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Stochastic Convex Optimization – Setup

Setup

▶ Instance set Z: arbitrary measurable set.

▶ Hypothesis set W: closed, convex subset of a Hilbert space.
For instance, W ⊆ Rd .

▶ Distribution D over Z.

▶ Risk/Loss function f : W ×Z 7→ R: convex and
Lipschitz-continuous w.r.t. its first argument w .

▶ Population loss: F (w) = Ez∼D [f (w , z)].

▶ Empirical loss: F̂ (w) = 1
m

∑m
i=1 f (w , zi ) for z1, . . . , zm ∼ D.

Goal: Find w⋆ ∈ W such that population loss gets minimized:

w⋆ ∈ arg min
w∈W

F (w)

This is an instance of the General Setting of Learning introduced by Vapnik in 1995.
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Stochastic Convex Optimization – Example

Take:
1 Z = X × {±1}, where X = {x ∈ Rd : ∥x∥2 ≤ B}.
2 W = {w ∈ Rd : ∥w∥2 ≤ W }.
3 f (w , (x , y)) = ℓ(⟨w , x⟩, y) for some convex and Lipschitz loss

function ℓ.

Uniform convergence. For any D, with high probability over
z1, . . . , zm ∼ D:

sup
w∈W

∣∣∣F (w)− F̂ (w)
∣∣∣ m→∞−−−−→ 0.

This justifies choosing the empirical risk minimizer (ERM):

ŵ = argmin
w

F̂ (w)

and guarantees that F (ŵ) converges to F (w⋆) = infw F (w) as m
increases (learnable).
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Reminder – Supervised learning

In Supervised Learning (e.g. classification):

▶ Loss f (h, (x , y)) = 1{h(x) ̸= y} (not convex)

Learnability is equivalent to the success of ERM.

What about problems in Stochastic Convex Optimization (SCO)?
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Failure of ERM in SCO

[SSSSS10] construct an instance, where:

▶ ERM fails! With high probability over the draw of the dataset:

F (ŵ)− F̂ (ŵ) =
1

2
> 0. (1)

▶ Uniform convergence does not hold! With high probability
over the draw of the dataset:

sup
w

∣∣∣F (w)− F̂ (w)
∣∣∣ ≥ 1

2
. (2)

Construction: In infinite dimensions.
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Dimension dependent sample complexity

▶ Related question: How large does the sample size m need to
be with respect to the input dimension d to guarantee that
ERM generalizes?

▶ Construction in finite dimensions due to [Fel16]. See board.
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Regularized ERM

Yet, regularized ERM always succeeds in SCO.

Theorem 1 ([SSSSS10])

Let f : W ×Z → R be such that W is bounded by B and f (w , z)
is convex and L-Lipschitz with respect to w. Let z1, . . . , zm be an
i.i.d. sample and let ŵλ be defined as:

ŵλ = arg min
w∈W

(
1

m

m∑
i=1

f (w , zi ) +
λ

2
∥w∥2

)
,

for λ =
√

16L2

δB2m
. Then, with probability at least 1− δ we have:

F (ŵλ)− F (w∗) ≤
√

8L2B2

δm
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Learnability in SCO – Stability

▶ Proof of previous theorem via stability. Reminder:

Definition 2 (Uniform Stability)

Let S and S ′ be any two training samples that differ by a single
point. A learning algorithm A is said to be uniformly β-stable if
the hypotheses it returns when trained on S and S ′ satisfy

∀z ∈ Z, |f (wS , z)− f (wS ′ , z)| ≤ β.

The smallest such β satisfying this inequality is called the stability
coefficient of A.

▶ Furthermore, [SSSSS10] show that stability is also sufficient
for learnability (in the General Setting of Learning of Vapnik).
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Learnability in SCO – Connection to OCO

▶ Alternative algorithm: Online projected Subgradient Descent
[Zin03] and Online-to-Batch conversion.

▶ The output w̃ of the online-to-batch algorithm is NOT an
empirical minimizer.

▶ Regularization is implicit in the definition of the algorithm.
See [SS07] for details.
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General Learnability

▶ [SSSSS10] We say that a learning rule A : ∪∞
m=1Zm 7→ W is

an Asympotic ERM with rate ϵERM(m) under D if:

ES∼Dm

[
F̂ (A(S))− F̂ (ŵ)

]
≤ ϵERM(m).

Remark: Regularized ERM of Theorem 1 is an Asymptotic ERM.
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Interim summary

▶ In SCO, regularization is essential.

▶ In SCO, some learning rules might fail to generalize well.

▶ As a result, SCO provides a framework to differentiate
between different algorithms.

We saw an instance where ERM fails if m ≤ O(d). What about
the output of algorithms? Can we prove similar lower bounds for

the generalization ability of actual algorithms?
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Gradient Descent

Gradient Descent (full-batch)

initialize at w1 ∈ W;

update wt+1 = ΠW

(
wt −

η

m

m∑
i=1

∇wt f (wt , zi )

)
, 1 ≤ t < T ;

return w̄S :=
1

S

S∑
i=1

wT−i+1.

where ΠW denotes the projection onto the convex set W ⊂ Rd ,
and η > 0 is the learning rate. The output is the average over the
last S iterates.
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Stochastic Gradient Descent

Stochastic Gradient Descent

initialize at w1 ∈ W;

update wt+1 = ΠW

(
wt − η∇wt f (wt , zi )

)
, 1 ≤ t < T ;

return w̄S :=
1

S

S∑
i=1

wT−i+1.
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Overview of results of [SSK24]

▶ Construction of a learning problem, where GD (starting from
a data-independent initialization) outputs a bad ERM, unless
trained with m = Ω(

√
d) samples.

▶ Construction of a learning problem, where SGD outputs an
underfit model, unless trained with m = Ω̃(

√
d) samples.

Significance: Previous known lower bound was of the form m = Ω(log d) due to

[AKL21].
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Sample complexity of GD (Theorem)

Theorem 3

Fix m > 0, T > 32002 and 0 ≤ η ≤ 1
5
√
T

and let

d = 178mT + 2m2 +max
{
1, 25η2T 2

}
. There exists a distribution

D over instance set Z and a convex, differentiable and 1-Lipschitz
loss function f : Rd × Z → R such that for GD (either projected or
unprojected; with W = Bd or W = Rd respectively) initialized at
w1 = 0 with step size η, for all t = 1, . . . ,T, the t-suffix averaged
iterate has, with probability at least 1

6 over the choice of the
training sample,

F (w̄T ,t)− F (w⋆) = Ω

(
min

{
η
√
T +

1

ηT
, 1

})
.
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Sample complexity of GD (Implication)

▶ Recall:

F (wT ,t)− F (w⋆) = Ω

(
min

{
η
√
T +

1

ηT
, 1

})
.

▶ For T = m and η = Θ(1/
√
m), we get:

F (wT ,t)− F (w⋆) = Ω(1).

▶ Furthermore, d = 178mT +2m2+max
{
1, 25η2T 2

}
= Θ(m2)

which implies that at least m ≥ Ω(
√
d) samples required for

GD to reach nontrivial population loss.
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Sample complexity of GD (Construction)

▶ Replicate Feldman’s construction in T orthogonal subspaces.

▶ “Encode” the bad ERM into the weights.

▶ Decode the bad ERM (from the gradients) and move towards
it in each of the subspaces in a sequential order.
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Sample complexity of GD (Construction)

See board for an outline of the proof.

Stochastic Convex Optimization Genghis Luo, Nikos Tsilivis

https://genghis-l.github.io/
https://cims.nyu.edu/~nt2231/page.html


Introduction Sample complexity of GD & SGD in SCO Conclusion References Appendix

Sample of SGD (Theorem)

A similar construction shows for SGD:

Theorem 4

Fix m > 2048 and 0 ≤ η ≤ 1
5
√
m

and let

d = 712m logm + 2m2 +max
{
1, 25η2m2

}
. There exists a

distribution D over instance set Z and a convex, 1-Lipschitz and
differentiable loss function f : Rd ×Z → R such that for one-pass
SGD (either projected or unprojected; with W = Bd or W = Rd

respectively) over T = m steps initialized at w1 = 0 with step size
η, for all t = 1, . . . ,T, the t-suffix averaged iterate has, with
probability at least 1

2 over the choice of the training sample,

F̂ (wT ,t)− F̂ (ŵ⋆) = Ω

(
min

{
η
√
T +

1

ηT
, 1

})
.
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Conclusion

▶ In SCO, different rules than ERM need to be considered.

▶ [SSK24] show that GD requires at least Ω(
√
d) samples in

order to generalize.

▶ In a follow-up work, [Liv24] improves this to Ω(d) samples,
which is tight. Almost no benefit of GD over plain ERM in
SCO!

When is GD provably better than a default ERM?
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Feldman construction

▶ U: set of 2d unit vectors in Rd such that |⟨u, v⟩| ≤ 1/8 for all
u ̸= v .

▶ Distribution D: uniform over P(U).

▶ Sample d i.i.d. sets V1, . . . ,Vd .

▶ Loss function: fF16(w ,V ) = max{1/2,maxu∈V ⟨w , u⟩}
(convex and Lipschitz).

▶ P [∃u0 ∈ U : u0 /∈ Vi , ∀i ∈ [m]] = 1− (1− 1
2d
)2

d ≥ 1− e.

▶ Notice that u0 is an ERM and FF16(u0)− F̂F16(u0) =
1
4 > 0.

Remark : Existence of U via probabilistic method (dimension d
large enough).
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GD lower bound construction

▶ Hypothesis space: W = Rd .

▶ Instance space: Z = P(U)× [m2], where U is the set of
nearly orthogonal vectors.

▶ Distribution D: uniform over P(U)× [m2].

▶ Loss function f : W ×
(
P(U)× [m2]

)
7→ R defined as:

f (w , (V , j)) = l1(w ,V ) + l2(w , (V , j)) + l3(w) + l4(w),

where:

▶ l1(w ,V ) =
√∑T

k=2 f
2
F16′(w

(k),V ), fF16′(w ,V ) =

max{ 3η
32 ,maxu∈V ⟨u,w⟩}.

▶ l2(w , (V , j)) = ⟨−ϕ(V , j),w (0)⟩, ϕ : P(U)× [m2] 7→ 2m2.
▶ l3(w) = max

{
δ1,maxψ∈Ψ

{
⟨ψ,w (0)⟩ − β⟨α(ψ),w (1)⟩

}}
.

▶ l4(w) = max
{
δ2,maxu∈U,k<T

{
3
8 ⟨u,w

(k)⟩ − 1
2 ⟨u,w

(k+1)⟩
}}

.
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