NYU 上海 ※ SHANGHAI 纽 约 大 学

Researchers: Kehan Luo (Honors Mathematics)¹, Rongyao Li (Honors Mathematics)² Emails: kl4747@nyu.edu¹, rl4785@nyu.edu², sy55@nyu.edu³ Instructor: Shengkui Ye³

Abstract

In this poster, we explore and investigate adv topics in linear algebra. Specifically, we first pr the Theorem: Any positive semi-definite symme real matrix has a unique positive semi-definite symmetric square root by polynomial matrices. we give a generalization from field \mathbb{R} to \mathbb{C} , and square root to k-th root. Finally, we demonstrate Theorem: Any invertible complex matrix has a root by Jordan Canonical Form and Taylor Exp Our proofs' validity and theorems' value are considered and discussed. These topics have significant applications in the field of Algebra Lie Theory.

Unique Existence of Real Square

Theorem 1 Any positive semi-definite symmetric re matrix has a unique positive semi-definite symmetr square root.

Assumption:

 $\forall A \in M_{n \times n}(\mathbb{R}) \& A = A^T \& A \text{ is positive semi-def}$ Decompose $A = UDU^T$, where U is orthogonal and $diag(\lambda_1, \dots, \lambda_n)$, all eigenvalues ($\lambda_i \in \mathbb{R}$) are nonne

. Existence

Let $B = UD^{\frac{1}{2}}U^T$, where $D^{\frac{1}{2}} = diag(\lambda_1^{\frac{1}{2}}, \dots, \lambda_n^{\frac{1}{2}})$ then $B^2 = A \& B = B^T \& B$ is positive semi-def

- Uniqueness
- a) \exists a polynomial p with real coefficients s.t. $p(A) = p(UDU^T)$ $=\sum_{i=0}^{n-1} a_i (UDU^T)^i = Up(D)U^T \triangleq UD^{\frac{1}{2}}U^T =$

b) If $\exists C$ is another square root of A, then CA = AC and CB = Cp(A) $= \sum_{i=0}^{n-1} a_i C A^i = \sum_{i=0}^{n-1} a_i A C^i = p(A)C = BC$

Unveiling the Roots of Matrices: A Generalization and Field Extension of the Square Root of Matrices

ranced
rove
tric
tric
c)
$$\exists$$
 an orthogonal V that simultaneously diagonalizes B
and C i.e. $B = VD_1V^T$, $C = VD_2V^T$, where D_1 , D_2 are real
diagonal with nonnegative entries
d) $D_1^2 = D_2^2$ ($\because B^2 = A = C^2$), then $D_1 = D_2$, $B = C$
III. Generalization
Theorem 2 Any positive semi-definite Hermitian complex
matrix has a unique positive semi-definite Hermitian k-th rove
 k -th
bansion.
Field: $\mathbb{R} \to \mathbb{C}$
Root: $\sqrt{-} \to \sqrt{k}\sqrt{-}$
**IV. Field Extension for K-th Root Existended
Theorem 3 Any invertible complex matrix has a k-th root.**
Proving Process:
Assumption: $\forall T \in M_{n \times n}(\mathbb{C})^{-1,1}$ & T is invertible $^{-1,2}$.
Goal: Precisely find the k-th root $\mathbb{R} \in M_{n \times n}(\mathbb{C})$ ($k \ge 2$)
Jordan Canonical Form
 $^{11}T \sim J \triangleq \begin{bmatrix} J(\lambda_1) & \ddots & J(\lambda_p) \\ \vdots & J(\lambda_p) \end{bmatrix}$, $J(\lambda_i) \triangleq \begin{bmatrix} \lambda_i & 1 & \ddots & 1 \\ \ddots & 1 \\ \lambda_i \end{bmatrix}$
a) $^{-2_1}$ Eigenvalues ($\lambda_i \in \mathbb{C}$) are nonzero
b) $N_i \triangleq \frac{J(0)}{\lambda_i}$, then $J(\lambda_i) = \lambda_i(l + N_i)$, $i = 1, 2, \cdots, p$
2. Taylor Expansion Theorem
 $^k\sqrt{1 + x} = \sum_{n=0}^{\infty} \frac{(-1)^n \prod_{i=0}^n (lk - 1)}{n! k^n (nk - 1)} x^n$, $-1 < x < 1$
B
a) Application in Matrix
 $^k\sqrt{I + N_i} = \sum_{n=0}^m \frac{(-1)^n \prod_{i=0}^n (lk - 1)}{n! k^n (nk - 1)} N_i^n \triangleq Z_i$
where $m = lub \{q \mid N_i^q = 0, q \in \mathbb{N}^*\} - 1$

3.

ce

b) Similarity Transitivity

$$\therefore J(\lambda_{i}) = \lambda_{i}(I+N_{i}) = (\lambda_{i}^{\frac{1}{k}}Z_{i})^{k}, i = I$$

$$T = PJP^{-1} = (P \begin{bmatrix} \lambda_{1}^{\frac{1}{k}}Z_{1} & & \\ & \ddots & \\ & & \lambda_{p}^{\frac{1}{k}}Z_{p} \end{bmatrix}$$
Examples & Counterexamples
a) $T = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \exists R = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} s. t. R^{k} = T$
(... T is invertible) [2]

(
$$\because$$
 1 is invertible) ⁽²⁾
b) $T = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $\nexists R \ s. t. \ R^k = T$ (T is si
c) $T = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $\exists R = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & t \\ 0 & 0 & 0 \end{bmatrix} s. t$

 $(t \in \mathbb{C})$ (T is singular)

V. Conclusion & Discussion

- Results
- a) Positive semi-definite is nearly an extremely general condition for the uniqueness of the matrix roots.
- b) Invertibility is just a sufficient condition for the existence of the matrix roots.
- Validity in Proofs
- a) Theorem 2: The generalization of either the field (from $\mathbb{R} \to \mathbb{C}$) or the root (from $\sqrt{-} \to \sqrt[k]{\sqrt{-}}$) does not cause any change in the proof of Theorem 1.
- b) Taylor Expansion Theorem's Application in Matrix: N_i is a nilpotent matrix, which restricts "Matrix Taylor Series" into finite, thus convergent. Also, matrix retains the properties of real variable "x" in the Taylors Series. Value
- Lay a foundation for complicated matrix operations (functions)

VI. References

[1] Higham, N. J. Theories of Matrix Functions. In Functions of matrices: Theory and computation; SIAM: Philadelphia, PA, 2008; pp. 1–29. [2] Horn, R. A.; Johnson, C. R. Positive definite and semidefinite matrices. In Matrix analysis; Cambridge University Press: New York, NY, 2017; pp. 439– 440.

