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Adversarial Examples: An Illustration

How vulnerable are deep neural networks to small, imperceptible

changes?

Source: [GSS15]

Observation: Small perturbations can deceive the model
completely!
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Challenges in Adversarial Robustness

▶ Very small changes to the input image can fool
state-of-the-art neural networks with high probability [GSS15]

▶ Existing defenses are often bypassed by stronger, adaptive
adversaries [CW17]

▶ Theoretical guarantees for robustness remain limited
[PMW+16]

How can we learn models robust to adversarial inputs?

Adversarial Robustness Theory and Algorithms Genghis Luo, Jackie Chen, Daniel Jin
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Overview of Key Papers

▶ Paper 1 [Ma18]: Towards Deep Learning Models Resistant
to Adversarial Attacks
▶ An Optimization Point of View.

▶ Paper 2 [ZYJ+19]: Theoretically Principled Trade-off
between Robustness and Accuracy
▶ Formalized the trade-off between adversarial robustness and

standard accuracy.
▶ Presented a mathematical framework to analyze this trade-off.

▶ Remark [AMMZ23]: H-consistency
▶ Ensures that surrogate losses remain consistent with the

classification loss.
▶ A critical property for robust surrogate loss functions.

Goal: A comprehensive revisit of key theories, proofs, and
connections between papers.

Adversarial Robustness Theory and Algorithms Genghis Luo, Jackie Chen, Daniel Jin
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Notations

Notation Description

D Data distribution over (x , y) pairs

L(θ, x , y) Loss function with model parameters θ

S ⊆ Rd Set of allowable adversarial perturbations

xadv Adversarial example generated from input x

B(x , ϵ) ℓ∞-ball around x : {x ′ ∈ X : ∥x ′ − x∥∞ ≤ ϵ}

ρ(θ) Adversarial loss: E(x ,y)∼D [maxδ∈S L(θ, x + δ, y)]

θ Model parameters to be optimized

Adversarial Robustness Theory and Algorithms Genghis Luo, Jackie Chen, Daniel Jin



Introduction An Optimization Point of View TRADES Model H-consistency References

Motivation: Why ERM Fails Against Adversarial Examples

Empirical risk minimization (ERM) has been the cornerstone of
machine learning, defined as follows:

θ∗ = argmin
θ

E(x ,y)∼DL(θ, x , y),

where L(θ, x , y) is a loss function for a neural network
parameterized by θ.

Observation: Despite its success, ERM fails to provide robustness
against adversarial examples:

xadv = x + δ such that ∥δ∥ ≤ ϵ, f (xadv) ̸= y ,

where δ represents an imperceptible perturbation constrained
within an ℓ∞-ball. These examples are misclassified even though
they remain visually similar to x .

Adversarial Robustness Theory and Algorithms Genghis Luo, Jackie Chen, Daniel Jin
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Robust Optimization: A Solution to Adversarial Vulnerabilities

To address the limitations of ERM, adversarial robustness can be
formalized through a robust optimization framework. Instead of
minimizing the loss on the original inputs x , we consider the
worst-case adversarial perturbations within a given threat model S:

min
θ
ρ(θ), where ρ(θ) = E(x ,y)∼D

[
max
δ∈S

L(θ, x + δ, y)

]
.

Key Components:

▶ Threat Model: Defines the set of allowable perturbations
S ⊆ Rd .

▶ Adversarial Loss: Measures the model’s performance under
the worst-case perturbation δ.

▶ Saddle-Point Problem: Balances the adversary’s goal to
maximize the loss and the learner’s goal to minimize it.

Adversarial Robustness Theory and Algorithms Genghis Luo, Jackie Chen, Daniel Jin



Introduction An Optimization Point of View TRADES Model H-consistency References

Gradients from Attacks and Saddle Point Optimization

To solve the robust optimization problem using SGD, we face two
challenges:

▶ ρ(θ) involves an inner maximization problem.

▶ Standard backpropagation cannot be applied directly.

In practice, Both the gradients and the value of ρ(θ) will be
computed using sampled input points. Therefore, we can consider,
without loss of generality, the case of a single random example x
with label y , in which case the problem becomes:

min
θ

max
δ∈S

g(θ, δ), where g(θ, δ) = L(θ, x + δ, y).

If we assume that the loss L is continuously differentiable in θ, we
can compute a descent direction for θ by utilizing the classical
theorem of Danskin.

Adversarial Robustness Theory and Algorithms Genghis Luo, Jackie Chen, Daniel Jin
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Theorem and Corollary for Saddle Point Optimization

Theorem C.1 (Danskin)

Let S be nonempty compact topological space and g : Rn × S → R
be such that g(·, δ) is differentiable for every δ ∈ S and ∇g(θ, δ) is
continuous on Rn × S . Also, let δ∗(θ) = {δ ∈ argmaxδ∈S g(θ, δ)}.
Then the corresponding max-function:

ϕ(θ) = max
δ∈S

g(θ, δ)

is locally Lipschitz continuous, directionally differentiable, and its
directional derivatives satisfy:

ϕ′(θ, h) = sup
δ∈δ∗(θ)

hT∇θg(θ, δ).

Adversarial Robustness Theory and Algorithms Genghis Luo, Jackie Chen, Daniel Jin
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Theorem and Corollary for Saddle Point Optimization

In particular, if for some θ ∈ Rn the set δ∗(θ) is a singleton, the
max-function is differentiable at θ and:

∇ϕ(θ) = ∇θg(θ, δ
∗
θ).

Intuition: since gradients are local objects, the function ϕ(θ) is
locally the same as g(θ, δ∗θ), where δ

∗
θ is the optimizer of the inner

problem. Therefore, their gradients will be the same.

Adversarial Robustness Theory and Algorithms Genghis Luo, Jackie Chen, Daniel Jin
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Theorem and Corollary for Saddle Point Optimization

Corollary C.2

Let δ̄ be such that δ̄ ∈ S and is a maximizer for

max
δ∈S

L(θ, x + δ, y).

Then, as long as it is nonzero,

−∇θL(θ, x + δ̄, y)

is a descent direction for

ϕ(θ) = max
δ∈S

L(θ, x + δ, y).

Adversarial Robustness Theory and Algorithms Genghis Luo, Jackie Chen, Daniel Jin
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Theorem and Corollary for Saddle Point Optimization

Proof

We apply Theorem C.1 to g(θ, δ) := L(θ, x + δ, y) and
S = B∥·∥(ϵ), where B∥·∥(ϵ) denotes the ball of radius ϵ under a
given norm. By Theorem C.1, the directional derivative of ϕ(θ) in
the direction of h = ∇θL(θ, x + δ̄, y) satisfies:

ϕ′(θ, h) = sup
δ∈δ∗(θ)

hT∇θL(θ, x + δ, y)

≥ hTh = ∥∇θL(θ, x + δ̄, y)∥22 ≥ 0.

If the gradient is nonzero, then the inequality is strict, and the
negative gradient −∇θL(θ, x + δ̄, y) provides a descent direction
for ϕ(θ).

Adversarial Robustness Theory and Algorithms Genghis Luo, Jackie Chen, Daniel Jin
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Theorem and Corollary for Saddle Point Optimization

Claim

For continuously differentiable functions, gradients at maximizers
of the inner problem correspond to descent directions for the
saddle point problem, the gradient is :

∇θρ(θ) = E(x ,y)∼D [∇θL(θ, x + δ∗(θ), y)] ,

where δ∗(θ) solves the inner maximization:

δ∗(θ) = argmax
δ∈S

L(θ, x + δ, y).

Adversarial Robustness Theory and Algorithms Genghis Luo, Jackie Chen, Daniel Jin
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Technical Challenges: Non-Differentiability of the Loss

Issue 1: ReLU and Max-Pooling Units

▶ Neural network architectures often include ReLU and
max-pooling units.

▶ These components cause the loss function to be not
continuously differentiable.

Key Insight:

▶ The set of discontinuities has measure zero.

▶ In practice, this issue is negligible since problematic points are
rarely encountered.

Conclusion: Non-differentiability does not pose significant
challenges during optimization.

Adversarial Robustness Theory and Algorithms Genghis Luo, Jackie Chen, Daniel Jin
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Technical Challenges: Non-Concavity of the Inner Problem

Issue 2: Non-Concavity of the Inner Maximization Problem

▶ The inner maximization problem is not concave, making
global maximizers hard to compute.

Proposed Solution:

▶ Consider a subset S ′ ⊆ S where the local maximum is a global
maximum in S ′.

▶ Applying the theorem on S ′ ensures the gradient still provides
a descent direction for the saddle point problem.

Practical Implication:

▶ If the inner maximum corresponds to a true adversarial
example, SGD using this gradient will decrease the loss,
improving model robustness.

Adversarial Robustness Theory and Algorithms Genghis Luo, Jackie Chen, Daniel Jin
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Network Capacity and the Complexity of Decision Boundaries

Key Observation:

▶ Adversarial examples significantly alter the decision boundary.

▶ Simple linear boundaries fail to separate perturbed regions
(middle figure).

▶ Increasing model capacity enables learning of complex decision
boundaries to address adversarial perturbations (right figure).

The decision boundary becomes increasingly complex

Adversarial Robustness Theory and Algorithms Genghis Luo, Jackie Chen, Daniel Jin
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Insight

Optimization Formulation:

min
θ
ρ(θ), where ρ(θ) = E(x ,y)∼D

[
max
δ∈S

L(θ, x + δ, y)

]
.

New Insight: This optimization formulation focuses exclusively on
adversarial examples, neglecting the original data distribution.

▶ As a consequence, the model is inherently forced to ”overfit”.

▶ This leads to unnecessarily complex decision boundaries and
requires increased model capacity.

Is this approach fundamentally reasonable, or does it highlight an
inherent trade-off between robustness and simplicity?

Adversarial Robustness Theory and Algorithms Genghis Luo, Jackie Chen, Daniel Jin
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Notations I

Notation Description

X ,Y , x , y Random vectors and their realizations

X ,Y , x , y Random variables and their realizations

X Sample space where X ⊆ Rd

sign(x) Sign of scalar x , with sign(0) = +1

1{event} Indicator function: 1 if an event happens, 0 other-
wise

∥x∥ Generic norm (if not specified)

f : X → R Score function mapping an instance to a prediction

B(x , ϵ) Neighborhood of x : {x ′ ∈ X : ∥x ′ − x∥ ≤ ϵ}

Adversarial Robustness Theory and Algorithms Genghis Luo, Jackie Chen, Daniel Jin
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Notations II

Notation Description

DB(f ) Decision boundary of f : {x ∈ X : f (x) = 0}

B(DB(f ), ϵ) {x ∈ X : ∃x ′ ∈ B(x , ϵ) s.t. f (x)f (x ′) ≤ 0}

ψ∗(v) Conjugate function: supu{uTv − ψ(u)}

ψ∗∗ Bi-conjugate of ψ

ϕ(·) Surrogate of 0-1 loss

Adversarial Robustness Theory and Algorithms Genghis Luo, Jackie Chen, Daniel Jin
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Problem Setup: Robust (Classification) Error

In the context of adversarial learning in binary classification, a set
of instances x1, . . . , xn ∈ X and labels y1, . . . , yn ∈ {−1,+1} is
given. Assume that (X ,Y ) ∼ D with D unknown.
Define Rrob to characterize the robustness of a score function
f : X → R by:

Rrob(f ) := E(X ,Y )∼D1{∃X ′∈B(X ,ϵ) s.t. f (X ′)Y≤0}

Write the natural generalization error as:

Rnat(f ) := E(X ,Y )∼D1{f (X )Y≤0}

Note: The two errors satisfy Rrob(f ) ≥ Rnat(f ) for all f the robust
error is equal to the natural error when ϵ = 0.
Introduce the boundary error defined as:

Rbdy(f ) := E(X ,Y )∼D1{X∈B(DB(f ),ϵ),f (X )Y>0}

Adversarial Robustness Theory and Algorithms Genghis Luo, Jackie Chen, Daniel Jin
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Problem Setup: Key Relation

Claim

The following decomposition of Rrob(f ) holds by definition:

Rrob(f ) = Rnat(f ) +Rbdy(f )

Proof (Sketch)

It is quite obvious since the first term Rnat(f ) includes all
misclassified points, and the second term Rbdy(f ) includes all the
points that are classified correctly but within B(DB(f ), ϵ).

Adversarial Robustness Theory and Algorithms Genghis Luo, Jackie Chen, Daniel Jin
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Toy Trade-off Example: Trade-off Between Rnat(f ) and Rbdy(f )

Toy Example [BJM06]: Trade-off Between Rnat(f ) and Rbdy(f )

Consider the case (X ,Y ) ∼ D, where the marginal distribution
over the sample space X is a uniform distribution over [0, 1], and
for k = 0, 1, . . . ,

⌈
1
2ϵ − 1

⌉
,

η(x) := Pr(Y = 1 | X = x)

=

{
0, x ∈ [2kϵ, (2k + 1)ϵ)

1, x ∈ [(2k + 1)ϵ, (2k + 2)ϵ)

Adversarial Robustness Theory and Algorithms Genghis Luo, Jackie Chen, Daniel Jin
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Construction of Classification-calibrated Surrogate Loss

Introduce the surrogate loss Rϕ(f ) := E(X ,Y )∼Dϕ(f (X )Y )
Formally, for η ∈ [0, 1], define the conditional ϕ-risk by

H(η) := inf
α∈R

Cη(α) := inf
α∈R

(ηϕ(α) + (1− η)ϕ(−α)),

and define H−(η) := infα(2η−1)≤0 Cη(α).
The classification-calibrated condition requires that imposing the
constraint that α has an inconsistent sign with the Bayes decision
rule sign(2η − 1) leads to a strictly larger ϕ-risk:

Assumption 1: Classification-Calibrated Condition

Assume that the surrogate loss ϕ is classification-calibrated,
meaning that for any η ̸= 1/2,H−(η) > H(η), i.e., Bayesian
estimator is always the minimizer.

Adversarial Robustness Theory and Algorithms Genghis Luo, Jackie Chen, Daniel Jin
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Construction of Classification-calibrated Surrogate Loss: Examples

Table 1: Examples of classification-calibrated loss ϕ and associated
ψ-transform.

Loss ϕ(α) ψ(θ)

Hinge max{1− α, 0} θ
Sigmoid 1− tanh(α) θ

Exponential exp(−α) 1−
√
1− θ2

Logistic log2(1 + exp(−α)) ψlog(θ)

Adversarial Robustness Theory and Algorithms Genghis Luo, Jackie Chen, Daniel Jin
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Construction of Classification-calibrated Surrogate Loss: Properties

Define the ψ transform of classification-calibrated surrogate loss ϕ:
[0, 1] → [0,∞) by

ψ = ψ̃∗∗

where ψ̃(θ) := H− (
1+θ
2

)
− H

(
1+θ
2

)
.

In fact, the function ψ(θ) is the largest convex lower bound on ψ̃.
The value H− (

1+θ
2

)
− H

(
1+θ
2

)
characterizes how close the

surrogate loss ϕ is to the class of non-classification-calibrated
losses.

Lemma 2.1 [BJM06]

Under Assumption 1, the function ψ has the following properties:
ψ is non-decreasing, continuous, convex on [0, 1] and ψ(0) = 0.

Adversarial Robustness Theory and Algorithms Genghis Luo, Jackie Chen, Daniel Jin
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Guarantee on C.c. Surrogate Loss Minimization: Upper Bound

Theorem 3.1 [ZYJ+19]

Let Rϕ(f ) := Eϕ[f (X)Y ] and R∗
ϕ := minf Rϕ(f ). Under

Assumption 1, for any non-negative loss function ϕ such that
ϕ(0) ≥ 1, any measurable f : X → R, any probability distribution
on X × {±1}, and any λ > 0, we have:

Rrob(f )−R∗
nat = Rnat (f )−R∗

nat +Rbdy (f )

≤ ψ−1(Rϕ(f )−R∗
ϕ) + Pr[X ∈ B(DB(f ), ϵ), f (X)Y > 0]

≤ ψ−1(Rϕ(f )−R∗
ϕ) + E

(
max

X′∈B(X,ϵ)
ϕ(f (X′)f (X)/λ)

)

Adversarial Robustness Theory and Algorithms Genghis Luo, Jackie Chen, Daniel Jin
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Proof of Theorem 3.1

Claim: Classification-Calibration [BJM06]

ψ(Rnat(f )− R∗
nat) ≤ Rϕ(f )− R∗

ϕ.

Proof.

Rnat(f )− R∗
nat = Rnat(f )− R(η − 1

2
)

1
= E

[
1{sign(f (x))̸=sign(η(X )− 1

2)} · |2η(X )− 1|
]

where 1 is because |(1− η)− η| = |2η − 1|. Therefore,

ψ (Rnat (f )− R∗
nat )

2
≤ E

[
ψ
(
1{sign(f (x)) ̸=sign(g(x)− 1

2)} · |2g(x)− 1|
)]

3
= E

[
1{sign(f (X ))̸=sign(n(x)− 1

2)} · φ(|2n(X )− 1|)
]

Adversarial Robustness Theory and Algorithms Genghis Luo, Jackie Chen, Daniel Jin
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Proof of Theorem 3.1 (continued)

ψ(Rnat(f )− R∗
nat)

3
= E[1{sign(f (X )) ̸=sign(η(X )− 1

2
)} · φ(|2η(X )− 1|)]

4
≤ E[1{sign(f (X )) ̸=sign(η(X )− 1

2
)} · ψ̃(|2g(X )− 1|)]

= E[1{sign(f (X ))̸=sign(η(X )− 1
2
)} ·

(
inf

α:α(2η(X )−1)≤0
Cη(X )(α)− H(η(X ))

)
5
≤ E[Cg(X )(f (X ))− H(g(X ))]

6
= Rϕ(f )− R∗

ϕ.

where 2 is because of Jensen’s Inequality, 3 is by ψ(0) = 0, 4 is

by ψ being the convex lower bound of ψ̃, 5 is because when
sign(f (X )) ̸= sign

(
η(X )− 1

2

)
, f (X ) is a valid α for H−1;

otherwise clear, and 6 is because E[Cη(X )] = Rϕ(f ).

Adversarial Robustness Theory and Algorithms Genghis Luo, Jackie Chen, Daniel Jin



Introduction An Optimization Point of View TRADES Model H-consistency References

Proof of Theorem 3.1 (continued)

By the claim, we can directly prove Theorem 3.1:
Proof.

Rrob (f )−R∗
nat = Rnat (f )−R∗

nat +Rbdy (f )

≤ ψ−1
(
Rϕ(f )−R∗

ϕ

)
+ E(X ,Y )∼D1{X∈B(DB(f ),ϵ),f (X )Y>0}

= ψ−1
(
Rϕ(f )−R∗

ϕ

)
+ Pr[X ∈ B(DB(f ), ϵ), f (X )Y > 0]

≤ ψ−1
(
Rϕ(f )−R∗

ϕ

)
+ Pr[X ∈ B(DB(f ), ϵ)]

= ψ−1
(
Rϕ(f )−R∗

ϕ

)
+ E max

X ′∈B(X ,ϵ)
1
{
f
(
X ′) f (X ) ≤ 0

}
= ψ−1

(
Rϕ(f )−R∗

ϕ

)
+ E max

X ′∈B(X ,ϵ)
1
{
f
(
X ′) f (X )/λ ≤ 0

}
≤ ψ−1

(
Rϕ(f )−R∗

ϕ

)
+ E max

X ′∈B(X ,ϵ)
ϕ
(
f
(
X ′) f (X )/λ

)

Adversarial Robustness Theory and Algorithms Genghis Luo, Jackie Chen, Daniel Jin
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Guarantee on C.c. Surrogate Loss Minimization: Lower Bound

Theorem 3.2 [ZYJ+19]

Suppose that |X | ≥ 2. Under Assumption 1, for any non-negative
loss function ϕ such that ϕ(x) → 0 as x → +∞, any ξ > 0, and
any θ ∈ [0, 1], there exists a probability distribution on X × {±1},
a function f : Rd → R, and a regularization parameter λ > 0 such
that Rrob (f )−R∗

nat = θ and

ψ

(
θ − E max

X ′∈B(X ,ϵ)
ϕ
(
f
(
X ′) f (X )/λ

))
≤ Rϕ(f )−R∗

ϕ

≤ ψ

(
θ − E max

X ′∈B(X ,ϵ)
ϕ
(
f
(
X ′) f (X )/λ

))
+ ξ

Adversarial Robustness Theory and Algorithms Genghis Luo, Jackie Chen, Daniel Jin
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Interpretation of Theorem 3.2

Theorem 3.2 demonstrates that in the presence of extra conditions
on the loss function, i.e., limx→+∞ ϕ(x) = 0, the upper bound in
Theorem 3.1 is tight. The condition holds for all the losses in
Table 2.

Adversarial Robustness Theory and Algorithms Genghis Luo, Jackie Chen, Daniel Jin
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TRADES Algorithm [ZYJ+19]: Optimization on Upper Bound

TRADES Algorithm [ZYJ+19]: Optimization on Upper Bound

Theorems 3.1 and 3.2 shed light on algorithmic designs of
adversarial defenses. In order to minimize Rrob (f )−R∗

nat , the
theorems suggest minimizing a

min
f

E{ϕ(f (X )Y )︸ ︷︷ ︸
for accuracy

+ max
X ′∈B(X ,ϵ)

ϕ
(
f (X )f

(
X ′) /λ)︸ ︷︷ ︸

regularization for robustness

}

aFor simplicity of implementation, we do not use the function ψ−1 and rely
on λ to approximately reflect the effect of ψ−1, the trade-off between the
natural error and the boundary error, and the tight approximation of the
boundary error using the corresponding surrogate loss function.

Adversarial Robustness Theory and Algorithms Genghis Luo, Jackie Chen, Daniel Jin
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TRADES Algorithm: Heuristic Extension to Multi-class Classification

Heuristically, [ZYJ+19] use two heuristics to achieve more general
defenses:
a) extending to multi-class problems by involving multi-class
calibrated loss;
b) approximately solving the mini-max problem via alternating
gradient descent.
For multi-class problems, a surrogate loss is calibrated if
minimizers of the surrogate risk are also minimizers of the 0− 1
risk [PS16]. Examples of multi-class calibrated loss include
cross-entropy loss. Algorithmically, [ZYJ+19] extend the problem
to the case of multi-class classifications by replacing ϕ with a
multi-class calibrated loss L(·, ·):

min
f

E
{
L(f (X ),Y ) + max

X ′∈B(X ,ϵ)
L
(
f (X ), f

(
X ′)) /λ}

where f (X ) is the output vector of learning model (with soft-max
operator in the top layer for the cross-entropy loss L(·, ·)),Y is the
label-indicator vector, and λ > 0 is the regularization parameter.

Adversarial Robustness Theory and Algorithms Genghis Luo, Jackie Chen, Daniel Jin
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TRADES Algorithm: Pseudocode

Adversarial Robustness Theory and Algorithms Genghis Luo, Jackie Chen, Daniel Jin
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H-consistency: Motivation

Recall in TRADES, surrogate loss functions were introduced to
create nice properties such as differentiability and convexity. And
the algorithm is designed to minimize functions containing these
surrogate losses.

min
f

E{ϕ(f (X )Y )︸ ︷︷ ︸
for accuracy

+ max
X ′∈B(X ,ϵ)

ϕ
(
f (X )f

(
X ′) /λ)︸ ︷︷ ︸

regularization for robustness

}

Then is becomes essential to ensure that minimizing the surrogate
loss aligns with minimizing the target loss.

Adversarial Robustness Theory and Algorithms Genghis Luo, Jackie Chen, Daniel Jin
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H-consistency Bound: Definition

To ensure the surrogate loss aligns with the target loss, an
H-consistency bound is introduced to connect surrogate loss
minimization to target loss minimization.

∀h ∈ H, Rtarget(h)−Rtarget,H ≤ f (Rϕ(h)−Rϕ,H),

where:

▶ f : R+ → R+: A non-increasing function.

▶ Rtarget(h)−Rtarget,H : True target loss within H.

▶ Rϕ(h)−Rϕ,H : Surrogate loss within H.

Adversarial Robustness Theory and Algorithms Genghis Luo, Jackie Chen, Daniel Jin
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H-consistency Issue in TRADES

It has been proven that TRADES’s
original surrogate loss does not satisfy
the H-consistency bound in certain
cases.
Leading to inaccurate hypothesis found
in classification tasks, especially in
multi-class classification settings.

Adversarial Robustness Theory and Algorithms Genghis Luo, Jackie Chen, Daniel Jin
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Smooth Adversarial Losses

A new family of surrogate functions smooth adversarial losses
was later introduced that satisfy the H-consistency bound.
This has lead to the creation of the PSAL(Principled Smooth
Adversarial Loss) algorithm that optimizes on smooth adversarial
losses, allowing it consistently outperform previous methods in
both accuracy and robustness.

Adversarial Robustness Theory and Algorithms Genghis Luo, Jackie Chen, Daniel Jin
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