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Abstract
Efficient sampling from complex, high-dimensional probability distributions remains a central chal-
lenge in computational statistics and machine learning. In this report, we present a comprehensive
treatment of Hamiltonian Monte Carlo (HMC), an advanced Markov Chain Monte Carlo (MCMC)
technique that leverages Hamiltonian dynamics to propose distant, low-autocorrelation moves in
the target distribution. We begin by introducing the HMC algorithm—momentum augmentation,
leapfrog integration, and the Metropolis acceptance step—and discuss its key theoretical proper-
ties, including reversibility, symplecticity, and near-conservation of the Hamiltonian. We then relate
HMC to overdamped and underdamped Langevin dynamics and survey important extensions such
as the No-U-Turn Sampler (NUTS) and Riemannian Manifold HMC. Through a series of experi-
ments on Gaussian and “Donut” distributions across varying dimensions, as well as comparisons
of integrators, kinetic energy functions, and proposal schemes, we empirically demonstrate HMC’s
superior effective sample size and acceptance rates relative to Random-Walk Metropolis, albeit at
higher computational cost. Finally, we discuss practical considerations, limitations—such as tuning
requirements and gradient dependence—and outline future research directions, including adaptive
mass matrices, higher-order integrators, and integration with normalizing flows. Github codes for
our experiments can be found here.
Keywords: Hamiltonian Monte Carlo; Markov Chain Monte Carlo; leapfrog integrator; symplec-
ticity; high-dimensional sampling; effective sample size; No-U-Turn Sampler; Riemannian Mani-
fold HMC

1. Introduction and Background

Efficiently sampling from complex, high-dimensional probability distributions is a fundamental
challenge in computational statistics and machine learning. Traditional Markov Chain Monte Carlo
(MCMC) methods like the Random-Walk Metropolis (RWM) algorithm often suffer from slow con-
vergence and poor scalability in high dimensions. This is largely due to the diffusive “random walk”
behavior of proposal moves, which leads to highly autocorrelated samples and long wait times for
the chain to thoroughly explore the target distribution. In highly correlated or ill-conditioned set-
tings, RWM must take very small steps to maintain a reasonable acceptance rate, further exacerbat-
ing the inefficiency. These limitations are sometimes referred to as a “curse of dimensionality” for
MCMC, where the effective sample size per iteration drops precipitously as dimensionality grows.

Hamiltonian Monte Carlo (HMC) offers a powerful alternative by leveraging concepts from
physics – specifically Hamiltonian dynamics – to guide the sampling process more effectively. Orig-
inally introduced as Hybrid Monte Carlo by Duane et al. (1987) in the physics literature, HMC aug-
ments the state space with auxiliary momentum variables and then simulates Hamiltonian dynamics
to propose moves. By doing so, HMC can generate proposals that travel long distances through
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the target distribution with high acceptance rates, mitigating the random-walk behavior and high
autocorrelation that plague naive methods. In essence, HMC uses the gradient information of the
target density (through the Hamiltonian equations of motion) to inform the direction of proposals,
allowing the chain to “coast” through high-probability regions rather than diffusing slowly. This
approach has proven remarkably successful in practice, enabling efficient exploration of complex
posterior landscapes in Bayesian inference where simpler methods struggle.

HMC’s performance advantages have made it a cornerstone of modern Bayesian computing. It
was popularized in statistics by Neal (2012), who provided a detailed exposition and empirical evi-
dence of its benefits. Since then, HMC has been adopted in probabilistic programming frameworks
(such as Stan) and extended in various ways to improve its robustness and ease of use. For example,
the No-U-Turn Sampler (NUTS) of Hoffman and Gelman (2011) eliminates the need to set a tra-
jectory length by adaptively stopping when the trajectory starts to turn back on itself. Riemannian
Manifold HMC (RMHMC) of Girolami and Calderhead (2011) adapts the HMC method to the local
geometry of the target distribution by using position-specific mass matrices. In large-scale settings,
Stochastic Gradient HMC (SGHMC) and related algorithms Ma et al. (2015) use noisy subsampled
gradients with friction terms to scale HMC to massive datasets. These developments position HMC
within a broader literature of gradient-based MCMC methods, alongside Langevin algorithms, as
an indispensable tool for high-dimensional inference.

In this report, we provide a detailed account of the HMC algorithm and its theoretical founda-
tions, and we summarize experimental results comparing HMC to RWM on prototypical problems.
We begin with a description of the HMC algorithm, including the introduction of momentum, sim-
ulation of Hamilton’s equations via a leapfrog integrator, and the Metropolis acceptance step. We
then discuss the key theoretical guarantees that underpin HMC’s validity and efficiency including re-
versibility, symplecticity, and approximate Hamiltonian conservation, and also light on its relations
with (overdamped/underdamped) Langevin dynamics. Next, we present experimental results from
our simulations (reproducing and extending experiments by Neal (2012) and others) that highlight
HMC’s performance on low-dimensional and high-dimensional Gaussian and Donut distributions,
compared to RWM. Finally, we conclude with a discussion of HMC’s practical advantages and lim-
itations, its impact on modern statistical computing, and possible future directions for improvement
and research.

2. Algorithm

2.1. Motivation

The Hamiltonian Monte Carlo algorithm augments the original variable of interest (often called
the “position” variable) with an auxiliary momentum variable. If x ∈ Rd denotes the position
(the variables we ultimately care to sample from the target distribution π(x)), HMC introduces a
momentum p ∈ Rd̂. Let d̃ = d + d̂. Typically, a Hamiltonian H(x, p) : Rd̃ → R is then defined
as the sum of a potential energy U(x) : Rd → R and kinetic energy K(p) : Rd̂ → R:

H(x, p) = U(x) +K(p) (1)

Canonically, U(x) is deterministically chosen as minus the log target density, so that U(x) =
− log π(x). The kinetic energy K(p) is flexible in theory while usually taken to be quadratic
practically as K(p) = 1

2p
TM−1p, where M is a mass matrix (often set to the identity or diago-

nal). This choice corresponds to p being assigned a Gaussian distribution N (0,M) as its marginal
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(since p and x are independent). The introduction of p thus defines an lifted target distribution
π̃(x, p) ∝ exp[−H(x, p)] = exp[−U(x)−K(p)] on Rd̃, whose x-marginal is the original π(x) by
construction.

HMC proceeds by alternating between refreshing the momentum and updating (x, p) using
Hamiltonian dynamics proposals. A single iteration of HMC can be summarized as follows:

• Momentum resampling: First, sample a new momentum p from its Gaussian distribution in-
dependent of the current state. For example, one can draw p ∼ N (0,M), so each component
pi is drawn from N (0,mi) if M = diag(m1, . . . ,md). This step ensures the momentum is
randomized at each iteration, it is crucial in the sense that if momentum was not refreshed,
the dynamics alone would conserve H almost exactly, trapping the state on a single constant-
energy surface, so that the irreducibility of the Markov Chain is not satisfied. More details
will be discussed in the next step and in Section 3.

• Hamiltonian dynamics: Starting from the current position x and the freshly sampled p,
simulate Hamilton’s equations of motion for a fixed time length s using a numerical integrator.
Hamilton’s equations are given by the coupled ordinary differential equations:

dx

dt
= ∇pH(x, p) = ∇pK(p),

dp

dt
= −∇xH(x, p) = −∇xU(x), (2)

In particular for our choice, we have ∇pK(p) = M−1p, and ∇xU(x) = −∇x log π(x).
These equations describe how (x, p) would evolve in an artificial “physics” system with
Hamiltonian H . To see this, we can generalize and rewrite the coupled ODE system (2)
as:

d

dt
ỹ(t) = −J̃

(
ỹ(t)

)
∇TH

(
ỹ(t)

)
+ div J̃

(
ỹ(t)

)
(3)

for ỹ = ỹ(x, p) : Rd̃ → Rd̃ as the trajectory in the lifted Rd̃ space, and by the choice of

J̃ =

[
0 −I

d×d̂

I
d̂×d

0

]
, we see M d2

dt2
ŷ(t) = −∇TU

(
ŷ(t)

)
, which is in turn the Newton’s

Second Law. Indeed, the generator of the Hamiltonian ODE system (3) has good proper-
ties, it is invariant w.r.t. π̃H ∝ e−H (further, skew-reversible), time-symmetrical, and
Hamiltonian-conserving (thus, non-irreducibility), while skew-reversibility of the Hamil-
tonian generator can imply the reversibility of the chain under mild conditions, and non-
irreducibility is bypassed by previous momentum resampling step. See more details in Sec-
tion 3.

As most realistic U(x) are not analytically integrable, HMC uses a symplectic integrator
(one that preserves volume and approximates energy well) to simulate the dynamics. The
most common choice is the leapfrog integrator (we have also tested other symplectic integra-
tors like modified Euler scheme and non-symplectic integrators like classical Euler schemes,
it is natural to expect symplectic over non-symplectic integrators, see details in Section 4),
which discretizes time length into small steps of size ϵ and alternates updates of x and p:

– p← p− ϵ
2∇xU(x) (half-step update of momentum),

– x← q + ϵM−1p (full-step update of position using the new momentum),
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– p← p− ϵ
2∇xU(x) (another half-step for momentum using updated position).

These three sub-steps constitute one leapfrog step of size ϵ, after which (x, p) has been ad-
vanced by a discrete time ϵ. To simulate for a total of s units of time, one performs L = [s/ϵ]
leapfrog steps in sequence. The result is a proposal state (x∗, p∗) obtained by following the
approximate Hamiltonian trajectory from the starting point. Crucially, the leapfrog integrator
(or generally symplectic integrator) is time-reversible and volume-preserving. It also accu-
mulates only small error in the Hamiltonian, which tends to remain bounded even for many
steps if ϵ is well-chosen. This means the simulated trajectory closely follows a constant-
energy contour of the true Hamiltonian, reaching a point that has nearly the same H value as
the start. See more details in Section 3 and 4.

• Metropolis acceptance step: After the L leapfrog steps, we have a candidate new state
(x∗, p∗). To correct for the discretization error (since the leapfrog integration is not exact),
HMC uses a Metropolis–Hastings acceptance criterion. We accept the proposed state with
probability

α = min {1, exp [−H (x∗, p∗) +H(x, p)]} = min{1, exp(−∆H)},

where ∆H = H(x∗, p∗) − H(x, p) is the change in the Hamiltonian along the numerically
simulated trajectory. If energy were exactly conserved (∆H = 0) as in the continuous limit,
the acceptance probability would be always 1. If the move is rejected, the state remains at
(x, p). If the proposal is accepted, we take the new position x∗ as the next sample and set
p∗ ← −p∗ as a negation step. This step is crucial in the theoretical sense to keep the proposal
distribution symmetric in HMC (thus does not appear in the acceptance ratio), while it can be
simply neglected because the kinetic energy we use is often even and we will resample the
momentum next round.

In summary, HMC generates a Markov chain in the lifted (x, p) ∈ Rd̃ space where proposals are
informed by Hamiltonian dynamics. Each iteration uses gradient information to propose a distant
move that is then accepted or rejected with a probability that corrects for any simulation error. The
use of momentum and dynamics helps the chain “inertially” navigate the energy landscape, avoiding
the diffusive behavior of random-walk proposals.

2.2. Pseudocode

Pseudocode for a basic HMC update is given in Algorithm 1.

2.3. Relevant Extensions and Variants

Many improvements to the basic HMC algorithm have been developed. As mentioned, the No-U-
Turn Sampler (NUTS) automatically tunes the number of leapfrog steps L by doubling the trajectory
length s until a U-turn is detected, thereby eliminating the need for the user to set a path length a
priori. Riemannian Manifold HMC (RMHMC) generalizes HMC to use a position-dependent mass
matrix M(x), effectively integrating geodesics on a manifold informed by the local curvature of the
target density Girolami and Calderhead (2011). This can dramatically improve sampling for distri-
butions with heterogeneous curvature (e.g. Neal’s funnel distribution) but at a higher computational
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Algorithm 1 Hamiltonian Monte Carlo with Metropolis

Require: initial position X(1), step size ϵ, mass matrix M , # of leapfrog steps L, sample size N
1: for t = 1, 2, . . . , N do
2: Sample momentum: P (t) ∼ N (0, M)
3: Set (X0, P0)← (X(t), P (t))
4: P0 ← P0 − ϵ

2 ∇U(X0)
5: for i = 1 to s do
6: Xi ← Xi−1 + ϵM−1Pi−1

7: Pi ← Pi−1 − ϵ∇U(Xi)
8: end for
9: PL ← PL − ϵ

2 ∇U(XL)
10: Set proposal (X∗, P ∗)← (XL, −PL) {A negation step that can be often neglected}
11: Draw u ∼ Uniform(0, 1)
12: Compute ρ = exp

(
H(X∗, P ∗) − H(X(t), P (t))

)
13: if u < min(1, ρ) then
14: X(t+1) ← X∗

15: else
16: X(t+1) ← X(t)

17: end if
18: end for
19: return {X(t)}Nt=1

cost (one must compute matrix derivatives or factorings). Partial momentum refreshment schemes
Horowitz (1991) have been proposed where only a fraction of the momentum is renewed each
iteration, to improve mixing while retaining some persistent direction between iterations. For big-
data problems, where evaluating∇xU(x) on the full dataset is expensive, stochastic gradient HMC
methods using minibatch estimates of the gradient was introduced by Ma et al. (2015). Finally,
recent research has explored combining HMC with normalizing flows (e.g. Neural Hamiltonian
Flow in Toth et al. (2019)) to transform the sample space into one easier for HMC to explore. By
using deep learning to find a better representation or by iteratively morphing the distribution, these
approaches aim to further reduce autocorrelation and improve stability, pushing the limits of HMC
in challenging problem domains.

3. Theoretical Guarantees

The effectiveness of Hamiltonian Monte Carlo rests on solid theoretical foundations that ensure the
sampler maintains the correct target distribution and explores it efficiently.

3.1. Guarantees for Hamiltonian dynamics

The key properties inherited from Hamiltonian dynamics are: (1) invariant w.r.t. π̃H ∝ e−H

(further, skew-reversible), (2) time-symmetricity of the trajectory, (3) Hamiltonian-conserving
(thus, non-irreducibility), and (4) symplecticity when d = d̂. We discuss each in turn:
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We first lay a solid foundation for preparation. Let x̃ = (x, p) ∈ Rd̃, we assume lim inf x̃→∞
H(x̃)
∥x̃∥ >

0 to make sure that exp(−H(x̃)) is integrable, and thus the Boltzmann distribution π̃H(x̃) ∝
exp(−H(x̃)) is well-defined. Specifically, in terms of the Boltzmann density, we can rewrite the
ODE (3) as:

d

dt
y(t) =

1

π̃H
(
y(t)

) div (π̃H (
y(t)

)
J̃
(
y(t)

))
The generator corresponding to the ODE (3) is:

LHf = ∇f 1

π̃H
div

(
π̃H J̃

)
(4)

The action of LH on a density µ is found (by an integration by parts) to be:

µLH = −div

(
µ

π̃H
divT

(
π̃H J̃

))
= −∇

(
µ

π̃H

)
div

(
π̃H J̃

)
− µ

π̃H
div

(
divT

(
π̃H J̃

))
= −∇

(
µ

π̃H

)
div

(
π̃H J̃

) (5)

where the second term of the second equation vanishes due to J̃’s anti-symmetricity.

• Invariance w.r.t. π̃H ∝ e−H and further, skew-reversibility:

Plugging in µ = π̃H in (5) we find that:

π̃HLH = 0 (6)

In fact, with respect to π̃H , the operator LH satisfies the even stronger property∫
g(x̃)LHf(x̃)π̃H(dx̃) = −

∫
f(x̃)LHg(x̃)π̃H(dx̃) (7)

for any test function f and g, which can be referred to as skew-reversibility w.r.t. π̃H . Thus,
in turn, it implies that:∫

f(x̃)g
(
y(t)(x̃)

)
π̃H(dx̃) =

∫
g(x̃)f

(
y(−t)(x̃)

)
π̃H(dx̃) (8)

which can be verified by fixing s ∈ [0, t] and let w(s) =
∫
f
(
y(s−t)(x̃)

)
g
(
y(s)(x̃)

)
π̃H(dx̃)

and then showing that the derivative of w is zero.

• Time-symmetricity of the trajectory ỹ(t) on the lifted space Rd̃:

If we make two more canonical assumptions, say: (1) H(x̃) is an even function of the mo-
mentum variable p, i.e.,

H(x, p) = H(x,−p),

and (2) J̃ has a particular form:

J̃(x̃) =

[
0 −J(x)

JT(x) 0

]
(9)
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where J is a d× d̂ matrix valued function of only the x variables. Then, under these assump-
tions, we can write ODE (3) as:

d

dt

(
y(t)

ŷ(t)

)
=

(
J
(
y(t)

)
∇T

xH
(
y(t)

)
−JT

(
y(t)

)
∇T

xH
(
y(t)

)
+ div JT

(
y(t)

)).
The action of the operator LH on functions f becomes

LHf = ∇xfJ∇T
pH −∇pfJ

T∇T
xH +∇pf div JT, (10)

and its action on probability densities u becomes

µLH = −∇pµJ∇T
pH +∇pµJ

T∇T
xH − (µ∇pH +∇pµ) div J

T

Notice that if for some test function f we set f−(x̃) = f(x,−p), then we have:

LHf−(x,−p) = −LHf(x̃). (11)

A similar formula holds if we apply LH to µ−(x) = µ(x,−p).

Indeed, (11) has several remarkable and useful ramifications. For one, it implies that if f is
an even (odd) function of p then LHf is an odd (even) function of p. In particular, if f and g
are both even functions of p, then: ∫

g(x)LHf(x)dx = 0

For another, (11) implies that both the functions

ỹ(−t)(x̃) and
(
y(t)(x,−p),−ŷ(t)(x,−p)

)
solves ODE (3) in general with the sign of the right hand side reversed and with initial con-
dition x̃. By the uniqueness of solutions to the ODE, we find therefore that the two functions
are equal, i.e.,

ỹ(−t)(x̃) =
(
y(t)(x,−p),−ŷ(t)(x,−p)

)
(12)

Equation (12) is often referred to as the time-symmetricity of the trajectory ỹ(t) on the lifted
space Rd̃. It tells us that the inverse of the flow map at time t can also be written as a forward-
in-time integration using an initial condition with reversed sign in p. Time reversal symmetry
of the trajectory is not to be confused with the notion of reversibility of the chain, but indeed
time reversal symmetry can be used to show that a Markov process incorporating Hamilton’s
ODE are indeed reversible. See in Section 3.3.

Last but not least, time reversal symmetry combined with expression (8) implies that if f and
g are even functions of x̃ then∫

g(x̃)f
(
ỹ(t)(x̃)

)
π̃H(dx̃) =

∫
f(x̃)g

(
ỹ(t)(x̃)

)
π̃H(dx̃) (13)
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• Hamiltonian-conserving (thus, non-irreducible)

When J̃ is a constant matrix (e.g., a canonical choice of J̃ =

[
0 −I

d×d̂

I
d̂×d

0

]
), by (10), we

have:

LHH = ∇H ·
J̃∇π̃H +

(
∇ · J̃

)
π̃H

π̃H
= ∇H · J̃∇π̃H

π̃H
= (∇H)T J̃ (∇H) = 0 (14)

where the last equation is because for ∀v ∈ Rd̃, as vT J̃v ∈ R, we have vT J̃v =
(
vT J̃v

)T
=

−vT J̃v due to skew-symmetricity of J̃ . Therefore, the Hamiltonian system (3) is Hamiltonian
conservative, i.e., with fixed initial point, every trajectory ỹ(t) preserves the Hamiltonian.

Moreover, when J is constant, µLH = 0 for an density µ of the form µ(x) = ρ(H(x))
for some function ρ. In words, the flow map y(t)(x) preserves any density of this form
(including the constant density). However, it is also clear that if the value of H is preserved,
the solutions to (3) cannot be ergodic (or, cannot be irreducible). Indeed, this irreducibility
issue is bypassed by the momentum resampling step in the MCMC algorithm.

• Symplecticity when d = d̂:

Last but not least, under very specific situation when d = d̂, the Hamiltonian dynamics (3)
is volume-preserving in the sense that for the vector field of (3): V : R2d → R2d, (x, p) 7→( ∇pH(x,p)
−∇xH(x,p)

)
, we have:

divV =
d∑

i=1

[
∂

∂xi

dxi
dt

+
∂

∂pi

dpi
dt

]
=

d∑
i=1

[
∂

∂xi

∂H

∂pi
− ∂

∂pi

∂H

∂xi

]
= 0. (15)

Volume preservation is also a consequence of Hamiltonian dynamics being symplectic, in
the sense that the Jacobian matrix, Bs, of the transition operator Ts from (x(t), p(t)) to
(x(t+s), p(t+s)) satisfies

BT
s J

−1Bs = J−1.

This implies volume conservation, since det
(
BT

s

)
det

(
J−1

)
det (Bs) = det

(
J−1

)
implies

that det (Bs)
2 is one. When d > 1, the symplecticity condition is stronger than volume

preservation. Although this symplecticity property is only constrained in d = d̂, it motivates
us to determine the integrators we use in practice for running the discretized Hamiltonian
ODE 3. We illustrate three integrators in Section 3.2, and compare their performances in
Section 4.

3.2. Guarantees for leapfrog integrator and its BAD alternatives

Recall that there are three integrators we are interested at (for simplicity, let M = diag(m1, . . . ,md)):

• Euler’s method
pi(t+ ε) = pi(t) + ε

dpi
dt

(t) = pi(t)− ε
∂U

∂xi
(x(t)),

xi(t+ ε) = xi(t) + ε
dxi
dt

(t) = xi(t) + ε
pi(t)

mi
.
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Figure 1: (q is x) Euler’s method initialized at (x, p) = (0, 1), with H(x, p) = x2/2 + p2/2 and
step size ε = 0.3 as in Neal (2012)

• Modified Euler’s method

pi(t+ ε) = pi(t)− ε
∂U

∂xi
(x(t)),

xi(t+ ε) = xi(t) + ε
pi(t+ ε)

mi
.

Figure 2: (q is x) Modified Euler’s method initialized at (x, p) = (0, 1), with H(x, p) = x2/2+p2/2
and step size ε = 0.3 as in Neal (2012)
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• Velocity-Verlet / Leapfrog method

pi(t+ ε/2) = pi(t)− (ε/2)
∂U

∂xi
(x(t)),

xi(t+ ε) = xi(t) + ε
pi(t+ ε/2)

mi
,

pi(t+ ε) = pi(t+ ε/2)− (ε/2)
∂U

∂xi
(x(t+ ε)).

Figure 3: (q is x) Leapfrog method initialized at (x, p) = (0, 1), with H(x, p) = x2/2 + p2/2 and
step size ε = 0.3 for (c), step size ε = 1.2 for (d) as in Neal (2012)

We briefly discuss how the error from discretizing the dynamics behaves in the limit as the
step size, ε, goes to zero; Leimkuhler and Reich (2005) provide a much more detailed discussion.
For useful methods, the error goes to zero as ε goes to zero, so that any upper limit on the error
will apply (apart from a usually unknown constant factor) to any differentiable function of state-for
example, if the error for (x, p) is no more than order ε2, the error for H(x, p) will also be no more
than order ε2.

The local error is the error after one step, that moves from time t to time t + ε. The global
error is the error after simulating for some fixed time interval, s, which will require s/ε steps. If the
local error is order εp, the global error will be order εp−1 —the local errors of order εp accumulate
over the s/ε steps to give an error of order εp−1. If we instead fix ε and consider increasing the
time, s, for which the trajectory is simulated, the error can in general increase exponentially with
s. Interestingly, however, this is often not what happens when simulating Hamiltonian dynamics
with a symplectic(volume-preserving) method, as can be seen in Figure 2 and Figure 3. See in Neal
(2012) for a detailed discussion.

The Euler method and its modification above have order ε2 local error and order ε global error.
The leapfrog method has order ε3 local error and order ε2 global error. As shown by Leimkuhler
and Reich (2005) Section 4.3.3, this difference is a consequence of leapfrog being reversible, since
any reversible method must have global error that is of even order in ε.
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3.3. Further guarantees for Hamiltonian Monte Carlo

In Algorithm 1, we in fact have a reversible chain if we choose the kinetic energy K(p) to be an
even function in p, and our J̃ as (9). To see this note that the transition operator for the Markov
chain X(t) generated by Algorithm 1 is given by:

Tsf(x) =
∫
f
(
y(s)(x, p)

)
e−K(p)dp

Zp

Appealing to time reversal symmetry (12) and the fact that K is an even function we can apply (13)
to see that:∫

g(x)Tsf(x)π(dx) =
∫

g(x)f
(
y(s)(x)

)
π̃H(dx)

=

∫
f(x)g

(
y(s)(x)

)
π̃H(dx) =

∫
f(y)Tsg(y)π(dy),

i.e. that the X(k) process is reversible with respect to π.

3.4. Relations with Langevin dynamics

Indeed, Hamiltonian Monte Carlo methods have close relations with Langevin dynamics. If we
choose the integration step to be 1 for each generation round, assume that we also make a typical
choice of kinetic energy as: K(p) = ∥p∥22/2, then we fully recovered the overdamped Langevin
dynamics:

X
(k+1)
h = X

(k)
h + hS

(
X

(k)
h

)
∇T logπ

(
X

(k)
h

)
+ hdivS

(
X

(k)
h

)
+

√
2hS

(
X

(k)
h

)
ξ(k+1)

(16)

where for any h > 0, Xh is a Markov chain step in R generated according to the Metropolis-
Hastings rule with proposal density q(y | x) = N (x, 2h).

Therefore, we expect that if we choose n very large in Algorithm 1, we will expend substantial
effort to generate a single update of the chain X(k) and the scheme will become inefficient. On the
other hand, if we choose n to be small, the performance of this scheme is similar to the correspond-
ing overdamped Langevin scheme. It is then often the case that for intermediate choices of n, the
HMC scheme outperforms its overdamped Langevin analogue (even accounting for the additional
cost of the multiple evaluations of ∇ log π). Ma et al. (2015) discusses using one-pass SGD to
overcome this issue.

An alternative approach to deriving possibly ergodic schemes based on the Hamiltonian ODE
is to add appropriate random terms at each integration step. This corresponds to the idea of under-
damped Langevin dynamics:

X
(k+1)
h = X

(k)
h − h(J + S

(
X

(k)
h

)
∇TH

(
X

(k)
h

)
+ hdiv(J + S)

(
X

(k)
h

)
+

√
2hS

(
X

(k)
h

)
ξ(k)

(17)

for independent ξ(k) with E
[
ξ(k)

]
= 0 and cov

[
ξ(k)

]
= I (and finite higher moments). See more

details discussed in Septier and Peters (2015).
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4. Experimental Results

In this section, we present some experiment results to show some of the most important attributes
of HMC and modify the components of HMC for structural comparisons.

4.1. Experiment 1: Motivations

In this experiment, we want to show that the Hamiltonian Monte Carlo (HMC) sampler generally
performs better than the Markov Chain Monte Carlo (MCMC) sampler on the 2D Donut distribution,
which is specially tailored to the HMC sampler.

HMC vs MCMC: Settings
HMC vs RWM: Results

Figure 4: Comparison between HMC and MCMC

As shown in the Figure 4, the HMC sampler covers the probability space more efficiently by
exploring the majority of the high-density region, while the MCMC sampler covers only a very
small proportion. Even if the acceptance-rate is comparable, the caveat is that when computing the
target distribution’s moments (mean, variance, etc.), using samples from the MCMC sampler could
have a larger bias. For high-dimensional probability space, the problem will be more obvious.

Notice that in this experiment we fix the proposal distribution for MCMC to be standard Gaus-
sian, the standard Gaussian kinetic energy function K(p) = 1

2p
⊤M−1p with Leapfrog integrator

for the HMC sampler configuration. This is because these settings are oftenly used in practice and
prove to be stable and excel in performance. However, we are interested in whether changing these
settings would affect the overall performance for HMC and MCMC, which leads to the following
experiments (Experiment 2 to Experiment 5).

4.2. Experiment 2: MCMC Proposal Comparison

In experiment 1, we already show that MCMC performs worse than HMC on 2D Donut distribution
with standard gaussian proposal. So we aim to show whether other proposal choices (student-t with
df = 3, uniform) will give a performance bonus on MCMC.

The experiment setting and results of the experiment are shown in Figrue 5, and there are three
things worth noting:

1. The proposal is defined as x′ = x + ϵ where ϵ belongs to our proposal distribution. For
different candidates in our experiment, we have:

12
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HMC vs MCMC: Settings

HMC vs RWM: Results

Figure 5: Comparison between HMC and MCMC

(a) For gaussian proposal, it is defined as ϵ ∼ N
(
0, s2I

)
and each ϵi is sampled indepen-

dently according to the marginal gaussian distribution.

(b) For student-t proposal, it is defined as x∗ = x + ϵ,where ϵi ∼ s · tν , f (ϵi) =
Γ( ν+1

2 )
√
νπΓ( ν

2 )s

(
1 + 1

ν

(
ϵi
s

)2)− ν+1
2 and each ϵi is sampled independently.

(c) For uniform proposal, it is defined as x∗ = x + ϵ, ϵi ∼ U(−s, s) where f (ϵi) ={
1
2s , if ϵi ∈ [−s, s]
0, otherwise

and each ϵi is sampled independently.

2. We choose to vary the scale(denoted as s), which can be interpreted as the exploration radius
of proposal distribution; the larger the scale, the farther the distance will be between the
current sample and the next hop proposal. Mathematically, we have:

3. As the scale increases, the acceptance rate of the MCMC sampler drops. Larger scale increase
the likelihood that the proposal sample falls outside of the high-density region and is rejected.
Thus the acceptance rate function w.r.t. scale is monotonically decreasing.

4. ESS is computed by ESS = n
1+2

∑K
k=1 ρk

where K = min
(⌊

n
3

⌋
,max {k : ρk ≥ 0.05}

)
.

For smaller scales, the adjacent samples are highly correlated, leading to a bigger denominator
and thus a smaller ESS. For bigger scales, lots of samples are rejected, leading to a smaller
numerator and thus a smaller ESS. Only with proper s value will we reach a decent level of
ESS.
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In conclusion, we have to nitpick both the scale and proposal distribution in order to have a
comparable performance with HMC on 2D Donut, which shows the power of HMC.

4.3. Experiment 3: HMC Kinetic Energy Function vs Step Size Comparison

Having shown that HMC generally performs better than MCMC, we want to now modify the com-
ponent of HMC. In this experiment, we modify the kinetic energy function definition. From the
Hamiltonian’s definition in (1), the U(q) term is generally fixed for Hamiltonian dynamics, but we
can modify K(p) the definition, where our candidates include:

1. Standard Gaussian kinetic energy function: K(p) = 1
2p

⊤M−1p

2. Student-t Kinetic energy function: K(p) = ν
2 log

(
1 + 1

νp
⊤M−1p

)
suggested by Living-

stone and Girolami (2014)

3. Alpha-Norm Kinetic energy function: Kα(p) = 1
α

∑d
i=1 |zi|

α = 1
α

∥∥M−1/2p
∥∥α
α

suggested
by Betancourt (2018)

HMC vs MCMC: Settings

HMC vs RWM: Results

Figure 6: Comparison between HMC kinetic energy function vs step size

As Figure 6 shows,

1. Gaussian kinetic energy leads to simple linear momentum updates and pairs naturally with
the assumption of independent normal momentum variables. This ensures the numerical sta-
bility of leapfrog integrator is maximized, especially when using an identity mass matrix.
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In contrast, student-t kinetic energy introduces heavy tails, which can destabilize momen-
tum updates. Moreover, α-norms (like L1 or L3) are non-quadratic, leading to less smooth
Hamiltonian surfaces, making gradients less stable and energy error more sensitive to step
size.

2. With small ε, all integrators approximate the true continuous trajectory well. As ε increases,
discretization introduces more error, especially for non-Gaussian forms which are less amenable
to numerical integration. The leapfrog integrator remains stable up to a critical ϵ, beyond
which energy conservation breaks down.

4.4. Experiment 4: HMC Integrator vs Step Size Comparison

Next we modify the integrator for HMC during the discretization of hamiltonian surfaces. Our can-
didates include the Euler’s method, modified Euler’s method and leapfrog integrator, as introduced
here()

HMC vs MCMC: Settings

HMC vs RWM: Results

Figure 7: Comparison between HMC integrators vs step size

We observer the following from Figure 7:

1. Leapfrog (green) maintains high acceptance rates even as it ε increases, while Euler’s (blue)
and Modified Euler’s (orange) show rapidly declining acceptance as they ε increase. One
of the reasons is that Leapfrog is symplectic and time-reversible - it conserves energy better
and keeps the proposal within the ”correct” region of phase space, while Euler’s methods are
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not symplectic, and they accumulate integration error much faster, causing large deviations in
energy and→ low acceptance. Even if modified Euler’s method is also symplectic, it is not
strictly following the Hamiltonian surface, causing bigger error.

2. On a log scale, Leapfrog has orders of magnitude lower error, especially at large step sizes.
Euler’s/modified Euler’s have much higher and steeper energy error growth. The reason is that
The Hamiltonian is supposed to be conserved along the simulated trajectory. The leapfrog
integrator introduces second-order errors that largely cancel out, while Euler’s introduces
first-order drift. This means:∣∣H (

x∗, p′
)
−H(x, p)

∣∣≪ for Leapfrog vs Euler’s ,

where H is the Hamiltonian.

The final takeawawy is that the leapfrog integrator is the backbone of HMC because it is specifi-
cally designed to simulate Hamiltonian systems accurately. It preserves the geometry of the system,
which is crucial for MCMC methods that rely on detailed balance and reversibility.

4.5. Experiment 5: MCMC vs HMC Across Dimensions Comparison

After the experiments focused on 2D Donut distribution, we want to extend our experiment settings
to high dimensional distribution, which is shown in Table 1.

For the evaluation metric, we choose acceptance rate, ESS, and Number of floating-point
operations (FLOPs). Table 2 shows the definition of our FLOPS:

The experiment results is shown in Figure 8, and we observe:

1. For Donut distribution:

(a) Acceptance Rate: HMC achieves higher acceptance rates than MCMC at low dimen-
sions due to its ability to make informed proposals using gradients. However, as dimen-
sionality increases, the probability mass becomes increasingly concentrated on a thin
shell, making it difficult for any sampler—including HMC—to propose moves that stay
on this shell. Consequently, the acceptance rate for all samplers drops steeply, high-
lighting the challenge of exploring curved manifolds in high dimensions.

(b) ESS: HMC consistently achieves higher ESS than MCMC, especially at low to moderate
dimensions. This is due to its ability to produce less correlated samples by simulating
Hamiltonian dynamics. However, as dimension increases, the high curvature of the shell
degrades performance, causing ESS for all samplers—including HMC—to drop sharply.
MCMC methods struggle even more because their random proposals often jump outside
the thin shell, leading to low acceptance and highly autocorrelated chains.

2. For standard gaussian distribution:

(a) Acceptance Rate: HMC maintains a high acceptance rate across all dimensions, signif-
icantly outperforming MCMC methods. This is because the Gaussian’s smooth, convex
landscape is well-suited for HMC’s gradient-based dynamics, allowing it to propose
long-range moves that remain within high-density regions. In contrast, MCMC propos-
als deteriorate quickly with increasing dimensions, as random walks are less likely to
land in regions of high probability, leading to a marked decline in acceptance rate.

16



REPORT

Table 1: Experimental Configuration Overview

Category Configuration

General Settings
Number of Points to Sample 1000
Warmup Samples 100
Dimensions Tested [2, 5, 10, 20, 50, 100, 200, 300]

Target Distributions
Standard Gaussian
Type Multivariate Normal
Mean Zero vector
Covariance Identity matrix
Donut Distribution
Type N-dimensional shell
Radius 3.0
Donut Thickness Variance (σ2) 0.5

MCMC Settings — Proposal Distributions
Gaussian Covariance = Identity matrix
Student-t Degrees of freedom = 3
Uniform Range = [–1, 1]

HMC Settings
Leapfrog Integrator
Trajectory Length (s = ϵ× L) 0.5
Step Size (ϵ) 0.1
Kinetic Energy Distributions
Gaussian Standard normal momentum
Student-t Degrees of freedom (ν) = 3.0

(b) ESS: HMC delivers dramatically higher ESS across all dimensions, maintaining strong
performance even in high dimensions. This is due to the fact that we choose a gaus-
sian kinetic energy function, which captures the shape of the target distribution
very well. In contrast, MCMC’s ESS rapidly declines due to poor scaling of random
walk proposals, which increasingly fail to explore the space efficiently as dimensionality
grows.

3. FLOPS: Across both distributions, HMC incurs significantly higher computational cost (FLOPs)
than MCMC due to its reliance on gradient evaluations and multiple leapfrog steps per sam-
ple. MCMC remains relatively cheap per sample, but its low ESS means more samples
are needed for the same statistical accuracy. Notably, HMC’s computational cost increases
linearly (or worse) with dimension, but its efficiency per effective sample remains com-
petitive—especially in the Gaussian case, where its FLOPs/ESS ratio is superior to that of
MCMC.
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Table 2: FLOP Accounting Definitions for HMC and MCMC Samplers

Operation FLOPs Count Remarks

Vector Addition (x+ y) d One addition per element
Scalar-Vector Multiplication (a · x) d One multiplication per element
Matrix-Vector Multiplication (A · x) d2 Assumes dense matrix
Gradient Evaluation (∇ log p(θ)) 2d Approximated per call
Dot Product (x⊤y) d Inner product
Logarithm or Exponential (log x, expx) 1 Approximated as unit cost
Division (e.g. f(θ′)

f(θ) ) 1 Used in acceptance ratio
Acceptance Decision (Comparison) 0 Logic-only, no arithmetic FLOPs

4. Curse of dimensionality: Due to its special property, there is no cure-for-all sampler (pro-
posal distribution choices, integrator choices, kinetic energy function choices) in high dimen-
sion for Donut distribution.

Donut Distribution
Standard Gaussian Distribution

Figure 8: MCMC vs HMC Across Dimensions Comparison

4.6. Experiment 6: High Dimension HMC Variants Comparison

In this experiment, we aim to verify the hypothesis that the Metropolis-Hastings correction step may
not be necessary in high-dimension settings and decreasing step size may be more helpful. Results
are shown in Figure 9, Figure 10, Figure 11.
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Donut Distribution
Standard Gaussian Distribution

Figure 9: HMC Variants Comparison - 100d

Donut Distribution
Standard Gaussian Distribution

Figure 10: HMC Variants Comparison - 200d

In conclusion, the metropolis correction step is not necessary in high dimensions when the step
size is small enough. We can reach the same level of or even better ESS performance without
metropolis correction just by using a small step size(ϵ). But we cannot ignore the fact that with
Metropolis correction we can significantly decrease the FLOPs and reach a similar level of ESS as
without Metropolis correction.

5. Discussion and Conclusion

This is a great project with a very interesting topic, we enjoy a lot working on HMC for this semester.
We learned the motivation of HMC algorithm, we delved deep into the theoretical foundations of it,
and spent huge chunks of time into testing this algorithm and experimenting on new ideas. Below
are a few words we would like to discuss about the HMC algorithm based on our experimental
observations and theoretical understandings.
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Donut Distribution
Standard Gaussian Distribution

Figure 11: HMC Variants Comparison - 300d

5.1. Practical advantages

One of HMC’s major practical advantages is its ability to handle high-dimensional targets with
complex geometry (e.g., Donut distribution). Where Gibbs or Metropolis samplers might get stuck
exploring one dimension at a time or rejecting proposals that don’t fit a narrow ridge of probabil-
ity, HMC can simultaneously adjust all dimensions in a coordinated way, guided by the gradient
towards high-density regions. This makes it particularly powerful for highly correlated posteriors
(common in hierarchical Bayesian models) and targets with multimodal or curved densities (where
local Euclidean proposals struggle). HMC generates proposals that are often near-independently
distributed (especially with partial momentum refreshment, successive HMC states can be almost
uncorrelated), which means fewer iterations are needed to achieve a desired estimation accuracy.
Moreover, HMC’s use of continuous trajectories means it naturally avoids diffusive behavior and
can tunnel through energy barriers more effectively (though it is not a panacea for multimodality,
it often explores modes connected by reasonably low-energy paths well). In practice, we also find
that HMC provides useful diagnostics: the acceptance rate and energy error can indicate when the
sampler is behaving well or when step sizes are mis-tuned, and divergences (instances of integra-
tor instability) can highlight problematic regions of the posterior Betancourt (2018). Moreover, we
have tested on the idea of ”It is often better to increase the amount of discretization steps rather
than using Metropolis acceptance in high dimensional problems”, which is not very correct for
testing on high-dimensional Donut and Gaussian distributions. In fact, Metropolis acceptance step
compensates for the discretization error in a very efficient manner, which is somehow crucial in the
increasingly higher dimensional problems.

5.2. Limitations

Despite its strengths, HMC is not without limitations. Firstly, HMC requires gradient computations
of the log-density U(q) at each step of the trajectory. In problems where ∇U(q) is expensive or
not available in closed form, HMC can be computationally heavy. This is particularly an issue
in “big data” Bayesian problems, where U(q) sums contributions from millions of data points;
straightforward HMC would require a full pass through the data for each leapfrog step, which is
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infeasible. Stochastic gradient variants (SGHMC) Ma et al. (2015) have been developed to address
this by using minibatches and adding noise, at the cost of introducing some bias or requiring careful
calibration of friction. Secondly, HMC has several tunable parameters – notably the step size ϵ and
number of leapfrog steps L (or equivalently the trajectory length T = Lϵ), and the mass matrix M
– which must be chosen appropriately. Poor choices can lead to either inefficient sampling (if ϵ is
too small or L too short, producing small moves) or rejection of many proposals or even numerical
divergence (if ϵ is too large or L too long for the integrator to remain stable). In high dimensions,
setting these parameters by hand can be challenging; indeed, this was a barrier to wider adoption
of HMC until the advent of automatic tuning strategies. Algorithms like NUTS (which adapts L
on the fly) Hoffman and Gelman (2011) and adaptive step-size schemes (which adjust ϵ during a
warm-up phase to target a desired acceptance rate) have largely mitigated this issue, making HMC
more user-friendly. Another limitation is that HMC operates in continuous state spaces – it cannot
be directly applied to discrete parameter models, since gradients are required. Techniques exist
to extend HMC-like ideas to discrete spaces (e.g., Hamiltonian jumps on lattices in physics, or
continuous relaxations for discrete variables), but these are specialized. Furthermore, while HMC
mixes faster than RWM in most scenarios, it is still a local sampler that can struggle with truly
multimodal distributions that have very isolated modes separated by high energy barriers. In such
cases, any local method (HMC included) may fail to jump between modes unless combined with
other techniques like tempering.

5.3. Future directions

Looking ahead, several avenues exist to further enhance HMC or address its shortcomings. One
direction is adaptive and self-tuning HMC: while NUTS and step-size adaptation are great strides,
further adaptation of the mass matrix (especially in non-diagonal forms) during sampling can im-
prove efficiency in anisotropic distributions. Riemannian HMC already moves in this direction, but
practical and robust implementations are still an active area of research (due to the difficulty of
computing Hessians or metric tensors in complex models). Another direction is symmetric splitting
integrators or higher-order integrators for HMC: the leapfrog integrator is simple and effective, but
in some cases higher-order integrators or tailored integrators that exactly conserve some invariants
could allow larger step sizes or reduce bias. Recent work in computational physics on symplectic
integrators could translate to better HMC performance. Additionally, temperature-assisted sampling
techniques could be combined with HMC – e.g., tempering or annealed trajectories that allow cross-
ing between modes, marrying HMC’s local efficiency with global exploration strategies. There is
also interest in distributed and parallel HMC: while HMC is inherently sequential (each step depends
on the previous), one can run multiple chains in parallel or use speculative moves in parallel and
accept one, etc., to utilize modern multi-core hardware. Combining HMC with Sequential Monte
Carlo (SMC) or particle filtering (as explored by Septier and Peters (2015), for high-dimensional fil-
tering problems) is another promising route, where HMC proposals can move particles efficiently in
an SMC framework. Finally, continuing the theme of combining learning and sampling, we expect
to see more of normalizing flows or learned transport guiding HMC. By preconditioning the space
with an invertible neural network that approximately “gaussianizes” the posterior, one could allevi-
ate the burden on HMC to handle complex geometries, thereby further reducing autocorrelation and
making each HMC trajectory more effective. Early research in this vein is underway.
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In conclusion, Hamiltonian Monte Carlo stands as a landmark development in MCMC method-
ology, offering a principled and highly effective way to sample from difficult distributions. Its
grounding in physics provides both an intuitive picture (samples as particles gliding through the
landscape) and strong mathematical guarantees (symplectic integrators, invariants) that together
yield a formidable algorithm. Through both theoretical analysis and extensive experimentation, we
see that HMC can greatly improve sampling efficiency, especially in the high-dimensional regimes
that are common in modern Bayesian inference. HMC has transformed what practitioners expect
from sampling algorithms: problems once deemed intractable are now routinely handled. As we
refine the method further and integrate it with other innovations, HMC and its descendants will
continue to play a central role in the future of computational statistics, enabling us to tackle ever
more complex models and datasets with confidence in the correctness and efficiency of our Monte
Carlo estimates. As Betancourt (2018) emphasizes, understanding why HMC works so well – and
also when it can fail – is key to using it effectively. This report has sought to illuminate those
points, demonstrating both the elegant theory of Hamiltonian Monte Carlo and its powerful impact
in practice.
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