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Problem Set-up I

Suppose we wish to evaluate:

u =

∫
X⊆Rd

f (x)π(x)dx = Eπ[f ] (1)

with an oracle accessing evaluation of f (x) ∈ Cb
0 (X ), π(x) ∈ P(X )

for ∀x ∈ X .



Problem Set-up II.1: Numerical perspective [DH03]

Gauss Quadrature via polynomial interpolation (d=1)

- Equidistant nodes: Newton-Cotes formula 1

I (F ) :=

∫ b

a
F (t)dt, În(F ) =

n∑
i=0

λiF (ti )

with hi = h = b−a
n , ti = a+ ih, i ∈ [n] and

λin = 1
b−a

∫ b
a

∏
i ̸=j

t−ti
ti−tj

dt = 1
n

∫ n
0

∏
i ̸=j

s−j
i−j ds

where nodes are chosen independently and weights can be
pre-calculated based on different rules within each mesh:

n λ0n, . . . , λnn Error Name

1 1
2 ,

1
2 h3 F ′′(τ)/12 Trapezoidal rule

2 1
6 ,

4
6 ,

1
6 h5 F (4)(τ)/90 Simpson’s rule (Kepler’s barrel rule)

3 3
8 ,

9
8 ,

9
8 ,

3
8 3h5 F (4)(τ)/80 Newton’s 3/8-rule

4 7
90 ,

32
90 ,

12
90 ,

32
90 ,

7
90 8h7 F (6)(τ)/945 Milne’s rule

1need smoothness assumption up to constant



Problem Set-up II.2: Numerical perspective

Gauss Quadrature via polynomial interpolation (d=1)

- Non-equidistant nodes: Gauss-(Chebyshev, Laguerre, Hermite,
Legendre,...) quadrature 2

Consider quadrature of weighted integrals, with a positive weight
function ω(t) > 0 :

Iw (F ) :=

∫ b

a

ω(t)F (t)dt, Îwn (F ) :=
n∑

i=0

λinF (τin)

with uniquely determined nodes τ0n, . . . , τnn and weights λ0n, . . . , λnn.

ω(t) Interval I = [a, b] Orthogonal polynomials

1√
1− t2

[−1, 1] Chebyshev polynomials Tn

e−t [0,∞) Laguerre polynomials Ln
e−t2 (−∞,∞) Hermite polynomials Hn

1 [−1, 1] Legendre polynomials Pn

2better guarantees while requiring stricter smoothness depending on n



Problem Set-up II.3: Numerical perspective

Quadrature in higher dimensions

A separable integral can be integrated dimension-wise:

IL =

∫ b

a

∫ b

a

ϕ(x , y)dx dy =

∫ b

a

ϕ(x)(x)dx

∫ b

a

ϕ(y)(y)dx (2)

where ϕ(x , y) = ϕ(x)(x)ϕ(y)(y). So we consider choosing a basis
ϕ1(x , y), . . . , ϕn(x , y) and approximate f (x , y) ≈

∑n
i=1 ciϕi (x , y) with

ϕi (x , y) such that (2) holds. Then integrate

I (f ) ≈
n∑

i=1

ci l̂
(
ϕ
(x)
i

)
Î
(
ϕ
(y)
i

)
- Full grids: Consider mesh width hℓ = 2−ℓ with grid points

xℓ,i = ihℓ = i2−ℓ and basis functions ϕℓ,i (x) = ϕ
(

x−xℓ,i
hℓ

)
, where

ϕ(x) = max{1− |x |, 0}.
- Sparse grids: Construct hierarchical basis Ṽn =

⊕n
ℓ=1 Wℓ where

Wℓ := span
{
ϕℓ,i ; i ∈ Iℓ :=

{
j : 1 ≤ j < 2ℓ, j is odd

}}
and truncate

diagonally to get Vn =
⊕

|ℓ|1≤n+d−1 Wℓ.



Problem Set-up II.4: Numerical perspective

Full-grid v.s. Sparse-grid

The number of grid points of a
sparse grid grows as O

(
2nnd−1

)
in

contrast to O
(
2nd

)
of a full grid,

drastically reduced points in higher
dimensions d, while sparse-grid space
achieves:∥∥∥u − u

(SG)
n

∥∥∥
2
∈ O

(
2−2nnd−1

)
whereas a full-grid space achieves:∥∥∥u − u

(FG)
n

∥∥∥
2
∈ O

(
2−2n

)



Problem Set-up II.5: Numerical perspective

Several remarks to make:

curse of dimensionality

deterministic instead of probabilistic/statistic



Problem Set-up III: Monte Carlo integration

If we can draw N i.i.d. samples X (i) from π(x), then we can use
the golden Monte Carlo estimator

π̂N(x) =
1

N

N∑
i=1

δX (i)(x)

to approximate the target integration:

f̂ :=
1

N

N∑
i=1

f
(
X (i)

)
= Eπ̂[f ] ≈ Eπ[f ]

It is apparent that the Monte Carlo estimator is unbiased:

E[f̂ ] = Eπ[f ]

with variance:

Var(f̂ ) =
Var(f )

N
Therefore, the problem is reduced to sampling from a target
distribution π(x).
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Inverse Sampling I

The cumulative density function (CDF) of π(x) is:

FX (x) = Pr(X ≤ x) =

∫ +∞

−∞
π(u)1{u≤x}du =

∫ x

−∞
π(u)du

Suppose we have access to the inverse CDF and we can
successfully sample from uniform distribution, we arrive at the
simplest algorithm for exact sampling:

Algorithm 1 Inverse Transform Sampling

Require: CDF FX (x) =
∫ x
−∞ π(u) du

1: Sample u ∼ U(0, 1)
2: Compute X ← F−1

X (u)
3: return X

Proof of correctness:

Pr(F−1
X (u) ≤ x) = Pr (u ≤ FX (x)) = FX (x)



Inverse Sampling II

Several remarks to make:

very limited to cases where the inverse cdf has an analytical
form that can be tabulated.

very limited to low dimensions (usually d=1)

analog: transformation method (e.g., Box Muller algorithm for
sampling gaussians)

In many problems, we only know π(x) up to a normalizing
constant as

γ(x) = Z π(x).

where the normalizing constant

Z :=

∫
X
γ(x) dx

is often intractable.



Outline

1 Problem Set-up

2 Exact and Weighted Sampling
Inverse sampling
Rejection sampling
Importance sampling

3 Markov Chain Monte Carlo
Gibbs sampling
Metropolis-Hastings algorithm
Langevin dynamics

4 Sequential Monte Carlo

5 References



Rejection Sampling I: motivation

Suppose we have a proposal distribution q(x) that is easy to
sample and also known as g(x) up to a normalizing constant, such
that γ(x) < M ′g(x) for all x for some M ′ ≥ M where

M = supx∈X
γ(x)
g(x) < +∞. This implies that γ(x) > 0⇒ g(x) > 0,

and also that the tails of g(x) must be thicker than the tails of
γ(x).
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Rejection Sampling II: algorithm

Algorithm 2 Rejection Sampling

Require: Unnormalized target density γ(x); Unnormalized proposal
density g(x); Constant M > 0 such that γ(x) ≤ M ′ g(x) for all
x ; Desired sample size N

1: for i = 1, . . . ,N do
2: repeat
3: Sample Y ∼ g(y)
4: Sample u ∼ U(0, 1)

5: if u ≤ γ(Y )

M ′ g(Y )
then

6: Set X (i) ← Y
7: break
8: end if
9: until a sample is accepted

10: end for
11: return {X (1), . . . ,X (N)}



Rejection Sampling III: correctness

Correctness of rejection sampling:

Pr(Y ≤ x and Y accepted) =

∫ x

−∞

γ(y)

M ′g(y)
q(y)dy =

∫ x
−∞ γ(y)dy

M ′
∫
X g(y)dy

γ := Pr[Y accepted] =

∫
X γ(y)dy

M ′
∫
X g(y)dy

=⇒ Pr(Y ≤ x | Y accepted) =
Pr(Y ≤ x and Y accepted )

Pr(Y accepted )

=

∫ x
−∞ γ(y)dy

M′g(y)dy∫
X γ(y)dy

M′
∫
X g(y)dy

=

∫ x

−∞
π(y)dy



Rejection Sampling IV: remarks

Indeed, the number of trials before a candidate sample is accepted
follows a geometric distribution:

Pr
(
kth proposal is accepted

)
= (1− γ)k−1γ

So the number of trials before success is an unbiased estimate of
1/γ.
Several remarks to make:

A tractable good proposal density g(x) is often not feasible in
high dimensions.

The bounded constant M a.s. diverges as dimension grows,
i.e., the acceptance rate γ → 0 as d grows, i.e., the number of
trials before success 1/γ →∞ as d grows. 3

Can we have a softer version of rejection?

3e.g., even for high-dimensional gaussians
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Importance sampling I.1: motivation

Motivated by:

Eπ[f ] =

∫
X
f (x)π(x)dx =

∫
X
f (x)

π(x)

q(x)
q(x)dx = Eq[w(X )f (X )]

where w(x) := π(x)/q(x), we transform the original problem from
sampling π(x) into sampling q(x) and reweighting. This corresponds to
the following Monte Carlo estimator of π(x) :

π̂N(x) =
1

N

N∑
i=1

w
(
X (i)

)
δX (i)(x), where X (i) i.i.d.∼ q

Though this Monte Carlo estimator is unbiased, we would usually prefer a
normalized version which is biased yet asymptotically unbiased, due to
(1) we then only need to know w(X (i)) as w̃(X (i)) up to a division of
normalizing constants; (2) a smaller MSE (see in [Liu08]):

π̂N(x) =
N∑
i=1

W (i)δX (i)(x), where W (i) =
w̃
(
X (i)

)∑N
j=1 w̃

(
X (j)

)



Importance sampling I.2: motivation

The normalized version can also be used in the usual setting where
we only know π(x) as γ(x) up to a normalizing constant, and we
only have a proposal distribution q(x) that is easy to sample but
also known as g(x) up to a normalizing constant, then we have:

π(x) =
γ(x)∫

X γ(x)dx
=

γ(x)
g(x)g(x)∫

X
γ(x)
g(x)g(x)dx

=
w̃(x)q(x)∫

X w̃(x)q(x)dx

where w̃(x) := γ(x)/g(x). We can even estimate the normalizing
constant Z :=

∫
X γ(x) dx as long as we have access to q(x) by:

ẐN =
1

N

N∑
i=1

γ
(
X (i)

)
q
(
X (i)

) , where X (i) i.i.d.∼ q



Importance sampling II: algorithm

Algorithm 3 Importance Sampling

Require: Unnormalized target density γ(x); unnormalized proposal g(x)
(or normalized density q(x)); number of samples N; function f (x)
whose expectation is to be estimated.

1: for i = 1, . . . ,N do
2: Sample X (i) ∼ q(x).

3: Compute the unnormalized weight: w̃(X (i))← γ(X (i))
g(X (i))

.

4: end for
5: Compute the sum S ←

∑N
j=1 w̃(X (j)).

6: for i = 1, . . . ,N do

7: Set the normalized weight: W (i) ← w̃(X (i))
S .

8: end for
9: Estimate the expectation: Ê[f ]←

∑N
i=1 W

(i)f (X (i)).
10: if q(x) is provided then

11: Compute the normalizing constant: ẐN ← 1
N

∑N
i=1

γ(X (i))
q(X (i))

12: end if
13: return {X (i),W (i)}Ni=1, Ê[f ], ẐN



Importance sampling III.1: example

Consider the following integral as an example (see here for a
MATLAB implementation):

I =

∫∫
[−1,1]×[−1,1]

f (x , y)dxdy

where

f (x , y) = 0.5e−90(x−0.5)2−45(y+0.1)2 + e−45(x+0.4)2−60(y−0.5)2

Our proposal distribution is:

q(x , y) = 0.46 · N
([

0.5
−0.1

]
,

[
1/180 0
0 1/20

])
+ 0.54 · N

([
−0.4
0.5

]
,

[
1/90 0
0 1/120

])

https://www.dropbox.com/scl/fi/c8sm0u8tph3wv4apxp0w0/ImportanceSampling.rar?dl=0&e=1&file_subpath=%2FImportanceSampling&rlkey=2gp1e2rh6qd688na6hwbgyopj


Importance sampling III.2: example



Importance sampling III.3: example

Figure 1: N = 1000, count = 200 (we take 1000 random sample points
per run and run the simulation 200 times)



Importance sampling III.4: example

Figure 2: N = 2000, count = 200 (we take 2000 random sample points
per run and run the simulation 200 times)



Importance sampling IV: remarks

Several remarks to make:

The general idea behind importance sampling is to find
properly weighted samples, but it is difficult and often
impossible to select the proper q(x) in high dimensions.

The variance of the weights Varq(w) increases exponentially
fast with dimensionality despite a good choice of q(x), i.e.,
the Effective Sample Size ESS := m/(1 +Varq(w)) decreases
exponentially to 0 as d grows. 4

4albeit there exists few high-dimensional scenarios where IS succeeds as
q(x) successfully tends to π(x), this is then a chicken-egg problem as thus π(x)
itself is not hard to sample at all.
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MCMC I.0: motivation

Figure 3: Importance Sampling Figure 4: Markov Chain Monte Carlo



MCMC I.1: motivation

Definition: Markov Chain

A homogeneous Markov chain is a sequence of random variables
{Xn, n ∈ N} defined on (X ,B(X )) such that for any A ∈ B(X ) the
following probability condition is satisfied:

P (Xn ∈ A | X0, . . . ,Xn−1) = P (Xn ∈ A | Xn−1)

with homogeneous transition kernel: K (x ,A) := P (Xn ∈ A | Xn−1 = x)

Markov Chain Monte Carlo (MCMC): Given a target distribution π, we
need to design a Markov transition kernel K such that asymptotically

1

N

N∑
n=1

f (Xn)
N→∞−−−−→

∫
f (x)π(x)dx a.s. and/or Xn ∼ π (stricter)

Luckily, (1) It is easy to simulate the Markov Chain even if π is complex;
(2) Under mild conditions (irreducible, aperiodic, invariant), such an
estimator is consistent. Under additional conditions (Lyapunov condition
and minorization property), the CLT also holds with a convergence rate
O(1/

√
N).



MCMC I.2: motivation

In principle, we need the chain to satisfy three key properties 5 6:
I . The desired distribution π is an invariant 7 distribution of the
Markov chain, i.e. ∫

x
π(x)P(x , y)dx = π(y)

II . The chain is irreducible if for ∀x , y ∈ X :

Pr(Xt = x |X0 = y) > 0 for some t > 0

III . The chain is aperiodic if ∃t0 > 0 s.t.:

Pr(Xt0 = x |X0 = x) > 0 for ∀t > t0
5Indeed, (I)+(II)+(III) implies ergodicity, saying

∀x ∈ X , limt→∞
∥∥P t(x , ·)− π(·)

∥∥
TV

= 0
6Indeed, (II) and (III) imply primitivity, saying ∃t0 > 0 s.t. for ∀x , y ∈ X :

Pr(Xt = x |X0 = y) > 0 for ∀t > t0
7A stricter condition is the detailed balance condition(reversibility):

for ∀x , y ∈ X , π(x)P(x , y) = π(y)P(y , x)
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Gibbs Sampling I: RSGS algorithm

Algorithm 4 Random-Scan Gibbs Sampler

Require: Initial state X (0) = (X
(0)
1 ,X

(0)
2 , . . . ,X

(0)
d ); normalized target

density π(x); number of iterations N.
1: for t = 1, 2, . . . ,N do
2: Randomly select an index it ∼ Uniform({1, 2, . . . , d}).
3: Update the it-th coordinate by sampling from its full conditional

distribution:
X

(t)
it
∼ π

(
xit

∣∣∣X (t−1)
−it

)
,

where X
(t−1)
−it

represents the vector of current values for all coordi-
nates except xit .

4: For every j ̸= it , set

X
(t)
j ← X

(t−1)
j .

5: end for
6: return {X (t)}Nt=0.



Gibbs Sampling II: SSGS algorithm

Algorithm 5 Systematic-scan Gibbs Sampler

Require: Initial state X (0) =
(
X

(0)
1 ,X

(0)
2 , . . . ,X

(0)
d

)
; normalized target

density π(x); number of iterations N.
1: for t = 1, 2, . . . ,N do
2: for i = 1, 2, . . . , d do
3: Update the ith coordinate by sampling from its full conditional

distribution:

X
(t)
i ∼ π

(
xi

∣∣∣X (t)
1 , . . . ,X

(t)
i−1,X

(t−1)
i+1 , . . . ,X

(t−1)
d

)
.

4: For indices j < i , use the updated values X
(t)
j ; for indices j > i ,

retain the previous iteration’s values X
(t−1)
j .

5: end for
6: end for
7: return {X (t)}Nt=0.



Gibbs Sampling III: remarks

Several remarks to make:

One can verify that the Markov chain in Gibbs sampling (for
both schemes) satisfies irreducibility, aperiodicity, and π(x) as
the unique invariant distribution.

The motto of Gibbs sampling is to fix some components of
the chain at each step and preserves the conditional density of
π(x) for the remaining components therefore leaves π(x)
invariant. It is generally the partial resampling principle.

Gibbs sampling only succeeds when sampling from
conditionals is sometimes feasible even when sampling from
the joint is impossible.

The choice of coordinates(ordering) such that the conditional
distribution is simple can be often very hard, and even in
special cases which this is possible, fixing the choice of
coordinates can lead to slow convergence rate due to poor
conditioning of π(x) in those coordinates.



Gibbs Sampling III: example

Figure 5: Gibbs Sampling [github]

https://chi-feng.github.io/mcmc-demo/app.html?algorithm=GibbsSampling&target=multimodal
https://chi-feng.github.io/mcmc-demo/app.html?algorithm=GibbsSampling&target=multimodal
https://github.com/chi-feng/mcmc-demo
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Metropolis-Hastings Algorithm I: algorithm

Algorithm 6 Metropolis-Hastings Algorithm

Require: Unnormalized target density γ(x); proposal distribution q(x , x ′);
initial state X (0); number of iterations N.

1: for i = 1, 2, . . . ,N do
2: Draw a proposal X ∗ from q

(
X (i−1), ·

)
.

3: Compute the acceptance probability

α
(
X (i−1),X ∗

)
← min

{
1,

γ (X ∗) q
(
X ∗,X (i−1))

γ(X (i−1)) q(
X (i−1),X ∗)

}
.

4: Draw u ∼ U [0, 1].
5: if u ≤ α

(
X (i−1),X ∗) then

6: Set X (i) ← X ∗.
7: else
8: Set X (i) ← X (i−1).
9: end if

10: end for
11: return {X (i)}Ni=0.



Metropolis-Hastings Algorithm II.1: remarks

Several remarks to make:

It is indeed that the Markov chain in Metropolis-Hastings
algorithm is a.s. irreducible and aperiodic [Tie94], and the
M-H algorithm converges under very weak assumptions to the
target distribution π.

Different proposals result to different algorithms, e.g.
symmetric proposal leads to the earliest Metropolis algorithm;
independent proposal q (x , x ′) = q (x ′) with bounded
constraints leads to independent M-H algorithm, Gaussian
proposal leads to random-walk M-H algorithm, etc.

There are generalizations of proposal forms, namely, mixture
of proposals, e.g. Multiple-Try Metropolis by multiple
independent proposals with its different forms in various
contexts. We can also combine MH-step with Gibbs sampling
to enhance performance as a hybrid algorithm.

To implement the Metropolis scheme we only need to know
the target density π(x) up to a constant γ(x).



Metropolis-Hastings Algorithm II.2: remarks

Several more remarks to make:

It is intuitively clear that if we choose the proposal to be
nearly reversible (not symmetric), we nearly get a probability 1
acceptance, i.e., the chain converges fast, but it is expected to
be very hard in high dimensions. In fact, as d grows, the
average acceptance probability grows exponentially close to 0.

Because the samples, X (k), generated by a typical MCMC
scheme are only asymptotically distributed according to the
target distribution π, so for finite N the MCMC estimator f̄N
will have a bias. In fact, with some assumptions on how the
chain is generated, the final sample X (N) can be reweighted
so that it can be used to compute unbiased (or nearly
unbiased) averages against π even when N is finite.

The idea of M-H algorithm is incredibly flexible, there is still a
huge potential combining it with other methods, while in
general it still suffers from a low convergence rate in high
dimensions and vague non-asymptotic guarantees.



Metropolis-Hastings Algorithm III: example

Figure 6: Random Walk Metropolis-Hastings [github]

https://chi-feng.github.io/mcmc-demo/app.html?algorithm=RandomWalkMH&target=multimodal
https://chi-feng.github.io/mcmc-demo/app.html?algorithm=RandomWalkMH&target=multimodal
https://chi-feng.github.io/mcmc-demo/app.html?algorithm=RandomWalkMH&target=multimodal
https://github.com/chi-feng/mcmc-demo


Outline

1 Problem Set-up

2 Exact and Weighted Sampling
Inverse sampling
Rejection sampling
Importance sampling

3 Markov Chain Monte Carlo
Gibbs sampling
Metropolis-Hastings algorithm
Langevin dynamics

4 Sequential Monte Carlo

5 References



Langevin Dynamics I.1: motivation

Let’s impose some structures on the target distribution
π(x) = e−U(x)!



Langevin Dynamics I.2: motivation

Langevin dynamics can produce samples from a probability density
π(x) using only the score function ∇x log π(x) = −∇xU(x). Given
a fixed step size ϵ > 0, and an initial value X0 ∼ π0(x) with π0(x)
being any prior distribution, the Langevin dynamics recursively
compute the following noisy gradient descent step for t ∈ [T ]:

Xt = Xt−1 +
ϵ

2
∇x log p (Xt−1) +

√
ϵZt (3)

where Zt ∼ N (0, Id). The distribution of XT equals π(x) when
ϵ→ 0 and T →∞, in which case XT becomes an exact sample
from π(x) under some regularity conditions [WT11]. When ϵ > 0
and T <∞, a Metropolis-Hastings update is needed to correct the
error of (3), but it can often be ignored in practice [CFG14] [DM19]
[NHH+19]. The error is negligible when ϵ is small and T is large.



Langevin Dynamics I.3: motivation

Note that sampling from (3) only requires the score function
∇x log π(x) = −∇xU(x). In the score-based generative modeling
setting, we do not have access to the target distribution, thus no
knowledge of the potential U(x), so parameterizing this score
function by a Neural Network is thoroughly proposed by Song et al.
in 2020 [SSDK+20] as the basis of score-based generative
modeling frameworks. In our statistical sampling setting, we do
have the access to U(x), so we can run Langevin Dynamics
immediately, while the problem is that it can be very slow when
U(x) is nonconvex and multimodal.



Langevin Dynamics II: algorithm

Algorithm 7 (Unadjusted) Langevin Dynamics

Require: Target density π(x) = e−U(x); initial state X (0); step size
ϵ; number of iterations N.

1: for i = 1, . . . ,N do
2: Compute the gradient ∇U(X (i−1)).
3: Sample Z (i) ∼ N (0, Id)
4: Update the state:

X (i) ← X (i−1) − ϵ

2
∇U(X (i−1)) +

√
ϵZ (i).

5: end for
6: return {X (i)}Ni=0



Langevin Dynamics III.1: remarks

Several remarks to make:

The reason of choosing the step size for diffusion η̃ as
√
2η of

the step size for drifting, can be justified easily in order to
have Θ(1) quantities in the RHS of (3).

Langevin Diffusion is a special instance of Ito diffusion where
a Markov semi-group (Ktϕ) (x) := E [ϕ (Xt) | X0 = x ] can be
associated, followed by an infinitesimal generator
Lϕ := limt→0+

Ktϕ−ϕ
t for any test function ϕ. Thus the

associated Kolmogorov’s backward equation can be justified
as:

∂tKtϕ = LKtϕ = KtLϕ

and a forward equation named as Fokker-Planck equation can
also be justified as:

∂tπt = L∗πt



Langevin Dynamics III.2: remarks

Several more remarks to make:

In fact, Langevin dynamics can be understood as a gradient flow of
the relative entropy functional w.r.t. the Wasserstein metric.

With the assumption of Bakry-Émery Criterion (or a more general
version, Holley-Stroock Perturbation Principle) saying U(x) is
λ-strongly convex, we can show that the convergence of Langevin
dynamics satisfies the log-Sobolev inequality :

KL (πt∥π) ⩽ e−2λtKL (π0∥π)

For discretization algorithms for (3), the state-of-the-art result for
log-concave sampling gives a guarantee of the iteration step T of

form T ≳ Θ
(
k
√
d log ε−1

)
to reach accuracy ε where k := β/α

with αI ⩽ ∇2f ⩽ βI for 0 < α ⩽ β. See [AC23].

For nonconvex potential U(x), we need Θ̃
(
ε−2

)
to find

ε-approximate local minimum.

See everything in more details through the book ”Log-Concave
Sampling” by Chewi.

https://chewisinho.github.io/main.pdf
https://chewisinho.github.io/main.pdf


Langevin Dynamics III.3: remarks

Several more more remarks to make:

The special choice of U(x) = 1
2∥x∥

2 leads to the so-called
Ornstein–Uhlenbeck (OU) process as to be
variance-preserving, formally it corresponds to a canonical
choice of the forward process in diffusion models, however this
just happens coincidentally as in diffusion models we choose
the OU process to be a noising schedule of the unknown
target distribution. A broader class of ”noising schedules”
including OU process hold reverse processes, where the score
function shows up again to be a key component. It seems to
have some relations to Langevin dynamics, but again this is a
coincidence. Yang et al. invented the first original idea to
combine these two coincidences together, termed as
”Annealed Langevin Dynamics” for sampling, and started the
field of score-based generative modeling. See their paper
[SSDK+20] and Song’s blog
https://yang-song.net/blog/2021/score/.

https://yang-song.net/blog/2021/score/


Langevin Dynamics IV: example

Figure 7: (Stochastic Gradient) Langevin Dynamics [github]

https://github.com/WayneDW/Contour-Stochastic-Gradient-Langevin-Dynamics/blob/master/figures/SGLD.gif
https://github.com/WayneDW/Contour-Stochastic-Gradient-Langevin-Dynamics


MCMC: final remarks

Several last remarks to make:

Importance Sampling: Parallelization(efficiency) but lack
Exploration(local and stable)

MCMC: Exploration(local and stable) but lack
Parallelization(efficiency)

Can we combine their strengths together?

From equilibrium sampling to non-equilibrium sampling by
introducing bridges/paths...
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Sequential Monte Carlo I: motivation

(a) Importance Sampling

(b) Markov Chain Monte Carlo

Figure 9: Sequential Monte Carlo
(Sequential Importance Sampling +
Resampling)



Sequential Monte Carlo II.1: SIS motivation

It is nontrivial to design a good trial distribution for IS in high
dimensional problems. One of the most useful strategies is to build
up the trial density sequentially, in the sense of breaking hard
problems into manageable pieces. Learning sequentially is a natural
task for many problems (e.g., state space models such as hidden
markov models).
Suppose we are situated in a high-dimensional setting:
x = (x1, . . . , xd). By Bayes rule, we can always decompose target
distribution as:

π(x) = π (x1)π (x2 | x1) · · ·π (xd | x1, . . . , xd−1)

Consider building our reference distribution q(x) sequentially:

q(x) = q1 (x1) q2 (x2 | x1) · · · qd (xd | x1, . . . , xd−1)

Then the importance weights in standard IS turns out to be:

w(x) =
π (x1)π (x2 | x1) · · ·π (xd | x1, . . . , xd−1)

q1 (x1) q2 (x2 | x1) · · · qd (xd | x1, . . . , xd−1)
(4)



Sequential Monte Carlo II.2: SIS motivation

Let xt = (x1, . . . , xt). Then (5) can be calculated recursively:

wt (xt) = wt−1 (xt−1)
π (xt | xt−1)

qt (xt | xt−1)

so that wd (xd) = w(x). It is apparent that the difficulty is

computing π (xt | xt−1) =
π(xt)

π(xt−1)
as we do not have marginals,

therefore we need to find a sequence of ”auxiliary distributions”
πt (xt) , t ∈ [d ], as an approximation to the marginal distributions
π (xt) so that πd(x) = π(x).



Sequential Monte Carlo II.3: SIS algorithm

Algorithm 8 Sequential Importance Sampling (SIS)

Require: d ; sample size N; auxiliary distributions {πt}dt=0 (with π0(·) ≡
1); proposal kernels {qt}dt=1.

1: Initialization: Set w0 ← 1 and let x0 be empty.
2: for i = 1, 2, . . . ,N do
3: for t = 1, 2, . . . , d do
4: Draw Xt ∼ qt

(
· | Xt−1

)
.

5: Update trajectory: Xt ←
(
Xt−1,Xt

)
.

6: Compute the incremental weight:

ut ←
πt

(
Xt

)
πt−1

(
Xt−1

)
qt
(
xt | Xt−1

) .
7: Update weight: wt ← wt−1 ut .
8: end for
9: Output: Assign (X(i),w (i))← (Xd ,wd).

10: end for
11: return {(X(i),w (i)) : i = 1, . . . ,N}.



Sequential Monte Carlo II.4: general SIS

Finding the ”auxiliary distributions” as reference for marginals is as
hard as the original problem, we can expect from IS, that SIS fails
for large d unless q happens to be a very good approximation of π
due to the a.s. occurrence of high-variance weights (instability).
The key to bypass this instability issue is to introduce the idea of
resampling. We will cover this idea soon after we first introduce a
more general version of SIS.
Notice that marginals are not the only path we can choose to
bridge between distributions, generally, our task is to approximate
a bridging sequence of target distributions (π̃t) by a sequence of
proposal kernels (qt). More specifically, each target distribution:

π̃t (dx0:t) = γ̃t (x0:t) dx0:t/Z̃t

is defined on the product space
(
X t+1,X t+1

)
, where γ̃t (x0:t) is

an unnormalized density and Z̃t =
∫
X t+1 γ̃t (x0:t) dx0:t is a

normalizing constant (with Z̃0 = 1).



Sequential Monte Carlo II.5: general SIS

As input, it requires a sequence of proposal kernels (qt) on
(X ,X ). At step t, this defines the proposal distribution:

q̃t (dx0:t) = π̃0 (dx0)
t∏

s=1

qs (xs−1, dxs) .

The weight function can be written as:

w̃t (x0:t) = γ̃t (x0:t) /q̃t (x0:t) =
t∏

s=1

ws (x0:s) ,

where the incremental weight is:

wt (x0:t) =
γ̃t (x0:t)

γ̃t−1 (x0:t−1) qt (xt−1, xt)
(5)

As output, the algorithm returns weighted particles (wn
t , x

n
0:t)n∈[N]

approximating π̃t as N →∞, and an unbiased estimator Z̃N
t of Z̃t

which is consistent as N →∞.



Sequential Monte Carlo III.1: Resampling

As we have mentioned, the key problem is high-variance weights
(instability). The key is to introduce resampling at each step, that
is, instead of carrying samples with very low weight, we replace low
weight samples with copies of high weight samples in a statistically
consistent manner.

Theorem

Given samples with importance weights
{(

x(i),w (i)
)
: i ∈ [m]

}
, if

we resample with replacement x(∗i) from
{
x(1), . . . , x(m)

}
with

probabilities proportional to the importance weights, i.e.

P
[
x(∗i) = x(k) |

{
x(1), . . . , x(m)

}]
=

w (k)∑
j w

(j)

then the distribution of
{
x(∗1), . . . , x(∗m)

}
is approximately the

target distribution when m is large.



Sequential Monte Carlo III.2: Resampling

Proof. Let p∗(·) be pdf of x(∗i). For x ∈
{
x(1), . . . , x(m)

}
≡ X,

write xo = X\{x}. Then by the resampling procedure,

p∗(x) =

(
m

1

)
q(x)

∫
q (xo)

w(x)∑
j w

(j)
dxo

= q(x)w(x)

∫
q (xo)∑
j w

(j)/m
dxo →

1

Zπ
π(x)

since
∑

j w
(j)/m

a.s.−−−→ Zπ =
∫
π(y)dy(= 1 if π is normalized).

□
Several remarks to make:

With more work, and a few more assumptions, we could show
quantitative bounds for the error in SIS with
(multinomial/bernoulli/systematic) resampling that is
independent of d, and depends on large sample size N,
something that would not typically be possible for direct IS.

See [GSS93], [GCW17], [WLH16] for further discussions.



Sequential Monte Carlo IV.1: SMC algorithm

Algorithm 9 General Sequential Monte Carlo Methods
(SIS+resampling) [DHJa22]

Require: Sequence of distributions (π̃t), proposal Markov kernels (qt),
resampling distribution r

(
· | w1:N

)
on [N]N where w1:N is an N-vector

of probabilities.
1: Initialization:

Sample particle xn0 from π0(·) for n ∈ [N] independently.

Set wn
0 = N−1 for n ∈ [N].

2: for t = 1, 2, . . . ,T do
3: (a) Sample ancestor indices

(
ant−1

)
n∈[N]

from r
(
· | w1:N

t−1

)
, and de-

fine x̌n0:t−1 = x
ant−1

0:t−1 for n ∈ [N].

4: (b) Sample particle xnt ∼ qt
(
x̌n0:t−1, ·

)
and set xn0:t =

(
x̌n0:t−1, x

n
t

)
for n ∈ [N].

5: (c) Compute weights wt (x
n
0:t) for n ∈ [N], and set wn

t ∝ wt (x
n
0:t)

such that
∑

n∈[N] w
n
t = 1.

6: end for
7: Output: Weighted particles (wn

t , x
n
t )n∈[N] approximat-

ing πt as πN
t (f ) =

∑
n∈[N] w

n
t f (x

n
t ), and estimator

ZN
t =

∏t
s=1 N

−1
∑

n∈[N] ws

(
xns−1, x

n
s

)
of Zt for t ∈ [T ].



Sequential Monte Carlo IV.2: Particle Filter

In the context of state space models, specifically hidden Markov models,
we consider a latent Markov chain (xt)t≥0 defined on (X ,X ), initialized
as x0 ∼ π0 and evolving for each time step t ≥ 1 according to a Markov
kernel f , i.e. xt | xt−1 ∼ f (xt−1, ·). We assume access to Y -valued
observations (yt)t≥1 that are modeled as conditionally independent given
(xt)t≥0, with observation density g on (Y,Y ), i.e. yt | xt ∼ g (xt , ·).
Given observations collected up to time t, sequential state inference is
based on the posterior distribution

p (dx0:t | y1:t) =
p (dx0:t) p (y1:t | x0:t)

p (y1:t)
(6)

where the joint distribution of the states is
p (dx0:t) = π0 (dx0)

∏t
s=1 f (xs−1, dxs) and the conditional likelihood of

the observations is p (y1:t | x0:t) =
∏t

s=1 g (xs , ys). We will also be
interested in the marginal likelihood p (y1:t) =

∫
X t+1 p (dx0:t , y1:t) when

there are unknown parameters in the model to be inferred. From (6), we
can derive other quantities of interest such as the filtering distribution
p (dxt | y1:t), defined as the last marginal of p (dx0:t | y1:t), and the state
predictive distribution p (dxt+1 | y1:t) =

∫
X f (xt , dxt+1) p (dxt | y1:t).



Sequential Monte Carlo IV.3: Particle Filter

Particle filters can be understood as specific cases of SMC
methods to sequentially approximate the posterior distribution
π̃t (dx0:t) = p (dx0:t | y1:t) (with π̃0 = π0) and the marginal
likelihood Z̃t = p (y1:t). In this setting, the incremental weight
function in (5) reduces to

wt (xt−1, xt) =
f (xt−1, xt) g (xt , yt)

qt (xt−1, xt)

Different choices of proposal kernels (qt) give rise to distinct SMC
methods. For example, the bootstrap particle filter of Gordon et
al. [GSS93] corresponds to general SMC methods with
qt (xt−1, dxt) = f (xt−1, dxt) and wt (xt) = g (xt , yt) for all t.



Sequential Monte Carlo IV.4: SMC Sampler motivation

SMC Samplers as a framework introduced by Moral et al. in 2006
[DMDJ06] is another instance of general SMC methods, but it
obtains huge flexibility and provides great framework for sampling.
Given a sequence of target distributions (πt) and backward Markov
kernels (Lt) on (X,X ), the target distribution in is

π̃t (dx0:t) = πt (dxt)
t∏

s=1

Ls−1 (xs , dxs−1) , (7)

with π̃0 = π0. Note that (7) has πt as the marginal distribution on
xt and the normalizing constant is Z̃t = Zt . In this case, the
proposal kernels (qt) correspond to the forward kernels (Mt)
defined on (X,X ) and the incremental weight function (5)
reduces to the weight function

wt (xt−1, xt) =
γt (xt) Lt−1 (xt , xt−1)

γt−1 (xt−1)Mt (xt−1, xt)
.



Sequential Monte Carlo IV.5: SMC Sampler algorithm

Algorithm 10 Sequential Monte Carlo Sampler (SMCS) [DMDJ06]

Require: Sequence of unnormalized distributions (γt), forward Markov
kernels (Mt), backward Markov kernels (Lt), resampling distribution
r
(
· | w1:N

)
on [N]N where w1:N is an N-vector of probabilities.

1: Initialization:

Sample particle xn0 from π0(·) for n ∈ [N] independently.

Set wn
0 = N−1 for n ∈ [N].

2: for t = 1, 2, . . . ,T do
3: (a) Sample ancestor indices

(
ant−1

)
n∈[N]

from r
(
· | w1:N

t−1

)
, and de-

fine x̌nt−1 = x
ant−1

t−1 for n ∈ [N].

4: (b) Sample particle xnt ∼ Mt

(
x̌nt−1, ·

)
for n ∈ [N].

5: (c) Compute weights wt

(
x̌nt−1, x

n
t

)
=

γt(x
n
t )Lt−1(xn

t ,x̌
n
t−1)

γt−1(x̌n
t−1)Mt(x̌n

t−1,x
n
t )

for n ∈

[N], and set wn
t ∝ wt

(
x̌nt−1, x

n
t

)
such that

∑
n∈[N] w

n
t = 1.

6: end for
7: Output: Weighted particles (wn

t , x
n
t )n∈[N] approximat-

ing πt as πN
t (f ) =

∑
n∈[N] w

n
t f (x

n
t ), and estimator

ZN
t =

∏t
s=1 N

−1
∑

n∈[N] ws

(
xns−1, x

n
s

)
of Zt for t ∈ [T ].



Sequential Monte Carlo IV.6: SMC Sampler

Several remarks to make:

Adding a few more weak assumptions and with hard work, one
can show that SMCS has the propagated error bounded
independent of the step size. So that parallelize computation
across chains is achievable, in the sense of having a large
number of runs and a small number of steps can give good
samples and estimations. See in [DHJa22] for quantitative
guarantees.

There are batch of alternatives to multinomial/categorical
distribution for resampling (e.g., Bernoulli, systematic).



Sequential Monte Carlo IV.7: SMC Sampler

SMCS is an extremely rich and flexible sampling framework, key
components within this framework are:

Paths of Distributions
Geometric paths (annealed importance sampling [Nea01])
Gaussian convolutions (forward and backward SDE processes
in score-based generative models [SSDK+20])
See other paths like path of partial posteriors, path of
truncated distributions, etc. in [DHJa22].

Forward and Backward Markov Kernels
Exact MCMC moves, e.g. design Mt as πt-invariant kernel, or
design Lt−1 to be the time reversal of Mt as
Lt−1 (xt , xt−1) = πt (xt−1)Mt (xt−1, xt) /πt (xt), suggested by
Jarzynski and Neal [Jar97][Nea01].

Parallelization
See detailed guarantees and principled guides in [DHJa22].

Parameters
step sizes, preconditioning matrices, inverse temperatures in
geometric annealing path, etc.



Something we can talk about later

Song et al.’s paper on ”Score-based generative modeling
through stochastic differential equations.” [SSDK+20] with
Song’s blog https://yang-song.net/blog/2021/score/,
to understand how sampling can be done if we have correct
data at first but do not access the distribution (learning task),
and how two regimes can be combined.

Preliminaries of Score-based diffusion models:
”variance-preserving” diffusion scheme with OU semigroup
and ”variance-exploding” scheme with heat semigroup,
Fokker-Plank equation for the diffusion process, learning the
score ∇ log πt(xt) is equivalent to learning the denoising
oracle E [X0 | Xt = x ] by Tweedie’s formula, Log-Sobolev
Inequality for convergence rate guarantee. See all for a short
review in [BH24].

https://yang-song.net/blog/2021/score/
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