.

Then T is called the tail σ-algebra of the sequence {Xn}n∈N. We can think of it as containing the events
describing the limiting behaviour of the sequence.

Theorem 8.4 (Kolmogorov’s 0− 1 law)

♡

Let {Xn}n∈N be a sequence of independent random variables. Then the tail σ-algebra T of {Xn}n∈N
contains only events of probability 0 or 1.

Example 8.6(Coin flips for infinitely many times) LetA = {patterns HHH · · ·H︸ ︷︷ ︸
1000 times

occurs infinitely many times}.

Then A ∈ T and by Kolmogorov 0-1, P (A) = 0 or 1.
Example 8.7(Percolation) P (infinite open clusters) = 0 or 1.
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