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1 Questions

• 1.4 Initial and Boundary Conditions / The Vibrating String [Page 21]

Q1: Why there is no tension at the end implies ux = 0? What is the physical meaning of ux? What

does the Robin Condition mean for the vibrating string?

A1: ux can be understood as the tension of a unit mass point. Robin Condition for the vibrating

string can be understood as fixing a spring at the end of the rope.

• Q2: Can Green’s function be used to solve Wave or Diffusion Equations?

• A2:

• Q3: Will we encounter Green’s function at our exam?

2 Review1

2.1 A General View of Equations With Physical Meanings

1. ux + uy = 0 (transport)

2. ux + yuy = 0 (transport)

3. ux + uuy = 0 (shock wave)

4. uxx + uyy = 0 (Laplace’s equation)

5. utt − uxx + u3 = 0 (wave with interaction)

6. ut + uux + uxxx = 0 (dispersive wave)

7. utt + uxxxx = 0 (vibrating bar)

8. ut − iuxx = 0 (i =
√
−1) (quantum mechanics)

2.2 Well-posedness Problem

• A. Existence: There exists at least one solution.

• B. Uniqueness: There exists at most one solution. For those well-posed problems, maximum

principle is usually a good way to prove the uniqueness of the solution. If too few auxiliary conditions

are imposed, then there may be more than one solution (nonuniqueness) and the problem is called

underdetermined.

• C. Stability: The solution is stable within perturbation of the I.C. or B.C. If there are too

many auxiliary conditions, there may be no solution at all (nonexistence) and the problem is called
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overdetermined.

• Ill-posed Examples:

1) The solution for backward-in-time diffusion equation will blow up at the origin.

2) Consider Laplace’s Equation uxx + uyy = 0 in the upper half plane D = {−∞ < x < ∞, 0 <

y < ∞}. It is not a well-posed problem to specify both u and uy on the boundary of D, for the

following reason. It has the solutions

un(x, y) =
1

n
e−

√
n sinnx sinhny.

Notice that they have boundary data un(x, 0) = 0 and ∂
∂y
un(x, 0) = e−

√
n sinnx, which tends to

zero as n→ ∞. But for y ̸= 0 the solutions un(x, y) do not tend to zero as n→ ∞ because sinhny

grows faster than 1
n
e−

√
n. Thus the stability is violated.

2.3 First-order Linear PDE

• 1. aux + buy = 0 ⇒ u(x, y) = f(bx− ay)

• 2. g(x, y)ux + h(x, y)uy = 0 ⇒ u(x, y) = f(C), where C is the constant derived from dy
dx

= h(x,y)
g(x,y)

• 3. aux + buy + k(x, y)u = m(x, y)

The Coordinate Method: Change of Variables

Step 1: let α = ax+ by, β = bx− ay, substitute every x,y by α, β

Step 2: Solve u(α, β) (integration factor)

Step 3: Substitute α, β by x,y to get u(x,y)

• 4. General Form: g(x, y)ux + h(x, y)uy + k(x, y)u = m(x, y)

The Geometric Method: Characteristic Curves

Step 1: dy
dx

= h(x,y)
g(x,y)

, derive the relation between x,y, and the constant E

Step 2: du
dx

+ k(x,y)
g(x,y)

u = m(x,y)
g(x,y)

, substitute y by x and E, then use the integration factor to solve

u(x,E)

Step 3: Substitute E by x and y to find u(x,y)

Example: ux + 2uy + (2x− y)u = 2x2 + 3xy − 2y2

Solution by the Geometric Method: Characteristic Curves:

Step 1: dy
dx

= 2 ⇒ y = 2x+ E

Step 2: ∂u
∂x

+ (2x− y)u = 2x2 + 3xy − 2y2
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Substituting y by x and E: ⇒ ∂u
∂x

− Eu = −5Ex− 2E2

By integration factor e
∫
−Edx = e−Ex, we have u(x,E) =

∫
e−Ex(−5Ex−2E2)dx+f(E)

e−Ex = 2E + 5x +

5
E
+ f(E)eEx

Step 3: Substituting E by x and y: u(x, y) = 2y + x+ 5
y−2x

+ f(y − 2x)e(y−2x)x

Solution by the Coordinate Method: Change of Variables:

Step 1: Let α = x+ 2y, β = 2x− y, then x = α+2β
5
, y = 2α−β

5
, ux = uα + 2uβ, uy = 2uα − uβ

Substituting into the equation: uα + β
5
u = αβ

5

Step 2: By integration factor e
∫ β

5
dα = e

1
5
αβ, we have u(α, β) =

∫
1
5
αβe

1
5αβdα+g(β)

e
1
5αβ

= α − 5
β
+

g(β)e−
1
5
αβ

Step 3: By substituting α, β by x,y, we get u(x, y) = x+ 2y − 5
2x−y

+ g(2x− y)e−
1
5
(x+2y)(2x−y)

Remark: The solutions given by the two methods should coincide, which can be seen by setting

z = 2x+ y and take f(−z) = g(z)e
2
5
z2 .

2.4 Type of PDE: Elliptic, Hyperbolic, Parabolic

General form of the second-order equations: a11uxx + 2a12uxy + a22uyy + a1ux + a2uy + a0u = 0

• Elliptic: a212 − a11a22 < 0

• Hyperbolic: a212 − a11a22 > 0

• Parabolic: a212 − a11a22 = 0

2.5 The Wave Equation

• 1. Without I.C. and B.C. on R:

utt = c2uxx, for −∞ < x < +∞ (1)

Solution:

u(x, t) = f(x+ ct) + g(x− ct) (2)

Method: Operator Factorization [Page 33-34]
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• 2. With I.C. Without B.C. on R:utt = c2uxx, for −∞ < x < +∞

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x)

(3)

Solution:

u(x, t) =
1

2
[ϕ(x+ ct) + ϕ(x− ct)] +

1

2c

∫ x+ct

x−ct

ψ(s)ds (4)

Method: Direct deduction from the general solution [Page 35-36]

Examples: The Pluck String [Page 36-37]

Domain of Influence & Interval of Dependence: [Compare with the solution (4)]

Principle of Causality: No part of wave goes faster than the light speed c.

Let ϕ(x) denote the initial position, ψ(x) denote as the initial velocity. An initial condition (po-

sition ϕ(x), velocity ψ(x) or both) at the point (x0, 0) can affect the solution for t > 0 only

in the shaded sector, which is called the domain of influence of the point (x0, 0). As a conse-

quence, if ϕ(x) and ψ(x) vanish for |x| > R, then u(x, t) = 0 for |x| > R + ct. In words, the

domain of influence of an interval |x| ≤ R is a sector (|x| ≤ R + ct).

Conversely, fix a point (x0, t0) for t0 > 0. u(x0, t0) depends only on the values of ϕ(x) at the two

points x0 ± ct0, and depends only on the values of ψ(x) within the interval [x0 − ct0, x0 + ct0]. We

therefore say that the interval (x0 − ct0, x0 + ct0) is the interval of dependence of the point (x0, t0)

on t = 0. Sometimes we call the entire shaded triangle ∆ the domain of dependence or the past

history of the point (x0, t0). The domain of dependence is bounded by the pair of characteristic

lines that pass through (x0, t0). [Page 39]

The Conservation of Energy: E = 1
2

∫ +∞
−∞ (ρu2t + Tu2x) dx , which is a constant independent of

t [Page 40]. Compare it with the Energy in the Laplace Equation (35).

• 3. With I.C. and Dirichlet B.C. on R+


utt = c2uxx, for 0 < x < +∞

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), for 0 < x < +∞

u(0, t) = 0

(5)
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Solution:

u(x, t) =
1

2
[ϕodd (x+ ct) + ϕodd (x− ct)] +

1

2c

∫ x+ct

x−ct

ψodd (y)dy, for x ≥ 0

=


1
2
[ϕ(x+ ct) + ϕ(x− ct)] + 1

2c

∫ x+ct

x−ct
ψ(y)dy, for x > c|t|.

1
2
[ϕ(ct+ x)− ϕ(ct− x)] + 1

2c

∫ ct+x

ct−x
ψ(y)dy, for 0 < x ≤ c|t|.

Method: Odd Extension for ϕ(x) and ψ(x) [Page 61-63]

• 4. With I.C. and Dirichlet B.C. on [0, ℓ]
utt = c2uxx, for 0 < x < ℓ

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), for 0 < x < ℓ

u(0, t) = u(ℓ, t) = 0

(6)

Solution (d’Alembert):

u(x, t) =
1

2
ϕext(x+ ct) +

1

2
ϕext(x− ct) +

1

2c

∫ x+ct

x−ct

ψext(s)ds, for 0 ≤ x ≤ ℓ

Method: Periodic Odd Extension for ϕ(x) and ψ(x) [Page 63-66, complicated]

(ψ)ϕext (x) =


ϕ(x) for 0 < x ≤ ℓ

−ϕ(−x) for −ℓ < x ≤ 0

extended to be of period 2ℓ.

(7)

• 5. With I.C. Without B.C. Inhomogeneous Wave on R (with a source) [See Section 3.4, Page

71-78]

utt − c2uxx = f(x, t) for −∞ < x < +∞

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x)

(8)

Solution:

u(x, t) =
1

2
[ϕ(x+ ct) + ϕ(x− ct)] +

1

2c

∫ x+ct

x−ct

ψ +
1

2c

x

∆

f

where ∆ is the characteristic triangle.
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2.6 The Diffusion Equation

• 1. With I.C. Without B.C. on R [Page 46-52]

ut = kuxx (−∞ < x < +∞, 0 < t < +∞)

u(x, 0) = ϕ(x)

(9)

Solution:

u(x, t) = S ∗ ϕ(x) =
∫ +∞

−∞
S(x− y, t)ϕ(y)dy =

1√
4πkt

∫ ∞

−∞
e−(x−y)2/4ktϕ(y)dy (10)

=
1√
4π

∫ ∞

−∞
e−p2/4ϕ(x− p

√
kt)dp , by letting p = (x− y)/

√
kt (11)

where S(x, t) = ∂Q(x,t)
∂x

= 1
2
√
πkt
e−x2/4kt for t > 0, which is usually called source function, Green’s

function, gaussian, or diffusion kernel.

Remark: The special initial condition for Q(x,t): Q(x, 0) = 1 for x > 0 and Q(x, 0) = 0 for x < 0,

is to set its initial stage as a Heaviside function. [See Page 335]

Some properties:

• 1.
∫∞
−∞ S(x, t)dx = 1√

π

∫∞
−∞ e−q2dq = 1, by letting q = x

2
√
kt
.

• 2. u(x, t) =
∫∞
−∞ S(x− y, t)ϕ(y)dy =

∫∞
−∞ S(z, t)ϕ(x− z)dz

• 3. S(x, 0) = δ(x), δ ∗ f(x) = f(x)

Theorem 2.6.1. Let ϕ(x) be a bounded piecewise continuous function for −∞ < x < ∞. Then

the formula (11) defines an infinitely differentiable function u(x, t) for −∞ < x < ∞, 0 < t < ∞,

which satisfies the equation ut = kuxx and limt↘0 u(x, t) = ϕ(x) for each x. [Page 81-83]

• 2. With I.C. and Dirichlet B.C. on R+


ut = kuxx (−∞ < x < +∞, 0 < t < +∞)

u(x, 0) = ϕ(x)

u(0, t) = 0

(12)
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Solution:

u(x, y) =

∫ ∞

−∞
S(x− y, t)ϕodd(y)dy, for x > 0

=
1√
4πkt

∫ ∞

0

[
e−(x−y)2/4kt − e−(x+y)2/4kt

]
ϕ(y)dy.

Method: Odd Reflection [Page 57-60]

ϕodd (x) =


ϕ(x) for x > 0

−ϕ(−x) for x < 0

0 for x = 0

(13)

• 3. With I.C. and Neumann B.C. on R+


ut = kuxx (−∞ < x < +∞, 0 < t < +∞)

u(x, 0) = ϕ(x)

ux(0, t) = 0

(14)

Solution:

u(x, y) =

∫ ∞

−∞
S(x− y, t)ϕeven(y)dy, for x > 0

=
1√
4πkt

∫ ∞

0

[
e−(x−y)2/4kt + e−(x+y)2/4kt

]
ϕ(y)dy.

Method: Even Reflection [Page 59-60]

ϕeven (x) =

 ϕ(x) for x ≥ 0

ϕ(−x) for x ≤ 0
(15)

• 4. With I.C. Without B.C. Inhomogeneous Diffusion on R (with a source) [Page 67-69]

ut − kuxx = f(x, t) (−∞ < x < +∞, 0 < t < +∞)

u(x, 0) = ϕ(x)

(16)

Solution: u(x, t) =
∫∞
−∞ S(x− y, t)ϕ(y)dy +

∫ t

0

∫∞
−∞ S(x− y, t− s)f(y, s)dyds.
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• 5. With I.C. and Dirichlet B.C. Inhomogeneous Diffusion on R+ [Page 70, Ex. 3.3.2]
ut − kuxx = f(x, t) (0 < x < +∞, 0 < t < +∞)

u(x, 0) = ϕ(x)

u(0, t) = h(t)

(17)

Solution:

u(x, t) = h(t) +

∫ +∞

−∞
S(x− y, t)Φodd (y)dy +

∫ t

0

∫ +∞

−∞
S(x− y, t− s)Fodd (y, s)dyds, for x ≥ 0

= h(t) +

∫ +∞

0

[S(x− y, t)− S(x+ y, t)]ϕ(y)dy

+

∫ t

0

∫ +∞

0

[S(x− y, t− s)− S(x+ y, t− s)]f(y, s)dyds

+

∫ t

0

∫ +∞

0

∂

∂s
[S(x− y, t− s)− S(x+ y, t− s)]h(s)dyds, for x ≥ 0

where Φodd (x) =

ϕ(x)− h(0), x ⩾ 0

−ϕ(−x) + h(0), x < 0

, Fodd (x, t) =

f(x, t)− h′(t), x ⩾ 0

−f(−x, t) + h′(t), x < 0

Method: Take v(x, t) = u(x, t)− h(t) and use Odd Reflection

• 6. With I.C. and Neumann B.C. Inhomogeneous Diffusion on R+ [Page 70, Ex. 3.3.3]
ut − kuxx = f(x, t) (0 < x < +∞, 0 < t < +∞)

u(x, 0) = ϕ(x)

ux(0, t) = h(t)

(18)

Solution:

u(x, t) = xh(t) +

∫ +∞

−∞
S(x− y, t)Φeven (y)dy +

∫ t

0

∫ +∞

−∞
S(x− y, t− s)Feven (y, s)dyds, for x ≥ 0

= xh(t) +

∫ +∞

0

[S(x− y, t) + S(x+ y, t)]ϕ(y)dy

+

∫ t

0

∫ +∞

0

∂

∂s
[S(x− y, t− s) + S(x+ y, t− s)]yh(s)dyds, for x ≥ 0

10



where Φeven (x) =

ϕ(x)− xh(0), x ⩾ 0

ϕ(−x)− xh(0), x < 0

, Feven (x, t) =

−xh′(t), x ⩾ 0

xh′(t), x < 0

Method: Take v(x, t) = u(x, t)− xh(t) and use Even Reflection

• 7. Diffusion with Constant Dissipation [Ex. 2.4.16]

• 8. Diffusion with Variable Dissipation [Ex. 2.4.17]

• 9. Heat with Convection [Ex. 2.4.18]

2.7 The Laplace & Poisson’s Equation

Remark: The Laplace Equation is the stationary state of the Wave Equation or Diffusion Equation.

Thus it has no I.C.’s. The inhomogeneous Laplace Equation is named Poisson’s Equation. In this

section, we introduce the solution of the Laplace Equation with Green’s Function. We put the

Fourier Series solutions & Poisson’s Formula to the Fourier Series section.

• 1. Poisson’s Equation with Inhomogeneous Dirichlet B.C.

∆u = f in D

u = h on bdy D.

(19)

Solution:

u (x0) =
x

bdy D

h(x)
∂G (x,x0)

∂n
dS +

y

D

f(x)G (x,x0) dx. (20)

where G(x, x0) is the Green’s function (2.7.2) for Dirichlet Poisson’s Equation.

• 2. Representation Formula

u (x0) =
x

bdy D

[
−u(x) ∂

∂n

(
1

|x− x0|

)
+

1

|x− x0|
∂u

∂n

]
dS

4π
(21)

Proof. The representation formula (21) is the special case of Green’s Second Identity (30) with the

choice v(x) = (−4π |x− x0|)−1. Clearly, the right side of (30) agrees with (21). Also, ∆u = 0 and

∆v = 0, which kills the left side of (30). So where does the left side of (21) come from? From the

fact that the function v(x) is infinite at the point x0. Therefore, it is forbidden to apply (30) in the

whole domain D. So let’s take a pair of scissors and cut out a small ball around x0. Let Dϵ be the

region D with this ball (of radius ϵ and center x0 ) excised.
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For simplicity let x0 be the origin. Then v(x) = −1/(4πr), where r = (x2 + y2 + z2)
1/2

= |x|.

Writing down (30) with this choice of v, we have, since ∆u = 0 = ∆v in Dϵ,

−
x

bdy

[
u · ∂

∂n

(
1

r

)
− ∂u

∂n
· 1
r

]
dS = 0.

But bdy Dϵ consists of two parts: the original boundary bdy D and the sphere {r = ϵ}. On the

sphere, ∂/∂n = −∂/∂r. Thus the surface integral breaks into two pieces,

−
x

bdy D

[
u · ∂

∂n

(
1

r

)
− ∂u

∂n
· 1
r

]
dS = −

x

r=ϵ

[
u · ∂

∂r

(
1

r

)
− ∂u

∂r
· 1
r

]
dS. (22)

This identity (22) is valid for any small ϵ > 0. Our representation formula (21) would follow

provided that we could show that the right side of (22) tended to 4πu(0) as ϵ → 0 Now, on the

little spherical surface {r = ϵ}, we have

∂

∂r

(
1

r

)
= − 1

r2
= − 1

ϵ2

so that the right side of (22) equals

1

ϵ2

x

r=ϵ

udS +
1

ϵ

x

r=ϵ

∂u

∂r
dS = 4πū+ 4πϵ

∂u

∂r
, (23)

where ū denotes the average value of u(x) on the sphere |x| = r = ϵ, and ∂u/∂r denotes the average

value of ∂u/∂n on this sphere. As ϵ→ 0, the expression (34) approaches

4πu(0) + 4π · 0 · ∂u
∂r

(0) = 4πu(0)

because u is continuous and ∂u/∂r is bounded. Thus (22) turns into (21), and this completes the

proof.

2.7.1 Properties of the Laplace Operator

Theorem 2.7.1. [Infinite Differentiability of Harmonic Functions][Page 170]

Let u be a harmonic function in any open set D of the plane. Then u(x) = u(x, y) possesses all
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partial derivatives of all orders in D.

Proof. This means that ∂u/∂x, ∂u/∂y, ∂2u/∂x2, ∂2u/∂x∂y, ∂100u/∂x100, and so on, exist automat-

ically. Let’s show this first for the case where D is a disk with its center at the origin. Look at

Poisson’s formula in its second form (56). The integrand is differentiable to all orders for x ∈ D.

Note that x′ ∈ bdy D so that x ̸= x′. By the theorem about differentiating integrals (Section A.3),

we can differentiate under the integral sign. So u(x) is differentiable to any order in D.

Second, let D be any domain at all, and let x0 ∈ D. Let B be a disk contained in D with center

at x0. We just showed that u(x) is differentiable inside B, and hence at x0. But x0 is an arbitrary

point in D. So u is differentiable (to all orders) at all points of D.

Remark: This differentiability property is similar to the one we saw in Section 3.5 for the one-

dimensional diffusion equation, but of course it is not at all true for the wave equation.

• [Invariance in 2-D and 3-D]

The Laplace equation is invariant under all rigid motions.

Proof. [2-D]

A rigid motion in the plane consists of translations and rotations. A translation in the plane is a

transformation

x′ = x+ a y′ = y + b.

Invariance under translations means simply that uxx + uyy = ux′x′ + uy′y′ . A rotation in the plane

through the angle α is given by

x′ = x cosα + y sinα

y′ = −x sinα + y cosα

By the chain rule we calculate

ux = ux′ cosα− uy′ sinα

uy = ux′ sinα + uy′ cosα

uxx = (ux′ cosα− uy′ sinα)x′ cosα− (ux′ cosα− uy′ sinα)y′ sinα

uyy = (ux′ sinα + uy′ cosα)x′ sinα + (ux′ sinα + uy′ cosα)y′ cosα.
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Adding, we have

uxx + uyy = (ux′x′ + uy′y′)
(
cos2 α + sin2 α

)
+ ux′y′ .

= ux′x′ + uy′y′ .

This proves the invariance of the Laplace operator. In engineering the Laplacian ∆ is a model for

isotropic physical situations, in which there is no preferred direction. Also, it suggests that laplacian

has polar coordinate form, which is:

∆2 =
∂2

∂x2
+

∂2

∂y2
=

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
[Page 156-157] (24)

Remark: For those harmonic functions that themselves are rotationally invariant, by (24), u =

c1 log r + c2, where log r plays a central role since it contains a singularity at the origin, otherwise

by maximum principle (2.8.2), u would be a constant.

Proof. [3-D]

Any rotation in three dimensions is given by

x′ = Bx

where B is an orthogonal matrix (BB⊺ = B⊺B = I). The laplacian is ∆u = Σ3
i=1uii = Σ3

i,j=1δijuij

where the subscripts on u denote partial derivatives, and δij = 1 for i=j; δij = 0 for i ̸= j. Hence

∆u =
∑
k,l

(∑
i,j

bkiδijblj

)
uk′l′ =

∑
k,l

δkluk′l′

=
∑
k

uk′k′

because the new coefficient matrix is

∑
i,j

bkiδijblj =
∑
i

bkibli = (B⊺B)kl = δkl.

So in the primed coordinates ∆u takes the usual form

∆u = ux′x′ + uy′y′ + uz′z′ .
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Also, the polar form in 3-D would be:

∆3u = urr +
2

r
ur +

1

r2

[
uθθ + (cot θ)uθ +

1

sin2 θ
uϕϕ

]
(25)

Alternatively,

∆3 =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

r2 sin2 θ

∂2

∂ϕ2
[Page 158-159] (26)

Remark: For those harmonic functions that themselves are rotationally invariant, by (26), u =

−c1 1r + c2, where
1
r
= (x2 + y2 + z2)

−1/2
which is the analog to the 2-D situation. Its laplacian is

delta function. In electrostatics the function u(x) = 1
r
is the electrostatic potential when a unit

charge is placed at the origin.

2.7.2 Green’s First & Second Identity and Green’s Function

• Notations:

1. grad f ≜ ∇f = the vector (fx, fy, fz)

2. divF ≜ ∇ · F = ∂F1

∂x
+ ∂F2

∂y
+ ∂F3

∂z

3. ∆u ≜ div gradu ≜ ∇ · ∇u = uxx + uyy + uzz

4. |∇u|2 ≜ | gradu|2 = u2x + u2y + u2z

• Gauss’s Divergence Theorem

y

D

∇ · Fdx ≜
y

D

divFdx =
x

bdy D

F · n dS (27)

• If we take F = ∇u, then
x

bdy D

∂u

∂n
dS =

y

D

∆udx. (28)

• Green’s First Identity

x

bdy D

v(∇u · n)dS ≜
x

bdy D

v
∂u

∂n
dS =

y

D

∇v · ∇udx+
y

D

v∆udx (29)

Proof. The Green’s First Identity is proved by integrating the property ∇· (v∇u) = ∇v ·∇u+ v∆u
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and use Gauss’s Divergence Theorem.

• Green’s Second Identity

y

D

(u∆v − v∆u)dx =
x

bdy D

(
u
∂v

∂n
− v

∂u

∂n

)
dS ≜

x

bdy D

[u(∇u · n)− v(∇u · n)] dS (30)

Proof. The Green’s Second Identity is proved by switching u,v in the Green’s First Identity and

subtract.

Definition 2.7.2. The Green’s function G(x) for the operator −∆ and the domain D at the

point x0 ∈ D is a function defined for x ∈ D such that:

(i) G(x) possesses continuous second derivatives and ∆G = 0 in D, except at the point x = x0.

(ii) G(x) = 0 for x ∈ bdy D.

(iii) The function G(x) + 1/ (4π |x− x0|) is finite at x0 and has continuous second derivatives

everywhere and is harmonic at x0.

Remark: It can be shown that a Green’s function exists. Also, it is unique by [Ex.7.3.1]. The usual

notation for the Green’s function is G (x,x0).

• See how to find the Green’s function for different domain D at Sect. 7.4 [Page 191-196].

Proposition 2.7.3. Symmetricity of Green’s function: G (x,x0) = G (x0,x) , for x ̸= x0. [Page

189-190]

Proof. We apply Green’s second identity (30) to the pair of functions u(x) = G(x, a) and v(x) =

G(x,b) and to the domain Dϵ. By Dϵ we denote the domain D with two little spheres of radii ϵ

cut out around the points a and b. So the boundary of Dϵ consists of three parts: the original

boundary bdy D and the two spheres |x− a| = ϵ and |x− b| = ϵ. Thus

y

Dϵ

(u∆v − v∆u)dx =
x

bdy D

(
u
∂v

∂n
− v

∂u

∂n

)
dS + Aϵ +Bϵ, (31)

where

Aϵ =
x

|x−a|=ϵ

(
u
∂v

∂n
− v

∂u

∂n

)
dS

and Bϵ is given by the same formula at b. Because both u and v are harmonic in Dϵ, the left

side of (31) vanishes. Since both u and v vanish on bdy D, the integral over bdy D also vanishes.
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Therefore, Aϵ +Bϵ = 0 , for each ϵ. Let’s calculate the limits as ϵ→ 0. We shall then have limAϵ+

limBϵ = 0. For Aϵ, denote r = |x− a|. Then

lim
ϵ→0

Aϵ = lim
ϵ→0

x

r=ϵ

{(
− 1

4πr
+H

)
∂v

∂n
− v

∂

∂n

(
− 1

4πr
+H

)}
r2 sin θdθdϕ

where θ and ϕ are the spherical angles for x−a, andH is a continuous function. Now ∂/∂n = −∂/∂r

for the sphere. Among the four terms in the last integrand, only the third one contributes a nonzero

expression to the limit [for the same reason as in the derivation of (21)]. Thus

lim
ϵ→0

Aϵ = lim
ϵ→0

∫ 2π

0

∫ π

0

v
1

4πϵ2
ϵ2 sin θdθdϕ = v(a)

by cancellation of the ϵ2. A quite similar calculation shows that limBϵ = −u(b). Therefore,

0 = lim (Aϵ +Bϵ) = v(a)− u(b) = G(a,b)−G(b, a).

This proves the symmetricity.

2.7.3 Mean Value Property

• [2-dimension]

Theorem 2.7.4. Let u be a harmonic function in a disk D, continuous in its closure D̄. Then the

value of u at the center of D equals the average of u on its circumference. [Page 169]

Proof. Choose coordinates with the origin 0 at the center of the circle. Put x = 0 in Poisson’s

formula (56), or else put r = 0 in (55). Then

u(0) =
a2

2πa

∫
|x′|=a

u (x′)

a2
ds′.

This is the average of u on the circumference |x′| = a.

• [n-dimension]

Theorem 2.7.5. In three dimensions the mean value property states that the average value of any

harmonic function over any sphere equals its value at the center. [Page 180-181]
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Proof. To prove this statement, let D be a ball, {|x| < a}, say; that is, {x2 + y2 + z2 < a2}. Then

bdy D is the sphere (surface) {|x| = a}. Let ∆u = 0 in any region that contains D and bdy D. For

a sphere, n points directly away from the origin, so that

∂u

∂n
= n · ∇u =

x

r
· ∇u =

x

r
ux +

y

r
uy +

z

r
uz =

∂u

∂r
(
∂x

∂r
=
x

r
,
∂y

∂r
=
y

r
,
∂z

∂r
=
z

r
)

where r = (x2 + y2 + z2)
1/2

= |x| is the spherical coordinate, the distance of the point (x, y, z) from

the center 0 of the sphere. Therefore, (28) becomes

x

bdy D

∂u

∂r
dS = 0 (32)

Let’s write this integral in spherical coordinates, (r, θ, ϕ), explicitly. Then (32) takes the form

∫ 2π

0

∫ π

0

ur(a, θ, ϕ)a
2 sin θdθdϕ = 0

since r = a on bdy D. We divide this by the constant 4πa2 (the area of bdy D ). This result is

valid for all a > 0, so that we can think of a as a variable and call it r. Then we pull ∂/∂r outside

the integral (see Section A.3), obtaining

∂

∂r

[
1

4π

∫ 2π

0

∫ π

0

u(r, θ, ϕ) sin θdθdϕ

]
= 0.

Thus
1

4π

∫ 2π

0

∫ π

0

u(r, θ, ϕ) sin θdθdϕ

is independent of r. This expression is precisely the average value of u on the sphere {|x| = r}. In

particular, if we let r → 0, we get

1

4π

∫ 2π

0

∫ π

0

u(0) sin θdθdϕ = u(0)

That is,
1

area of S

x

S

udS = u(0) (33)

This proves the mean value property in three dimensions. Actually, we can extend it to n dimension.
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2.7.4 Dirichlet Principle

This is an important mathematical theorem based on the physical idea of energy. It states that

among all the functions w(x) in D that satisfy the Dirichlet boundary condition

w = h(x) on bdy D, (34)

the lowest energy occurs for the harmonic function satisfying (34). In the present context the energy

is defined as

E[w] =
1

2

y

D

|∇w|2dx. (35)

This is the pure potential energy, there being no kinetic energy because there is no motion. Now

it is a general principle in physics that any system prefers to go to the state of lowest energy,

called the ground state. Thus the harmonic function is the preferred physical stationary state.

Mathematically, Dirichlet’s principle can be stated precisely as follows:

Theorem 2.7.6. Let u(x) be the unique harmonic function in D that satisfies (34). Let w(x) be

any function in D that satisfies (34). Then

E[w] ≥ E[u].

Proof 1. To prove Dirichlet’s principle, we let v = u− w and expand the square in the integral

E[w] =
1

2

y

D

|∇(u− v)|2dx

= E[u]−
y

D

∇u · ∇vdx+ E[v].
(36)

Next we apply Green’s first identity (29) to the pair of functions u and v. In (29) two of the three

terms are zero because v = 0 on bdy D and ∆u = 0 in D. Therefore, the middle term in (36) is

also zero. Thus

E[w] = E[u] + E[v].

Since it is obvious that E[v] ≥ 0, we deduce that E[w] ≥ E[u]. This means that the energy is

smallest when w = u. This proves Dirichlet’s principle.

Proof 2. An alternative proof goes as follows. Let u(x) be a function that satisfies (34) and mini-
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mizes the energy (35). Let v(x) be any function that vanishes on bdy D. Then u+ ϵv satisfies the

boundary condition (34). So if the energy is smallest for the function u, we have

E[u] ≤ E[u+ ϵv] = E[u]− ϵ
y

D

∆uvdx+ ϵ2E[v]

for any constant ϵ. The minimum occurs for ϵ = 0. By calculus,

y

D

∆uv dx = 0 (37)

This is valid for practically all functions v in D. Let D′ be any strict subdomain of D; that is,

D′ ⊂ D. Let v(x) ≡ 1 for x ∈ D′ and v(x) ≡ 0 for x ∈ D −D′. In (37) we choose this function v.

(Because this v is not smooth, an approximation argument is required that is omitted here.) Then

(37) takes the form
y

D′

∆udx = 0 for all D′.

By the second vanishing theorem in Section A.1, it follows that ∆u = 0 in D. Thus u(x) is a

harmonic function. By uniqueness, it is the only function satisfying (34) that can minimize the

energy.

2.8 Maximum Principle (Diffusion and Laplace)

• 1. Diffusion Equation

Theorem 2.8.1. If u(x, t) satisfies the diffusion equation in a rectangle (say, 0 ≤ x ≤ l, 0 ≤ t ≤ T

) in space-time, then the maximum value of u(x, t) is assumed either initially (t = 0) or on the

lateral sides (x = 0 or x = l).

In fact, there is a stronger version of the maximum principle which asserts that the maximum cannot

be assumed anywhere inside the rectangle but only on the bottom or the lateral sides (unless u is

a constant). The corners are allowed. The minimum value has the same property; it too can be

attained only on the bottom or the lateral sides. To prove the minimum principle, just apply the

maximum principle to [−u(x, t)].

Proof. We’ll prove only the weaker version. (Surprisingly, its strong form is much more difficult to

prove.) The idea of the proof is to use the fact, from calculus, that at an interior maximum the
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first derivatives vanish and the second derivatives satisfy inequalities such as uxx ≤ 0. If we knew

that uxx ̸= 0 at the maximum (which we do not), then we’d have uxx < 0 as well as ut = 0, so

that ut ̸= kuxx. This contradiction would show that the maximum could only be somewhere on the

boundary of the rectangle. However, because uxx could in fact be equal to zero, we need to play a

mathematical game to make the argument work.

So let M denote the maximum value of u(x, t) on the three sides t = 0, x = 0, and x = l. (Recall

that any continuous function on any bounded closed set is bounded and assumes its maximum on

that set.) We must show that u(x, t) ≤M throughout the rectangle R.

Let ϵ be a positive constant and let v(x, t) = u(x, t)+ϵx2. Our goal is to show that v(x, t) ≤M+ϵl2

throughout R. Once this is accomplished, we’ll have u(x, t) ≤ M + ϵ (l2 − x2). This conclusion is

true for any ϵ > 0. Therefore, u(x, t) ≤M throughout R, which is what we are trying to prove.

Now from the definition of v, it is clear that v(x, t) ≤ M + ϵl2 on t = 0, on x = 0, and on x = l.

This function v satisfies

vt − kvxx = ut − k
(
u+ ϵx2

)
xx

= ut − kuxx − 2ϵk = −2ϵk < 0,

which is the “diffusion inequality.” Now suppose that v(x, t) attains its maximum at an interior

point (x0, t0). That is, 0 < x0 < l, 0 < t0 < T . By ordinary calculus, we know that vt = 0

and vxx ≤ 0 at (x0, t0). This contradicts the diffusion inequality. So there can’t be an interior

maximum. Suppose now that v(x, t) has a maximum (in the closed rectangle) at a point on the

top edge {t0 = T and 0 < x < l}. Then vx (x0, t0) = 0 and vxx (x0, t0) ≤ 0, as before. Furthermore,

because v (x0, t0) is bigger than v (x0, t0 − δ), we have

vt (x0, t0) = lim
v (x0, t0)− v (x0, t0 − δ)

δ
≥ 0

as δ → 0 through positive values. (This is not an equality because the maximum is only ”one-sided”

in the variable t.) We again reach a contradiction to the diffusion inequality.

• 2. Laplace Equation

Theorem 2.8.2. Let D be a connected bounded open set (in either two- or three-dimensional

space). Let either u(x, y) or u(x, y, z) be a harmonic function in D that is continuous on D̄ = D∪

(bdy D ). Then the maximum and the minimum values of u are attained on bdy D and nowhere

inside (unless u ≡ constant).
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Proof. (n-D Weak)

In other words, a harmonic function is its biggest somewhere on the boundary and its smallest

somewhere else on the boundary.

To understand the maximum principle, let us use the vector shorthand x = (x, y) in two dimensions

or x = (x, y, z) in three dimensions. Also, the radial coordinate is written as |x| = (x2 + y2)
1/2

or

|x| = (x2 + y2 + z2)
1/2

. The maximum principle asserts that there exist points xM and xm on bdy

D such that

u (xm) ≤ u(x) ≤ u (xM )

for all x ∈ D. Also, there are no points inside D with this property (unless u ≡ constant). There

could be several such points on the boundary.

The idea of the maximum principle is as follows, in two dimensions, say. At a maximum point

inside D, if there were one, we’d have uxx ≤ 0 and uyy ≤ 0. (This is the second derivative test

of calculus.) So uxx + uyy ≤ 0. At most maximum points, uxx < 0 and uyy < 0. So we’d get a

contradiction to Laplace’s equation. However, since it is possible that uxx = 0 = uyy at a maximum

point, we have to work a little harder to get a proof.

Here we go. Let ϵ > 0. Let v(x) = u(x) + ϵ|x|2. Then, still in two dimensions, say,

∆v = ∆u+ ϵ∆
(
x2 + y2

)
= 0 + 4ϵ > 0 in D.

But ∆v = vxx + vyy ≤ 0 at an interior maximum point, by the second derivative test in calculus!

Therefore, v(x) has no interior maximum in D.

Now v(x), being a continuous function, has to have a maximum somewhere in the closure D̄ = D∪

bdy D. Say that the maximum of v(x) is attained at x0 ∈ bdy D. Then, for all x ∈ D,

u(x) ≤ v(x) ≤ v (x0) = u (x0) + ϵ |x0|2 ≤ max
bdy D

u+ ϵl2,

where l is the greatest distance from bdy D to the origin. Since this is true for any ϵ > 0, we have

u(x) ≤ max
bdyD

u for all x ∈ D

Now this maximum is attained at some point xM ∈ bdy D. So u(x) ≤ u (xM) for all x ∈ D̄, which

is the desired conclusion.
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The existence of a minimum point xm is similarly demonstrated. (The absence of such points inside

D will be proved by the following)

Proof. (2-D Strong)

Here is a complete proof of its strong form. Let u(x) be harmonic in D. The maximum is attained

somewhere (by the continuity of u on D̄ ), say at xM ∈ D̄. We have to show that xM /∈ D unless

u ≡ constant. By definition of M , we know that

u(x) ≤ u (xM) =M for all x ∈ D.

We draw a circle around xM entirely contained in D. By the mean value property, u (xM) is equal

to its average around the circumference. Since the average is no greater than the maximum, we

have the string of inequalities

M = u (xM) = average on circle ≤M.

Therefore, u(x) =M for all x on the circumference. This is true for any such circle. So u(x) =M

for all x in the diagonally shaded region (see Figure 3 ). Now we repeat the argument with a

different center. We can fill the whole domain up with circles. In this way, using the assumption

that D is connected, we deduce that u(x) ≡M throughout D. So u ≡ constant.

Remark: The n-D Strong Maximum Principle is called Hopf Maximum Principle which Strauss’s

book does not give a proof. [Page 181]

2.9 Uniqueness and Stability (Diffusion and Laplace)

• 1. Dirichlet Problem for the Diffusion Equation

Uniqueness:

Proof. (maximum principle)

The maximum principle can be used to give a proof of uniqueness for the Dirichlet problem for the
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diffusion equation. That is, there is at most one solution of

ut − kuxx = f(x, t) for 0 < x < l and t > 0

u(x, 0) = ϕ(x)

u(0, t) = g(t) u(l, t) = h(t)

for four given functions f, ϕ, g, and h. Uniqueness means that any solution is determined completely

by its initial and boundary conditions. Indeed, let u1(x, t) and u2(x, t) be two solutions. Let

w = u1 − u2 be their difference. Then wt − kwxx = 0, w(x, 0) = 0, w(0, t) = 0, w(l, t) = 0. Let

T > 0 . By the maximum principle, w(x, t) has its maximum for the rectangle on its bottom or

sides-exactly where it vanishes. So w(x, t) ≤ 0. The same type of argument for the minimum shows

that w(x, t) ≥ 0. Therefore, w(x, t) ≡ 0, so that u1(x, t) ≡ u2(x, t) for all t ≥ 0.

Stability [Page 45]:

L2 sense:
∫ l

0
[u1(x, t)− u2(x, t)]

2 dx ≤
∫ l

0
[ϕ1(x)− ϕ2(x)]

2 dx

L∞ sense: max0≤x≤l |u1(x, t)− u2(x, t)| ≤ max0≤x≤l |ϕ1(x)− ϕ2(x)|

• 2. Neumann Problem for the Diffusion Equation [Ex. 2.4.15]

• 3. Dirichlet Problem for the Laplace Equation

Uniqueness (2-D) [Page 155-156]:

Proof. (maximum principle)

To prove the uniqueness, suppose that

∆u = f in D ∆v = f in D

u = h on bdy D v = h on bdy D.

We want to show that u ≡ v in D. So we simply subtract equations and let w = u − v. Then

∆w = 0 in D and w = 0 on bdy D. By the maximum principle

0 = w (xm) ≤ w(x) ≤ w (xM) = 0 for all x ∈ D.

Therefore, both the maximum and minimum of w(x) are zero. This means that w ≡ 0 and

u ≡ v.
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Uniqueness (n-D) [Page 182]:

Proof. (energy method)

If we have two harmonic functions u1 and u2 with the same boundary data, then their difference

u = u1 − u2 is harmonic and has zero boundary data. We go back to Green’s First Identity (29)

and substitute v = u. Since u is harmonic, we have ∆u = 0 and

x

bdy D

u
∂u

∂n
dS =

y

D

|∇u|2dx.

Since u = 0 on bdy D, the left side of the above equation vanishes. Therefore,
t

D
|∇u|2dx = 0.

By the first vanishing theorem in Section A.1, it follows that |∇u|2 ≡ 0 in D. Now a function with

vanishing gradient must be a constant (provided that D is connected). So u(x) ≡ C throughout

D. But u vanishes somewhere (on bdy D), so C must be 0 . Thus u(x) ≡ 0 in D. This proves the

uniqueness of the Dirichlet problem.

• 4. Neumann Problem for the Laplace Equation [Ex. 7.1.2]

2.10 Comparison of Wave and Diffusion Equation

Property Waves

Finite (≤ c)

Diffusions

Infinite(i) Speed of propagation?

(ii) Singularities for t > 0?
Transported along

characteristics ( speed = c)
Lost immediately

(iii) Well-posed for t > 0? Yes Yes (at least for bounded solutions)

(iv) Well-posed for t < 0 ? Yes No

(v) Maximum principle No Yes

(vi) Behavior as t→ +∞ ?
Energy is constant

so does not decay
Decays to zero (if ϕ integrable)

(vii) Information Transported Lost gradually

Remark 1: As for property (i) for the diffusion equation, notice from formula (10) that the value of

u(x, t) depends on the values of the initial datum ϕ(y) for all y, where −∞ < y < ∞. Conversely,

the value of ϕ at a point x0 has an immediate effect everywhere (for t > 0), even though most of

its effect is only for a short time near x0. Therefore, the speed of propagation is infinite. Exercise
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2.5.2(b) shows that solutions of the diffusion equation can travel at any speed. This is in stark

contrast to the wave equation (and all hyperbolic equations).

Remark 2: As for (iv), there are several ways to see that the diffusion equation is not well-posed

for t < 0 (”backward in time”). One way is the following. Let

un(x, t) =
1

n
sinnxe−n2kt.

You can check that this satisfies the diffusion equation for all x, t. Also, un(x, 0) = n−1 sinnx → 0

uniformly as n→ ∞. But consider any t < 0, say t = −1. Then un(x,−1) = n−1 sinnxe+kn2 → ±∞

uniformly as n→ ∞ except for a few x. Thus un is close to the zero solution at time t = 0 but not

at time t = −1. This violates the stability, in the uniform sense at least.

Another way is to let u(x, t) = S(x, t + 1). This is a solution of the diffusion equation ut = kuxx

for t > −1,−∞ < x < ∞. But u(0, t) → ∞ as t ↘ −1, as we saw above. So we cannot solve

backwards in time with the perfectly nice-looking initial data (4πk)−1e−x2/4.

Besides, any physicist knows that heat flow, Brownian motion, and so on, are irreversible processes.

Going backward leads to chaos.

2.11 Fourier Series

2.11.1 As Representation of Solutions (Wave and Diffusion)

Remark: For homogeneous B.C.’s, we can use the method of Separation of Variables: u(x, t) =

X(x)T (t); For inhomogeneous B.C.’s, we can use the method of Expansion or Data Shifting [Page

147-150].

[Homogeneous]

• 1. Wave Equation with I.C. and Dirichlet B.C. on [0, ℓ] (Fourier Sine Series) (6) [Page 84-87]

Solution:

u(x, t) =
∞∑
n=1

(
An cos

nπct

l
+Bn sin

nπct

l

)
sin

nπx

l
(38)

where ϕ(x) =
∑∞

n=1An sin
nπx
l
, ψ(x) = nπc

l

∑∞
n=1Bn sin

nπx
l
;

Alternatively, An = 2
l

∫ l

0
ϕ(x) sin nπx

l
dx, Bn = 2

nπc

∫ l

0
ψ(x) sin nπx

l
dx.

Remark:

1. Frequency (coefficient of t): nπc
l

= nπ
√
T

l
√
ρ

[Page 87]

2. “Fundamental” note (take n=1): π
√
T

l
√
ρ
[Page 87]
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• 2. Wave Equation with I.C. and Neumann B.C. on [0, ℓ] (Fourier Cosine Series) [Page 91]


utt = c2uxx, for 0 < x < ℓ

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), for 0 < x < ℓ

ux(0, t) = ux(ℓ, t) = 0

(39)

Solution:

u(x, t) =
1

2
A0 +

1

2
B0t+

∞∑
n=1

(
An cos

nπct

l
+Bn sin

nπct

l

)
cos

nπx

l
(40)

where ϕ(x) = 1
2
A0 +

∑∞
n=1An cos

nπx
l
, ψ(x) = 1

2
B0 +

∑∞
n=1

nπc
l
Bn cos

nπx
l
;

Alternatively, An = 2
l

∫ l

0
ϕ(x) cos nπx

l
dx (n≥ 0), Bn = 2

nπc

∫ l

0
ψ(x) cos nπx

l
dx (n≥ 1), B0 =

2
l

∫ l

0
ψ(x)dx

• 3. Diffusion Equation with I.C. and Dirichlet B.C. on [0, ℓ] (Fourier Sine Series) [Page 87-88]


ut = kuxx (0 < x < l, 0 < t <∞)

u(x, 0) = ϕ(x)

u(0, t) = u(l, t) = 0

(41)

Solution:

u(x, t) =
∞∑
n=1

Ane
−(nπ/l)2kt sin

nπx

l
(42)

where ϕ(x) =
∑∞

n=1An sin
nπx
l
; Alternatively, An = 2

l

∫ l

0
ϕ(x) sin nπx

l
dx.

• 4. Diffusion Equation with I.C. and Neumann B.C. on [0, ℓ] (Fourier Cosine Series) [Page 90]


ut = kuxx (0 < x < l, 0 < t <∞)

u(x, 0) = ϕ(x)

ux(0, t) = ux(l, t) = 0

(43)

Solution:

u(x, t) =
1

2
A0 +

∞∑
n=1

Ane
−(nπ/l)2kt cos

nπx

l
. (44)

where ϕ(x) = 1
2
A0 +

∑∞
n=1An cos

nπx
l
; Alternatively, An = 2

l

∫ l

0
ϕ(x) cos nπx

l
dx (n ≥ 0).

Remark: If we meet mixed B.C.’s, we need to use separation of variables to solve.

• 5. Wave/Diffusion Equation with I.C. and Robin B.C. on [0, ℓ] [See Section 4.3, Page 92-100]

• 6. Schrödinger Equation with I.C. and Neumann B.C. on [0, ℓ]
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Solution:

u(x, t) =
1

2
A0 +

∞∑
n=1

Ane
−i(nπ/l)2t cos

nπx

l
(45)

[Inhomogeneous]

7. Wave Equation with I.C. and Dirichlet B.C. on [0, ℓ] [Page 149, Ex. 5.6.11]


utt − c2uxx = f(x, t) (0 < x < l, 0 < t <∞)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x)

u(0, t) = h(t), u(l, t) = k(t)

(46)

Solution:

u(x, t) =
l − x

l
h(t) +

x

l
k(t) +

∞∑
n=1

an(t) sin
nπx

l
, 0 ≤ x ≤ l (47)

where

an(t) =
2

nπ
{ [(−1)nk(0)− h(0)] cos

cnπt

l
+

l

cnπ
[(−1)nk′(0)− h′(0)] sin

cnπt

l

}
+
2

l

∫ l

0

[
ϕ(q) sin

nπq

l
cos

cnπt

l
+

l

cnπ
ψ(q) sin

nπq

l
sin

cnπt

l

]
dq

+
l

cnπ

∫ t

0

sin
[cnπ
l

(t− s)
]{2

l

∫ l

0

f(q, s) sin
nπq

l
dq +

2

nπ
[(−1)nk′′(s)− h′′(s)]

}
ds

8. Diffusion Equation with I.C. and Dirichlet B.C. on [0, ℓ] [Page 147-148]


ut = kuxx (0 < x < l, 0 < t <∞)

u(x, 0) = ϕ(x)

u(0, t) = h(t), u(l, t) = j(t)

(48)

Solution:

u(x, t) =
∞∑
n=1

un(t) sin
nπx

l
(49)

where un(t) = Ce−λnkt − 2nπl−2k
∫ t

0
e−λnk(t−s) [(−1)nj(s)− h(s)] ds , with λn = (nπ/l)2

2.11.2 As Representation of Solutions (Laplace)

• 1. Laplace Equation with Specific (Dirichlet, Neumann, or Robin) B.C.’s on Rectangles/Cubes

[See Section 6.2, Page 161-164]
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Remark: Consider the symmetricity of the given B.C.’s as well as Maximum Principle. For the

former, if the given B.C.’s on x-axis is symmetric, then we can apply Sufficient Condition Theorem

(2.11.6) to exclude negative eigenvalue for the operator − d
dx2 . For the latter, if all the B.C.’s are

Dirichlet B.C., then the solution should be a constant.

Example 1. Solve the Laplace Equation with the B.C.’s indicated in Figure (1). If we call the

solution u with data (g, h, j, k), then u = u1+u2+u3+u4 where u1 has data (g, 0, 0, 0), u2 has data

(0, h, 0, 0), and so on. For simplicity, let’s assume that h = 0, j = 0, and k = 0. Now we separate

variables u(x, y) = X(x) · Y (y). We get

X ′′

X
+
Y ′′

Y
= 0.

Hence there is a constant λ such that X ′′ + λX = 0 for 0 ≤ x ≤ a and Y ′′ − λY = 0 for 0 ≤ y ≤ b.

Thus X(x) satisfies a homogeneous one-dimensional problem which we well know how to solve:

X(0) = X ′(a) = 0. The solutions are

β2
n = λn =

(
n+

1

2

)2
π2

a2
(n = 0, 1, 2, 3, . . .) (50)

Xn(x) = sin

(
n+ 1

2

)
πx

a
(51)

Next we look at the y variable. We have

Y ′′ − λY = 0 with Y ′(0) + Y (0) = 0.

(We shall save the inhomogeneous B.C.’s for the last step.) From the previous part, we know that

λ = λn > 0 for some n. The Y equation has exponential solutions. As usual it is convenient to
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write them as

Y (y) = A cosh βny +B sinh βny.

So 0 = Y ′(0) + Y (0) = Bβn + A. Without losing any information we may pick B = −1, so that

A = βn. Then

Y (y) = βn cosh βny − sinh βny.

Because we’re in the rectangle, this function is bounded. Therefore, the sum

u(x, y) =
∞∑
n=0

An sin βnx (βn cosh βny − sinh βny) (52)

is a harmonic function in D that satisfies all three homogeneous B.C.’s. The remaining B.C. is

u(x, b) = g(x). It requires that

g(x) =
∞∑
n=0

An (βn cosh βnb− sinh βnb) · sin βnx

for 0 < x < a. This is simply a Fourier series in the eigenfunctions sin βnx. By Chapter 5, the

coefficients are given by the formula

An =
2

a
(βn cosh βnb− sinh βnb)

−1

∫ a

0

g(x) sin βnxdx (53)

• 2. Laplace Equation with Inhomogeneous Dirichlet B.C. on a Disk [Page 165-168]

uxx + uyy = 0 for x2 + y2 < a2

u = h(θ) for x2 + y2 = a2
(54)

Solution 1:

u(r, θ) =
1

2
A0 +

∞∑
n=1

rn (An cosnθ +Bn sinnθ)

=
(
a2 − r2

) ∫ 2π

0

h(ϕ)

a2 − 2ar cos(θ − ϕ) + r2
dϕ

2π
[Poisson’s Formula 1]

(55)

where An = 1
πan

∫ 2π

0
h(ϕ) cosnϕ dϕ, Bn = 1

πan

∫ 2π

0
h(ϕ) sinnϕ dϕ
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Solution 2:

u(x) =
a2 − |x|2

2πa

∫
|x′|=a

u (x′)

|x− x′|2
ds′ [Poisson’s Formula 2] (56)

Theorem 2.11.1. Let h(ϕ) = u (x′) be any continuous function on the circle C = bdy D. Then

the Poisson formula (55), or (56), provides the only harmonic function in D for which

lim
x→x0

u(x) = h (x0) for all x0 ∈ C. (57)

This means that u(x) is a continuous function on D̄ = D ∪ C. It is also differentiable to all orders

inside D.

Proof. We begin the proof by writing (55) in the form

u(r, θ) =

∫ 2π

0

P (r, θ − ϕ)h(ϕ)
dϕ

2π

for r < a, where

P (r, θ) =
a2 − r2

a2 − 2ar cos θ + r2
= 1 + 2

∞∑
n=1

(r
a

)n
cosnθ (58)

is the Poisson kernel. Note that P has the following three properties.

(i) P (r, θ) > 0 for r < a. This property follows from the observation that a2 − 2ar cos θ + r2 ≥

a2 − 2ar + r2 = (a− r)2 > 0.

(ii) ∫ 2π

0

P (r, θ)
dθ

2π
= 1

This property follows from the second part of (58) because
∫ 2π

0
cosnθdθ = 0 for n = 1, 2, . . .

(iii) P (r, θ) is a harmonic function inside the circle. This property follows from the fact that each

term (r/a)n cosnθ in the series is harmonic and therefore so is the sum.

Now we can differentiate under the integral sign (as in Appendix A.3) to get

urr +
1

r
ur +

1

r2
uθθ =

∫ 2π

0

(
Prr +

1

r
Pr +

1

r2
Pθθ

)
(r, θ − ϕ)h(ϕ)

dϕ

2π

=

∫ 2π

0

0 · h(ϕ)dϕ = 0

for r < a. So u is harmonic in D. So it remains to prove (57). To do that, fix an angle θ0 and

31



consider a radius r near a. Then we will estimate the difference

u (r, θ0)− h (θ0) =

∫ 2π

0

P (r, θ0 − ϕ) [h(ϕ)− h (θ0)]
dϕ

2π
(59)

by Property (ii) of P . But P (r, θ) is concentrated near θ = 0. This is true in the precise sense that,

for δ ≤ θ ≤ 2π − δ,

|P (r, θ)| = a2 − r2

a2 − 2ar cos θ + r2
=

a2 − r2

(a− r)2 + 4ar sin2(θ/2)
< ϵ (60)

for r sufficiently close to a. Precisely, for each (small) δ > 0 and each (small) ϵ > 0, (61) is true for

r sufficiently close to a. Now from Property (i), (59), and (60), we have

|u (r, θ0)− h (θ0)| ≤
∫ θ0+δ

θ0−δ

P (r, θ0 − ϕ) ϵ
dϕ

2π
+ ϵ

∫
|ϕ−θ0|>δ

|h(ϕ)− h (θ0)|
dϕ

2π
(61)

for r sufficiently close to a. The ϵ in the first integral came from the continuity of h. In fact, there

is some δ > 0 such that |h(ϕ)− h (θ0)| < ϵ for |ϕ− θ0| < δ. Since the function |h| ≤ H for some

constant H, and in view of Property (ii), we deduce from (61) that

|u (r, θ0)− h (θ0)| ≤ (1 + 2H)ϵ

provided r is sufficiently close to a. This is relation (57).

• 3. Laplace Equation with Homogeneous Dirichlet B.C. and Inhomogeneous Neumann B.C. on

the Wedge.

[See Page 172-173]

• 4. Laplace Equation with Inhomogeneous Dirichlet B.C. on an Annulus

[See Page 174-175]

2.11.3 Fourier Sine, Cosine, Full Series

• Fourier Sine Series (0 < x < ℓ)

ϕ(x) =
∑∞

n=1An sin
nπx
l

An = 2
l

∫ l

0
ϕ(x) sin nπx

l
dx

• Fourier Cosine Series (0 < x < ℓ)
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ϕ(x) = 1
2
A0 +

∑∞
n=1An cos

nπx
l
.

An = 2
l

∫ l

0
ϕ(x) cos nπx

l
dx.

• Fourier Full Series (−ℓ < x < ℓ)

Real Version:

ϕ(x) = 1
2
A0 +

∑∞
n=1

(
An cos

nπx
l

+Bn sin
nπx
l

)
.

An = 1
l

∫ l

−l
ϕ(x) cos nπx

l
dx (n = 0, 1, 2, . . .)

Bn = 1
l

∫ l

−l
ϕ(x) sin nπx

l
dx (n = 1, 2, 3, . . .)

Complex Version:

ϕ(x) =
∑∞

n=−∞ cne
inπx/l.

cn = 1
2l

∫ l

−l
ϕ(x)e−inπx/ldx.

• Examples of specific ϕ(x) [Page 108-111]

Remark:

1. Fourier Sine Series and Cosine Series on (0 < x < ℓ) are the building blocks of Fourier Full Series

on (−ℓ < x < ℓ). If the function is determined to be odd, then its Fourier Full Series is Sine Series;

If the function is determined to be even, then its Fourier Full Series is Cosine Series; If the function

is not determined to be odd or even, for instance, it is only defined on R+, then it can either be

Sine or Cosine Series but with different B.C.’s.

2. The main problem for Fourier Series representation of the solutions is the B.C. It only works for

symmetric B.C.’s, otherwise the sine and cosine elements are not orthogonal anymore.

3. Fourier Full Series converges to any L2 function pointwisely almost everywhere. For those

failed points with measure zero, for instance as continuous function with countably many jump

discontinuities, it is the average value at each jump (2.11.15).

2.11.4 Criteria in the Method of Separation of Variables

1-D Green’s Second Identity: (λ1 − λ2)
∫ b

a
X1X2 dx =

∫ b

a
(X1X

′′
2 −X ′′

1X2) dx = (X1X
′
2 −X ′

1X2)|ba
where X1(x) and X2(x) are two different eigenfunctions in the approach of separation of variables:

−X ′′
1 =

−d2X1

dx2
= λ1X1

−X ′′
2 =

−d2X2

dx2
= λ2X2

33



Definition 2.11.2. (1-D) A boundary condition is called symmetric for the operator - d
dx2

if X ′
1(x)X2(x)− X1(x)X

′
2(x)|

x=b
x=a = 0 [Page 119]

Recall: n-D Green’s Second Identity:
t

D
(u∆v − v∆u)dx =

s
bdy D

(
u ∂v
∂n

− v ∂u
∂n

)
dS

Definition 2.11.3. (n-D) A boundary condition is called symmetric for the operator ∆

if
s

bdy D

(
u ∂v
∂n

− v ∂u
∂n

)
dS = 0 [Page 185]

Remark:

1. n-D covers 1-D since ∂v
∂n

includes a unit outer normal vector

2. Periodic (Xi(a) = Xi(b), X
′
i(a) = X ′

i(b)), homogeneous Dirichlet, Neumann, Robin B.C.’s are

symmetric. Inhomogeneous Dirichlet, Neumann, Robin B.C.’s are not symmetric. Then separation

of variables can not work.

Theorem 2.11.4. If we have symmetric boundary conditions, then any two eigenfunctions that

correspond to distinct eigenvalues are orthogonal. Therefore, if any function is expanded in a series

of these eigenfunctions, the coefficients are determined. [Page 120]

Proof. Take two different eigenfunctions X1(x) and X2(x) with λ1 ̸= λ2. We write Green’s second

identity (3). Because the boundary conditions are symmetric, the right side of (3) vanishes. Because

of the different equations, the identity takes the form (3a), and the orthogonality is proven. If Xn(x)

now denotes the eigenfunction with eigenvalue λn and if

ϕ(x) =
∑
n

AnXn(x)

is a convergent series, where the An are constants, then

(ϕ,Xm) =

(∑
n

AnXn, Xm

)
=
∑
n

An (Xn, Xm) = Am (Xm, Xm)

by the orthogonality. So if we denote cm = (Xm, Xm), we have

Am =
(ϕ,Xm)

cm

as the formula for the coefficients.
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Remark: If there are two eigenfunctions, say X1(x) and X2(x), but their eigenvalues are the same,

λ1 = λ2, then they don’t have to be orthogonal. But if they aren’t orthogonal, they can be made

so by the Gram-Schmidt orthogonalization procedure (Ex. 5.3.10).

Theorem 2.11.5. If we have symmetric boundary conditions, then all the eigenvalues are real

numbers. Furthermore, all the eigenfunctions can be chosen to be real valued. [Page 121]

Proof. Let λ be an eigenvalue, possibly complex. Let X(x) be its eigenfunction, also possibly

complex. Then −X ′′ = λX plus B.C.’s. Take the complex conjugate of this equation; thus −X̄ ′′ =

λ̄X̄ plus B.C.’s. So λ̄ is also an eigenvalue. Now use Green’s second identity with the functions X

and X̄. Thus ∫ b

a

(
−X ′′X̄ +XX̄ ′′) dx =

(
−X ′X̄ +XX̄ ′)∣∣b

a
= 0

since the B.C.’s are symmetric. So

(λ− λ̄)

∫ b

a

XX̄dx = 0

But XX̄ = |X|2 ≥ 0 and X(x) is not allowed to be the zero function. So the integral cannot vanish.

Therefore, λ− λ̄ = 0, which means exactly that λ is real.

Next, let’s reconsider the same problem −X ′′ = λX together with (4), knowing that λ is real.

If X(x) is complex, we write it as X(x) = Y (x) + iZ(x), where Y (x) and Z(x) are real. Then

−Y ′′ − iZ ′′ = λY + iλZ. Equating the real and imaginary parts, we see that −Y ′′ = λY and

−Z ′′ = λZ. The boundary conditions still hold for both Y and Z because the eight constants in (4)

are real numbers. So the real eigenvalue λ has the real eigenfunctions Y and Z. We could therefore

say that X and X̄ are replaceable by the Y and Z. The linear combinations aX + bX̄ are the same

as the linear combinations cY + dZ, where a and b are somehow related to c and d. This completes

the proof.

Theorem 2.11.6. Suppose we have symmetric boundary conditions for the operator - d
dx2 . If

f(x)f ′(x)|x=b
x=a ≤ 0

for all (real-valued) functions f(x) satisfying the B.C.′s, then there is no negative eigenvalue. [Page

122]

Proof. Take f(x)=X(x).
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As Green’s Second Identity:
∫ b

a
X ′′(x)X(x)dx = X(x)X ′(x)|ba −

∫ b

a
[X ′(x)]2 dx

Take X ′′ = −λX(x) and by the condition we have, we get
∫ b

a
(−λ)[X(x)]2dx+

∫ b

a
[X ′(x)]2 dx ≤ 0.

Thus λ ≥ 0.

Remark: This is only a sufficient condition for determining the sign of the eigenvalues. It is easy to

verify that this sufficient condition is valid for periodical, homogeneous Dirichlet, Neumann B.C.’s,

so that in these cases there are no negative eigenvalues]. However, this sufficient condition could

not be valid for certain Robin boundary conditions. [See Ex.5.3.11]

2.11.5 Completeness of the Fourier Series

Theorem 2.11.7. There are an infinite number of eigenvalues. They form a sequence λn → +∞.

[Page 125]

Definition 2.11.8. We say that an infinite series Σ∞
n=1fn(x) converges to f(x) pointwise in (a, b)

if it converges to f(x) for each a < x < b. That is, for each a < x < b we have

∣∣∣∣∣f(x)−
N∑

n=1

fn(x)

∣∣∣∣∣→ 0 as N → ∞.

Definition 2.11.9. We say that the series converges uniformly to f(x) in [a, b] if

max
a≤x≤b

∣∣∣∣∣f(x)−
N∑

n=1

fn(x)

∣∣∣∣∣→ 0 as N → ∞.

Remark: Note that the endpoints are included in this definition. That is, you take the biggest

difference over all the x ’s and then take the limit.

Definition 2.11.10. We say the series converges in the mean-square (or L2 ) sense to f(x) in

(a, b) if ∫ b

a

∣∣∣∣∣f(x)−
N∑

n=1

fn(x)

∣∣∣∣∣
2

dx→ 0 as N → ∞. (62)

• See examples at [Page 126-128].

Theorem 2.11.11. Uniform Convergence of Fourier Series [Page 128]

The Fourier series ΣAnXn(x) converges to f(x) uniformly on [a, b] provided that:

(i) f(x), f ′(x), and f ′′(x) exist and are continuous for a ≤ x ≤ b and
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(ii) f(x) satisfies the given boundary conditions.

Remark: This theorem assures us of a very good kind of convergence provided that the conditions

on f(x) and its derivatives are met. For the classical Fourier series (full, sine, and cosine), it is not

required that f ′′(x) exist.

Proof. We assume again that f(x) and f ′(x) are continuous functions of period 2π. The idea of

this proof is quite different from the preceding one. The main point is to show that the coefficients

go to zero pretty fast. Let An and Bn be the Fourier coefficients of f(x) and let A′
n and B′

n denote

the Fourier coefficients of f ′(x). We integrate by parts to get

An =

∫ π

−π

f(x) cosnx
dx

π

=
1

nπ
f(x) sinnx

∣∣∣∣π
−π

−
∫ π

−π

f ′(x) sinnx
dx

nπ
,

so that

An = − 1

n
B′

n for n ̸= 0.

We have just used the periodicity of f(x). Similarly,

Bn =
1

n
A′

n.

On the other hand, we know from Bessel’s inequality [for the derivative f ′(x) ] that the infinite

series
∞∑
n=1

(
|A′

n|
2
+ |B′

n|
2
)
<∞

Therefore,

∞∑
n=1

(|An cosnx|+ |Bn sinnx|) ≤
∞∑
n=1

(|An|+ |Bn|)

=
∞∑
n=1

1

n
(|B′

n|+ |A′
n|)

≤

(
∞∑
n=1

1

n2

)1/2 [ ∞∑
n=1

2
(
|A′

n|
2
+ |B′

n|
2
)]1/2

<∞

Here we have used Schwartz’s inequality (see Exercise 5). The result means that the Fourier series

converges absolutely.
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We already know (from Theorem (2.11.16) ) that the sum of the Fourier series is indeed f(x). So,

again denoting by SN(x) the partial sum (2), we can write

max |f(x)− SN(x)| ≤ max
∞∑

n=N+1

|An cosnx+Bn sinnx|

≤
∞∑

n=N+1

(|An|+ |Bn|) <∞.

The last sum is the tail of a convergent series of numbers so that it tends to zero as N → ∞.

Therefore, the Fourier series converges to f(x) both absolutely and uniformly.

This proof is also valid if f(x) is continuous but f ′(x) is merely piecewise continuous. An example

is f(x) = |x|.

Theorem 2.11.12. L2 Convergence of Fourier Series [Page 128]

The Fourier series converges to f(x) in the mean-square sense in (a, b) provided only that f(x) is

any function for which ∫ b

a

|f(x)|2dx is finite.

Remark: This theorem assures us a weaker convergence. We can extend the integral to Lebesgue

Integral.

Definition 2.11.13. A function f(x) has a jump discontinuity at a point x = c if the one-sided

limits f(c+) and f(c−) exist but are not equal. [It doesn’t matter what f(c) happens to be or even

whether f(c) is defined or not.] The value of the jump discontinuity is the number f(c+)− f(c−).

Definition 2.11.14. A function f (x) is called piecewise continuous on an interval [a, b] if it is

continuous at all but a finite number of points and has jump discontinuities at those points.

Theorem 2.11.15. Pointwise Convergence of Fourier Series [Page 129]

(i) The classical Fourier series (full or sine or cosine) converges to f(x) pointwise on (a, b) provided

that f(x) is a continuous function on a ≤ x ≤ b and f ′(x) is piecewise continuous on a ≤ x ≤ b.

(ii) More generally, if f(x) itself is only piecewise continuous on a ≤ x ≤ b and f ′(x) is also piecewise

continuous on a ≤ x ≤ b, then the classical Fourier series converges at every point x(−∞ < x <∞).

The sum is ∑
n

AnXn(x) =
1

2
[f(x+) + f(x−)] for all a < x < b.
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Remark: The sum is 1
2
[fext (x+) + fext (x−)] for all −∞ < x < ∞, where fext (x) is the extended

function (periodic, odd periodic, or even periodic).

Theorem 2.11.16. Extension of 2.11.15 [Page 129]

If f(x) is a function of period 2l on the line for which f(x) and f ′(x) are piecewise continuous, then

the classical full Fourier series converges to 1
2
[f(x+) + f(x−)] for −∞ < x <∞.

Remark: This is the extension of the previous theorem.

Proof. See Section 5.5 with the proof that starts from 2π periodical C1 functions to piecewise

continuous by modification. [Page 136-140]

Theorem 2.11.17. Least-Square Approximation [Page 131-132]

Let {Xn} be any orthogonal set of functions. Let ∥f∥ < ∞. Let N be a fixed positive integer.

Among all possible choices of N constants c1, c2, . . . , cN , the choice that minimizes∥∥∥∥∥f −
N∑

n=1

cnXn

∥∥∥∥∥
is c1 = A1, . . . , cn = An, where An are Fourier coefficients.

Proof. For the sake of simplicity we assume in this proof that f(x) and all the Xn(x) are real valued.

Denote the error (remainder) by

EN =

∥∥∥∥∥f −
∑
n≤N

cnXn

∥∥∥∥∥
2

=

∫ b

a

∣∣∣∣∣f(x)−∑
n≤N

cnXn(x)

∣∣∣∣∣
2

dx.

Expanding the square, we have (assuming the functions are real valued)

EN =

∫ b

a

|f(x)|2dx− 2
∑
n≤N

cn

∫ b

a

f(x)Xn(x)dx

+
∑
n

∑
m

cncm

∫ b

a

Xn(x)Xm(x)dx.

Because of orthogonality, the last integral vanishes except for n = m. So the double sum reduces

to Σc2n
∫
|Xn|2 dx. Let us write this in the norm notation:

EN = ∥f∥2 − 2
∑
n≤N

cn (f,Xn) +
∑
n≤N

c2n ∥Xn∥2 (63)
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We may ”complete the square”:

EN =
∑
n≤N

∥Xn∥2
[
cn −

(f,Xn)

∥Xn∥2

]2
+ ∥f∥2 −

∑
n≤N

(f,Xn)
2

∥Xn∥2
.

Now the coefficients cn appear in only one place, inside the squared term. The expression is clearly

smallest if the squared term vanishes. That is,

cn =
(f,Xn)

∥Xn∥2
≡ An

which proves the theorem.

Theorem 2.11.18. Bessel’s Inequality [Page 132-133] For f ∈ L2,

∞∑
n=1

A2
n

∫ b

a

|Xn(x)|2 dx ≤
∫ b

a

|f(x)|2dx (64)

Proof. Take cn = An in (63) to prove the Bessel’s Inequality.

Theorem 2.11.19. Parseval’s Equality [Page 133]

The Fourier series of f(x) converges to f(x) in the mean-square (L2) sense if and only if

∞∑
n=1

|An|2
∫ b

a

|Xn(x)|2 dx =

∫ b

a

|f(x)|2dx (65)

Proof. L2 convergence means that the remainder EN → 0. But from (63) this means that

Σn≤N |An|2 ∥Xn∥2 → ∥f∥2, which in turn means (65).

Definition 2.11.20. The infinite orthogonal set of functions {X1(x), X2(x), . . .} is called complete

if Parseval’s equality (65) is true for all f with
∫ b

a
|f |2dx <∞.

Definition 2.11.21. Dirichlet Kernel

KN(θ) = 1 + 2
N∑

n=1

cosnθ
(i)
=

sin
(
N + 1

2

)
θ

sin 1
2
θ

(66)

Remark:

1. The Dirichlet Kernel is derived from direct substitution of Fourier coefficients into the Fourier

Series of 2π periodical C1 functions. [See Page 137]

2.
∫ π

−π
1
2π
KN(θ) dθ = 1

3. 1
2π
KN(θ)

N→∞−−−→ δ(θ)
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Proof. Proof of (i)

The easiest proof is by complexification. By De Moivre’s formula for complex exponentials,

KN(θ) = 1 +
N∑

n=1

(
einθ + e−inθ

)
=

N∑
n=−N

einθ

= e−iNθ + · · ·+ 1 + · · ·+ eiNθ.

This is a finite geometric series with the first term e−iNθ, the ratio eiθ, and the last term eiNθ. So

it adds up to

KN(θ) =
e−iNθ − ei(N+1)θ

1− eiθ

=
e−i(N+ 1

2)θ − e+i(N+ 1
2)θ

−e 1
2
iθ + e−

1
2
iθ

=
sin
[(
N + 1

2

)
θ
]

sin 1
2
θ

• See The Gibbs Phenomenon at [Page 142-144]

2.11.6 Validation of Fourier Series Representation of PDE Solutions

Consider the Homogeneous Wave Equation with I.C. and Dirichlet B.C. (6). The solution is sup-

posed to be:

u(x, t) =
∑
n

(
An cos

nπct

l
+Bn sin

nπct

l

)
sin

nπx

l
. (67)

However, we know that term-by-term differentiation of a Fourier series is not always valid

[See Example 3, Section 5.4, Page 130], so we cannot simply verify by direct differentiation that

(67) is a solution.

Instead, let ϕext and ψext denote the odd 2l-periodic extensions of ϕ and ψ. Let us assume that ϕ

and ψ are continuous with piecewise continuous derivatives. We know that the function

u(x, t) =
1

2
[ϕext(x+ ct) + ϕext(x− ct)] +

1

2c

∫ x+ct

x−ct

ψext(s)ds

solves the wave equation with u(x, 0) = ϕext (x), ut(x, 0) = ψext (x) for all −∞ < x < ∞. Since

ϕext and ψext agree with ϕ and ψ on the interval (0, l), u satisfies the correct initial conditions on

(0, l). Since ϕext and ψext are odd, it follows that u(x, t) is also odd, so that u(0, t) = u(l, t) = 0,
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which is the correct boundary condition.

By Theorem 2.11.15, the Fourier sine series of ϕext and ψext, given by (7), converge pointwise.

Substituting these series into (67), we get

u(x, t) =
1

2

∞∑
n=1

An

(
sin

nπ(x+ ct)

l
+ sin

nπ(x− ct)

l

)
+

1

2c

∞∑
n=1

∫ x+ct

x−ct

Bn
nπc

l
sin

nπs

l
ds.

This series converges pointwise because term-by-term integration of a Fourier series is always valid

[Ex. 5.4.11]. Now we use standard trigonometric identities and carry out the integrals explicitly.

We get

u(x, t) =
∑
n

(
An sin

nπx

l
cos

nπct

l
+Bn sin

nπx

l
sin

nπct

l

)
.

This is precisely (67).
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