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Setup

P Instance set Z: arbitrary measurable set.

» Hypothesis set WW: closed, convex subset of a Hilbert space.
For instance, W C R9.

» Distribution D over Z.

» Risk/Loss function f : W x Z — R: convex and
Lipschitz-continuous w.r.t. its first argument w.

» Population loss: F(w) =E,.p [f(w,Zz)].
> Empirical loss: F(w) =137 f(w,z) for z1,...,2m ~ D.
Goal: Find w* € W such that population loss gets minimized:
*e in F
w’ € arg min (w)

This is an instance of the General Setting of Learning introduced by Vapnik in 1995.
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Take:

QO Z =X x {#£1}, where X = {x ¢ RY : ||x|| < B}.

O W={weR9: ||w| < W}

Q f(w,(x,y)) =£¢({w,x),y) for some convex and Lipschitz loss

function £.
Uniform convergence. For any D, with high probability over
Z1y...yZm ~ D:
sup [F(w) — F(w)| 2==

wew

0.
This justifies choosing the empirical risk minimizer (ERM):
W = arg min F(w)
w

and guarantees that F(W) converges to F (w*) = inf,, F(w) as m
increases (learnable).
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In Supervised Learning (e.g. classification):
» Loss f(h,(x,y)) = 1{h(x) # y} (not convex)

— - Uniform Learnable
Convergence with ERM

Learnability is equivalent to the success of ERM.

What about problems in Stochastic Convex Optimization (SCO)?
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[SSSSS10] construct an instance, where:
> ERM fails! With high probability over the draw of the dataset:

Hm—ﬁmy=%>o (1)

> Uniform convergence does not hold! With high probability
over the draw of the dataset:

%pHM—ﬁW)Z; )

Construction: In infinite dimensions.
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> Related question: How large does the sample size m need to
be with respect to the input dimension d to guarantee that
ERM generalizes?

» Construction in finite dimensions due to [Fell6]. See board.

I

Figure 1: Basic construction for d =
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[ Jefele]

Yet, regularized ERM always succeeds in SCO.

Theorem 1 ([SSSSS10])

Let f : W x Z — R be such that W is bounded by B and f(w, z)
is convex and L-Lipschitz with respect to w. Let z1,...,zy, be an
i.i.d. sample and let wy be defined as:

Wy = arg m|n < Zf w, z;) ;\||W||2>’

for A\ = 51357. Then, with probability at least 1 — § we have:
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» Proof of previous theorem via stability. Reminder:

Definition 2 (Uniform Stability)

Let S and S’ be any two training samples that differ by a single
point. A learning algorithm A is said to be uniformly (3-stable if
the hypotheses it returns when trained on S and S’ satisfy

VZEZ, |f(W5,Z)—f(W5/,Z)| SIB

The smallest such § satisfying this inequality is called the stability
coefficient of A.

» Furthermore, [SSSSS10] show that stability is also sufficient
for learnability (in the General Setting of Learning of Vapnik).
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> Alternative algorithm: Online projected Subgradient Descent
[Zin03] and Online-to-Batch conversion.

» The output W of the online-to-batch algorithm is NOT an
empirical minimizer.

> Regularization is implicit in the definition of the algorithm.
See [SSO07] for details.

Stochastic Convex Optimization Genghis Luo, Nikos Tsilivis


https://genghis-l.github.io/
https://cims.nyu.edu/~nt2231/page.html

Introduction ple complexity of GD & SGD in SCO Conclusion

000®

> [SSSSS10] We say that a learning rule A: U _;Z™— W is
an Asympotic ERM with rate egryi(m) under D if:

]ESND'" [ﬁ(A(S)) - A(VT/):| S EERM(ITI).

Exists Stable Learnable
<> <—>{_ Leamable |
AERM with AERM Learnable

Remark: Regularized ERM of Theorem 1 is an Asymptotic ERM.
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> In SCO, regularization is essential.
> In SCO, some learning rules might fail to generalize well.

> As a result, SCO provides a framework to differentiate
between different algorithms.

We saw an instance where ERM fails if m < O(d). What about
the output of algorithms? Can we prove similar lower bounds for
the generalization ability of actual algorithms?
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Gradient Descent (full-batch)

initialize at wy € W;

m
n
update Wepr = Ty | we — EZVWtf(WhZI') , 1<t < T,
i=1
1 S
return wg = g ; WT_jt+1-

where My, denotes the projection onto the convex set W C RY,
and 1 > 0 is the learning rate. The output is the average over the
last S iterates.
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Stochastic Gradient Descent

initialize at wy; € W;

update Wiyl = nw<Wt - nVWtf(Wt,z,-)>, 1<t<T,
1 S
return Ws = g Zl WT_i41.
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» Construction of a learning problem, where GD (starting from
a data-independent initialization) outputs a bad ERM, unless
trained with m = Q(+/d) samples.

» Construction of a learning problem, where SGD outputs an
underfit model, unless trained with m = Q(\/H) samples.

Significance: Previous known lower bound was of the form m = Q(log d) due to
JAKL21].
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Theorem 3

Fix m >0, T > 32002 andogngﬁ and let

d =178mT + 2m? + max {1,252 T?}. There exists a distribution
D over instance set Z and a convex, differentiable and 1-Lipschitz
loss function f : RY x Z — R such that for GD (either projected or
unprojected; with W = B9 or W = R respectively) initialized at
wy = 0 with step sizen, for all t =1,..., T, the t-suffix averaged
iterate has, with probability at least % over the choice of the
training sample,

F(wr.) — F(w*) =Q (min {nﬁ+ an 1}) .
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> Recall:
F(wr:) — F(w*) =Q (min {nﬁ+ an 1}) .
> For T =m and n = ©(1/y/m), we get:
F(wre) = F(w") = Q(1).

> Furthermore, d = 178mT +2m? + max {1,25n? T2} = ©(m?)
which implies that at least m > Q(+/d) samples required for
GD to reach nontrivial population loss.
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» Replicate Feldman’s construction in T orthogonal subspaces.

> “Encode” the bad ERM into the weights.

» Decode the bad ERM (from the gradients) and move towards
it in each of the subspaces in a sequential order.
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See board for an outline of the proof.

Stochastic Convex Optimization Genghis Luo, Nikos Tsilivis


https://genghis-l.github.io/
https://cims.nyu.edu/~nt2231/page.html

Sample complexity of GD & SGD in SCO Conclusion

A similar construction shows for SGD:

Theorem 4

Fix m> 2048 and 0 <n < ﬁ and let

d = 712mlog m + 2m? 4+ max {1,25n?m?}. There exists a
distribution D over instance set Z and a convex, 1-Lipschitz and
differentiable loss function f : RY x Z — R such that for one-pass
SGD (either projected or unprojected; with W = B9 or W = R?
respectively) over T = m steps initialized at w; = 0 with step size
n, forallt=1,..., T, the t-suffix averaged iterate has, with
probability at least % over the choice of the training sample,

Plwr.) = Flin) =2 (min (VT + 1),
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> In SCO, different rules than ERM need to be considered.
> [SSK24] show that GD requires at least Q(v/d) samples in
order to generalize.

» In a follow-up work, [Liv24] improves this to Q(d) samples,
which is tight. Almost no benefit of GD over plain ERM in
SCO!

When is GD provably better than a default ERM?
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> U: set of 29 unit vectors in R? such that |(u, v)| < 1/8 for all
u#v.
» Distribution D: uniform over P(U).
> Sample d i.i.d. sets Vp,..., V,.
» Loss function: frig(w, V) = max{1/2, max,cv(w, u)}
(convex and Lipschitz).
> PRweclU:wd¢V, Vieml=1-1-%)>1-e
» Notice that ug is an ERM and Frig(ug) — IEF]_ﬁ(UO) = % > 0.
Remark: Existence of U via probabilistic method (dimension d
large enough).
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» Hypothesis space: W =R,

> Instance space: Z = P(U) x [m?], where U is the set of
nearly orthogonal vectors.

» Distribution D: uniform over P(U) x [m?].

> Loss function f : W x (P(U) x [m?]) + R defined as:

f(w,(V,))) =h(w,V)+ k(w,(V,))) + B(w) + h(w),
where:

> h(w,V) \/Zk 2 frg (W, V), frig(w, V) =
max{32,maxuev(u w)}.

> o(w, (Vo) = (—6(V.j), w®), 6 P(U) X [m?] 1 22,

> h(w ) = max{51, MaXyecw {<¢, w(©) — Bla(y

> /4(W) = max {527 MaXucU,k<T {%<U, W(k)> - %
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